
1

Visual Diagnostics for Deep Reinforcement
Learning Policy Development

Jieliang Luo*, Sam Green*, Peter Feghali, George Legrady, and Çetin Kaya Koç
University of California, Santa Barbara

jieliang@ucsb.edu

Abstract—Modern vision-based reinforcement learning tech-
niques often use convolutional neural networks (CNN) as uni-
versal function approximators to choose which action to take
for a given visual input. Until recently, CNNs have been treated
like black-box functions, but this mindset is especially dangerous
when used for control in safety-critical settings. In this paper,
we present our extensions of CNN visualization algorithms to
the domain of vision-based reinforcement learning. We use a
simulated drone environment as an example scenario. These
visualization algorithms are an important tool for behavior
introspection and provide insight into the qualities and flaws
of trained policies when interacting with the physical world. A
video may be seen at https://sites.google.com/view/drlvisual.

Index Terms—reinforcement learning, cyber-physical systems,
convolutional neural networks, engineering visualization

I. INTRODUCTION

REinforcement learning (RL) is a family of methods
aimed at training an agent to collect rewards from

an environment through trial-and-error approaches. Since the
deep Q-network (DQN) algorithm was introduced in 2013,
there has been a surge of interest in using convolutional neural
networks (CNN) in vision-based RL algorithms [1]. In the con-
text of cyber-physical systems, vision-based RL has exciting
potential to provide high levels of autonomy in applications
like robotics, self-driving cars, and infrastructure inspection.
However, CNNs are known to be opaque to debugging and
RL’s emphasis on trial-and-error demands rigorous behavioral
verification before they may be allowed control over safety-
critical physical systems. This work adapts CNN visualization
techniques to the domain of RL.

Existing CNN visualization techniques attempt to visu-
alize classes, provide decision attribution, or cluster inputs
according to their resulting label. Techniques considered here
include:

• t-SNE maps [2] – Clusters similar inputs by the output
classifications they trigger.

• Class visualization [3] – Generates inputs which trigger
specified classifications.

• Attribution visualization [4] – Identifies image regions
most responsible for a classification decision.

These techniques are useful for understanding what would
cause a CNN to make a particular decision (through class
visualization) and why a CNN made a particular decision
(through t-SNE and attribution visualization).

* Equal contribution.

Fig. 1: Visualization development cycle when using convolu-
tional neural networks for vision-based reinforcement learning.
By iteratively visualizing what and how the CNN is perceiving,
the engineer gains insight regarding why the RL policy makes
its decisions.

CNN visualizations have proven to be valuable for iden-
tifying strengths and weaknesses in a trained network. For
example, the feature visualization for GoogLeNet’s saxophone
class indeed extracts a saxophone shaped object from the
network. That is, the method generates an image, which, when
input into the trained GoogLeNet CNN, will maximize the
output probability of the saxophone class. However, when
looking at the generated image, one can clearly see that the
outline of a man has also been extracted from the network!
The cause of this is the fact that CNNs, unlike humans, look
at every pixel in the training set and will therefore extract all
biases with which it was presented during training.

Existing visualization methods are powerful tools for gain-
ing understanding and trust during CNN image classification
development, but they are not adequate by themselves for use
with RL. For example CNN-based RL often uses a stochastic
policy which means that an agent’s action is chosen randomly
under a distribution defined by the CNN’s output (i.e. “class”)
probabilities. Visual diagnostics for stochastic policies should
capture such uncertainty. Finally, existing CNN visualizations
are designed for static images, not for the types of time-series
data collected when an agent interacts with an environment.

We have adapted CNN visualization techniques to the
domain of CNN-based RL. We show that these tools are valu-
able for providing explanations regarding an agent’s decision-
making process and can help an engineer understand policy
deficiencies. In the following section, we provide: 1) a formal
introduction to the goals of RL, our methodology, and related
work; 2) visualization results for simulated drone experiments;
3) conclusions and opportunities for further research.

ar
X

iv
:1

80
9.

