
A Methodology for High-Speed Software Implementations

of Number-Theoretic Cryptosystems

Ç. K. Koç and T. Acar
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331

Technical Report, May 1997

Abstract

Because of their flexibility and cost effectiveness, software implementations of number-theoretic
cryptographic algorithms (e.g., RSA and Diffie-Hellman) are often desired. In order to obtain the
required level of performance (speed) on a selected platform, the developers turn to algorithm-level
optimizations and assembly language programming. In this paper, we examine these implementation
issues and propose a design methodology for obtaining high-speed implementations. We show that
between the full assembler implementation and the standard C implementation, there is a design
option in which only a small number of code segments (kernel operations) are written in assembler in
order to obtain a significant portion of the speed increase gained by the full assembler implementation.
We propose a small set of kernel operations which are as simple as a ·b+c, where the numbers a, b, c
are 1-word integers. The results of our experiments on several processors are also summarized.

Key Words: Cryptography, high-speed arithmetic, modular exponentiation, assembler.

1 Introduction

The privacy and authenticity of information (whether it is stored on a single computer or shared on
a network of computers) requires implementation of cryptographic functions. The basic functions
of information security services are very few, and almost invariant. These include public-key cryp-
tosystems, digital signatures, message digest functions, and secret-key cryptographic algorithms.
The design and evaluation of these cryptographic functions is a special topic on its own, requiring
advanced knowledge of combinatorial mathematics, number theory, abstract algebra, and theoreti-
cal computer science. There is also the subject of algorithm engineering, which refers to high-speed
and cost effective hardware and software implementation of cryptographic algorithms [2].

Most public-key cryptographic functions require operations with elements of a large finite group,
and need to be optimized on the chosen platform for high-speed implementation. As an example,
the RSA cryptosystem [15] uses modular arithmetic operations (addition, multiplication, and expo-
nentiation) with large integers, usually in the range of 512 to 1024 bits. Arithmetic with such large
integers is time consuming, considering the fact that currently available processor have arithmetic
logic units with wordsize up to 32 bits. The current fast implementations of the RSA signature
algorithm with a 512-bit key size require on the order of 50 ms on a signal processor using ad-
vanced algorithmic techniques and assembly language programming [5]. However, the security

1



requirements are already pushing the key size to 1024 bits, at which a signature operation takes
nearly half a second. This is not an acceptable speed for most networking applications. Other
cryptographic algorithms, for example, the Diffie-Hellman key exchange method [4], the ElGamal
public-key cryptosystem and digital signature algorithm [6], the Digital Signature Standard [13]
also require implementation of modular arithmetic operations with large integers.

Software implementations of these number-theoretic cryptographic algorithms are often desired
because of their flexibility and cost effectiveness. Furthermore, certain applications are suitable
for software implementations because of their very nature. However, the performance is always an
issue, requiring the designer to optimize these cryptographic algorithms on the selected processor.
In order to exploit the architectural and arithmetic-logic properties of the processor, the designer
needs to analyze and reformulate the underlying algorithms. Almost inevitably, the programming
is performed in assembly language in order to take advantage of the specific architectural properties
of the processor, and thus, to obtain the desired performance [5, 3, 11, 7, 10].

In this paper, we examine these implementation issues in order to determine the actual con-
tribution of assembly level programming to the speed of the cryptographic algorithms. We show
that between the full assembler implementation and the standard C implementation, there is a
design option in which only a small number of code segments are written in assembler in order
to obtain a significant portion of the speed increase gained by the full assembler implementation.
These small code segments are the kernel of arithmetic operations for number-theoretic crypto-
graphic algorithms, and have been obtained by analyzing several different implementations of these
number-theoretic cryptosystems. We propose a small set (only 8) of such code segments, imple-
menting certain arithmetic operations. Our experimental results on the Pentium PC show that by
developing efficient assembly language implementation of these 8 operations as ‘in-line’ assembly
code segments in the RSA cryptosystem, we can obtain a speedup of 2.33 over the standard C
implementation. This speedup is about 64 % of the speedup obtained by a full assembler imple-
mentation.

2 Implementation Methods

The usefulness of a C implementation is due to its portability, i.e., the fact that the program can
easily be compiled and executed on another machine. However, the C program may not execute
as fast as an assembler program accomplishing the same computation since specific architectural
properties of the new machine are not taken into account. On the other hand, efficient assembler
software development requires full understanding of the sophisticated microprocessor architecture.
The assembly language programmer needs to know the properties of the assembler instructions,
the operation of multiple functioning units, the rules of instruction issuing, pipeline structure, and
alignment rules, and also certain specific information about the cache and the memory structure.
The development of assembler programs is a tedious, lengthy, and expensive task. It can be argued
that a smart compiler will be aware of the detailed architectural issues, and thus, can produce more
efficient code than a straightforward assembler implementation in many instances [1]. However, the
cryptographic system developers often have to turn to assembly language programming in order to
obtain the required speed. This gives the chance to reformulate the algorithm to be implemented
by taking into account the architectural properties of the processor.

In this study, we consider the design options between the standard C and the assembly language
for implementing the number-theoretic cryptographic algorithms. The properties of these two
extreme design options are:

2



• Standard C: Portable, inexpensive, short development time, slow execution.

• Assembler: Not portable, expensive, long development time, fast execution.