06
78

1v
1 

 [
cs

.L
G

] 
 1

4 
Se

p 
20

18

https://sites.google.com/view/drlvisual


2

Fig. 2: Illustration of cube-collection environment. The drone
policy is rewarded for “collecting” as many boxes as possible
in each episode.

II. PROBLEM FORMULATION AND RELATED WORK

We have extended AirSim, a drone simulator created by Mi-
crosoft [5]. AirSim is an Unreal Engine plugin which provides
physically realistic simulations for autonomous vehicles. Our
extensions add support for a variety of reinforcement learning
tasks.

As illustrated in Fig. 2, our AirSim environment features a
drone which learns how to maneuver in order to “collect”
cubes which are in front of it. At the beginning of each
episode, the drone is reset to a starting point, and cubes are
randomly distributed in front of it. The drone is controlled by
a policy which is rewarded for collecting as many cubes as
possible in each episode.

Formally, at each time step t, the drone’s camera receives
a partial observation of its state st and then makes an action
at. The agent’s policy πθ : st → at is the logic with takes
state observations and returns action selections. The possible
actions in our environment are: “left”, “forward”, and “right”.
After each action the environment will return a new state
observation st+1 and reward rt+1. The policy is represented
as a convolutional neural network parameterized by θ. The
goal in RL is to find parameters which maximize the agent’s
ability to collect rewards. In a finite time-horizon, the goal is
accomplished by finding CNN parameters θ?:

θ? = argmax
θ

T−1∑
t=0

r(st, at), (1)

where T − 1 is the number of time steps experienced in the
episode. In summary, the objective of our cube-collecting task
is to find the CNN parameters to maximize the drone’s ability
to move toward cubes.

After each episode is finished, we use the REINFORCE
algorithm to update the CNN parameters θ [6]. REINFORCE
is an iterative algorithm which uses gradient decent to adjust
θ in a direction which increases action probabilities that led
to cube-collection in the prior episode. The amount of each
adjustment is scaled by a learning-rate. This simple algorithm
is ideal for the initial experiments presented here, because it
allowed us to quickly understand the fundamental challenges
in RL visualization.

We experiment with three algorithms to visualize the CNN
policy’s behavior: t-SNE, class visualization, attribution visu-
alization.

A. t-SNE

T-Distributed Stochastic Neighbor Embedding (t-SNE)
is a dimensionality reduction algorithm developed by [2].

It is well suited for visualizing high-dimensional datasets.
The method positions each high-dimensional datapoint (e.g.
images) in a two or three-dimensional map in a way that
similar datapoints are nearby and dissimilar ones are distant.
The most recent use of t-SNE is to use a trained convolutional
neural network (CNN) to extract features from each image,
feed the features to t-SNE to get the position of each image,
and arrange the images on a 2D or 3D space based on the
given positions.

B. Class Visualization

Class visualization methods generate visual inputs which
activate a particular output in a trained neural network. This
approach allows for a high-level of human comprehension
about the behavior of a network, rather than treating the
network like a black-box model. For our specific feature
visualization approach, we use Class Model Visualization
(CMV) [3]. CMV generates inputs which will trigger any
specific output class in a trained convolutional neural network.

Formally, we let a represent the action for which we want
to generate an input image to trigger, s is the input image
which will be optimized such that the action probability is
maximized. We let πθ(a|s) represent the probability of taking
action a given the image s. The goal then is to solve the
following optimization problem:

s∗ = argmax
s

πθ(a|s). (2)

In practice, the optimal image s∗ is found using gradient ascent
by an automatic differentiation tool like TensorFlow.

C. Attribution Visualization

Attribution visualization techniques highlight regions in
an input which are most responsible for a particular action in
a CNN-based policy. We will use an attribution visualization
technique called Gradient-weighted Class Activation Map-
ping (Grad-CAM) [4], which highlights regions in the input
image most responsible for an action probability.

CNNs are particularly well-suited for attribution visualiza-
tion, because they maintain spatial structure of the input as
it flows through the network, this is why we can extract
meaning from the last layer. A feature map is the output of a
convolutional layer after it has passed through a nonlinearity
(e.g. ReLU) function. Feature maps typically have many
channels, and the goal of Grad-CAM is to find which channels
contribute the most to an action taken. Grad-CAM achieves
that goal by calculating the average derivative of the policy
network, given a specific action a and input image s, with
respect to the feature map of interest:

αk =
1

Z

∑
i

∑
j

∂πθ(a|s)
∂Akij

, (3)

where A is the feature map of our target convolutional layer,
Ak is channel k of A, Akij is the neuron at position i, j, and
Z = i× j. αk is known as the importance weight for feature
map channel k.



3

(a) High-performance policy

(b) Poor-performance policy

(c) Forward-and-right-only policy

Fig. 3: T-SNE visualizations for the (a) high-performance
policy, (b) poor-performance policy and (c) a policy which
only moves right and forward. The tinting of each visual input
is based on the action taken by the policy, given the input: red
indicates “forward”, green indicates “left”, and blue indicates
“right”.

Once importance weights α1, α2, · · · , αK are known, they
may be used to linearly combine feature map channels 1
through K, giving a “class activation map”:

Grad-CAM = ReLU
(∑

k

αkAk
)
, (4)

where ReLU is being used to filter for derivatives with a
positive effect.

D. Related work

There has only been a marginal amount of previous lit-
erature regarding the visualization of reinforcement learning
policies. The creators of the DQN algorithm used t-SNE to
cluster actions according to Atari game screens [7]. More in-
depth exploration of t-SNE and Atari games was performed by
[8]. Attribution visualization was used by [9] to analyze Atari
video games. To the best of the authors’ knowledge, this is the
first work to apply t-SNE, class visualization, and attribution
visualization to cyber-physical systems.

(a) High-performance policy

(b) Poor-performance policy

(c) Forward-and-right-only policy

Fig. 4: Class visualizations for the (a) high-performance pol-
icy, (b) poor-performance policy and (c) a policy which only
moves right and forward. Generated images maximize action
probabilities for their respective policies. The left-most image
triggers the “left” drone action, middle triggers “forward”, and
right triggers “right”.

III. RESULTS

We trained three separate policies for the cube-collection
task. A high-performance policy was trained such that it
almost always collected all cubes. A poor-performance policy
was trained only briefly so it never learned. And a “broken”
forward-and-right-only policy was trained to collect only
boxes in front of it or to the right, and avoiding any box to
the left. We applied t-SNE, class visualization, and attribution
visualization to each of the policies to demonstrate how these
tools aid in policy development and understanding.

A. t-SNE

Fig. 3 provides t-SNE visualizations of the three policies.
The tinting of each patch is based on the action taken by the
policy, given the drone’s observation: red indicates “forward”,
green indicates “left”, and blue indicates “right”.

In Fig. 3(a) we observe from the high-performance policy
that the visual inputs with the same tinted color are generally
clustered together by the content of the image.1 In comparison,
the poor-performance policy Fig. 3(b) scatters colors all over
the map. This is because each action is equally likely, and
uncorrelated with the drone’s observation. In Fig. 3(c) the
forward-and-right-only policy is insightful, as there are no
green (“left”) patches. It can also be observed that Fig. 3(c)
shows mostly “forward” (red) actions and fewer “right” (blue)
actions.

B. Class Visualization

The high-performance policy’s class visualization in
Fig. 4(a) clearly explains what the policy is looking for, where
the bias towards the “left”, “forward”, or “right” depends on
the position of the cube. Specifically, if a box blocks the
view of the camera on the left, then the policy will most

1Clustering is not guaranteed because the policy is stochastic.



4

likely choose the “left” action. Similarly for the “forward”
and “right” actions.

Class visualization of the poor-performance policy is also
insightful. Fig. 4(b) illustrates that the actions of the poorly
trained model are equally triggered by noise.

Fig. 4(c) visualizes the forward-and-right-only policy, where
only the “right” action visualization makes sense. That is,
when the camera is occluded on the right, the policy will
choose to move to the right. The “left” action shows that there
is a small response to camera occlusion on the left, but the
“forward” action dominates the left action.

Class visualizations for the forward-and-right-only policy
highlight one of the challenges in reinforcement learning. If
the learning-rate in REINFORCE is too high, the policy might
finalize its decision making process based on early experience.
In this case, the drone experienced an early success by moving
“right” and “forward”, which resulted in the elimination of
“left” action probabilities. The remedy for this was to lower
the learning-rate of the policy updates.

C. Attribution Visualization

Fig. 5 provides attribution visualizations. The T-shape in
the corner of each image visualizes action probabilities, and
the red color indicates the (stochastic) action taken. The
bright areas of each image indicate image features which most
contributed to the probability of the action taken.

Observing the upper-left image in Fig. 5(a), we see that
the “right” action was the only action with a high probability.
Furthermore, the closest cube is the brightest (indicating its
importance for the decision), followed by the second cube.
Also note that the lower-left image visualizes what contributed
to the low-probability “left” action which was made.

In Fig. 5(b) we see visualizations for the poor-performance
policy. In that figure, observe that all action probabilities are
roughly the same, as indicated by the T-shape, regardless of
the position of the drone relative to the cubes.

Fig. 5(c) provides attribution visualizations for a model that
will only move “right” and “forward”. Notice that the colors
here are inverted compared to Fig. 5(a), which is odd. The
policy pays more attention to the horizon than anything else.
Observe that the lower-left image shows no “left” reaction to
the cube on the left.

IV. CONCLUSIONS AND FUTURE WORK

We see an increasing number of businesses using convolu-
tional neural networks in vision-based cyber-physical systems.
Simultaneously, the research community has been actively
coupling CNNs with traditional reinforcement learning algo-
rithms. We may soon begin to interact with RL-enabled CPS
in our day-to-day lives. But this is currently dangerous because
of the opacity of CNNs.

Our research is a step in the direction of creating under-
standable and trustworthy vision-based RL systems through
policy visualization. We have adapted three existing CNN vi-
sualization techniques to our drone simulation environment: t-
SNE, class visualization, and attribution visualization. But the

(a) High-performance policy

(b) Poor-performance policy

(c) Forward-and-right-only policy

Fig. 5: Attribution visualizations for state observations and
actions taken with the (a) high-performance policy, (b) poor-
performance policy, and (c) a policy which only moves right
and forward. The T-shape in the corner image visualizes action
probabilities, and the red color indicates action taken.

adaptation of existing CNN visualization techniques addressed
here are not adequate on their own.

Numerous opportunities exist for advancing this domain.
For example reinforcement learning is inherently time-series
based, it often makes stochastic decisions, and real-time vi-
sualization would be useful for some applications. Our future
efforts will explore these avenues.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[2] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[3] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[4] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra, “Grad-cam: Visual explanations from deep networks via gradient-
based localization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 618–626.

[5] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics. Springer, 2018, pp. 621–635.



5

[6] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” in Reinforcement Learning. Springer,
1992, pp. 5–32.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[8] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black box:
Understanding dqns,” in International Conference on Machine Learning,
2016, pp. 1899–1908.

[9] S. Greydanus, A. Koul, J. Dodge, and A. Fern, “Visualizing and under-
standing atari agents,” arXiv preprint arXiv:1711.00138, 2017.


	I Introduction
	II Problem formulation and related work
	II-A t-SNE
	II-B Class Visualization
	II-C Attribution Visualization
	II-D Related work

	III Results
	III-A t-SNE
	III-B Class Visualization
	III-C Attribution Visualization

	IV Conclusions and future work
	References