There are several design options between these two ends. A particular design option involves the
use of non-standard C data types such as int64 or long long. We name this approach C with
Extended Types. It turns out some amount of speed increase can be gained using such data types
for number-theoretic cryptography. We are however limited to those platforms which support
these data types and their particular definitions and uses. We gain a certain amount of speed by
renouncing a small amount of portability.

As soon as the use of assembly language programming enters the picture, we loose portability.
Once the portability is no longer an issue, the development cost of assembly language programming
needs to be taken into account. One approach is the development of the entire code or the most
crucial subroutines (e.g., the Montgomery multiplication and squaring) in the assembly language.
This involves a great amount of assembly language programming, and we argue that it is not
necessary in many instances. We propose a design approach in which only a specific kernel of
operations need to be developed in assembler. In this paper, we evaluate and compare the following
four approaches in terms of their resulting performance.

• Standard C code

• C with extended types

• Complete assembler

• C with kernel in assembler

2.1 Standard C Code

In the C language, operands of an arithmetic expression are converted to a common type before the
computation [8], which is referred to as converted type. The value of a variable may be truncated
to a less significant type, or it can be promoted to a more significant type. The high order bits are
ignored in case of truncation. The promotion is performed using zero padding or sign extension.
The result of an operation is also of the converted type. The truncation inhibits availability of
high order bits of certain arithmetic operations in C, enforcing an emulation approach for precise
calculations. For an addition of n operands using w-bit scalar type, maximum value of result is
n(2w − 1). Assuming n ≤ 2w, the exact result can be stored in two w-bit words. Exact addition
of such variables can be accomplished by computing lower and higher bits separately. The code
segment given below adds two w-bit words to obtain the (w + 1)-bit result. Low w bits are stored
in S, and high order 1-bit (the carry) is stored in C. The multiprecision addition can be carried out
similarly.

#define WSIZE (8*sizeof(word))
#define MSBMASK ((word)1 << (WSIZE-1))
S=(a & ~MSBMASK) + (b & ~MSBMASK);
C=(a >> (WSIZE-1)) + (b >> (WSIZE-1)) + (S >> (WSIZE-1));
S = a + b;
C >>= 1;

3



A multiplication expression in C stores only the low order word of the two-word product. Let
the operation be c := a · b where a and b are word type variables. The type of the result is also
word. In order to obtain the complete product, the w-bit input operands are split into two w/2-bit
numbers. The following C code segment can be used to obtain the full result of c in the word pair
(C,S).

#define WSIZE (8*sizeof(word))
#define LOWBITS(x) ((x) & (~((word)0) >> (WSIZE/2)))
#define HIGHBITS(x) ((x) >> (WSIZE/2))
albl = LOWBITS (a) * LOWBITS (b);
ahbl = HIGHBITS(a) * LOWBITS (b);
albh = LOWBITS (a) * HIGHBITS(b);
ahbh = HIGHBITS(a) * HIGHBITS(b);
sum = LOWBITS(albh) + LOWBITS(ahbl) + HIGHBITS(albl);
S = (sum << (WSIZE/2)) + LOWBITS(albl);
C = ahbh + HIGHBITS(albh) + HIGHBITS(ahbl) + HIGHBITS(sum);

2.2 C with Extended Types

This approach relies on a non-standard type of the C programming language. The code is still
portable, maintainable, and testable, however, it is restricted to the platform on which the the
non-standard language extensions are supported. This method depends on the fact that a variable
of twice the size of a general purpose register contains all result bits for the operation. Let the
name of this extended type be dword. We can then implement the addition and multiplication of
two words as follows:

#define WSIZE (8*sizeof(word))
CS = (dword)a + (dword)b;
S = (word)CS;
C = (word)(CS >> WSIZE);

#define WSIZE (8*sizeof(word))
CS = (dword)a * (dword)b;
S = (word)CS;
C = (word)(CS >> WSIZE);

Here C and S are word type variables, and CS is a dword type variable. The extended type can be
used for other operations, e.g., shift and division. The C compiler must convert the right shifting
by wordsize bits to a single register access to achieve better performance.

This approach does not require the assembler level implementation. However, the compiler must
support the extended type, and also it should be capable of generating efficient code for C blocks
involving the extended type. Currently, most C compilers support double register-size variables.
For example, Microsoft Visual C++ has “ int64” while most of UNIX C compilers have “long
long” type for variables of twice the register-size of the platform processor.

2.3 Complete Assembler

An efficient assembler implementation of a cryptographic algorithm requires a detailed study of the
architecture of the underlying processor. Issues related to the instruction set architecture, register
space, multiple functional units, and memory hierarchy need to be well understood. An assembler
implementation produces smaller and faster code by sacrificing portability. However, assembler
implementations are preferred if development costs are relatively less than final benefits.

4



The Appendix gives assembler programming example codes in Intel Pentium and Sparc V9
assembly languages for performing several different operations with 32-bit numbers. For example,
the operations ADD(C,S,a,b) and MUL(C,S,a,b) respectively denote (C, S) := a + b and (C, S) :=
a · b, where C, S, a, and b are 32-bit unsigned integers.

2.4 C with Kernel in Assembler

The speedup obtained with the extended types is not as high as possible due to inefficient utilization
of the processor architecture. The performance is limited by the optimization capabilities of the
C compiler. We propose an alternative hybrid approach which benefits from flexibility of C and
high performance of assembly languages. We minimize the development cost of assembly language
programming by proposing a small set of arithmetic operations which need to be coded in the
assembler. The remainder of the code is produced in the standard C. The proposed set of kernel
operations is given below:

Table 1. The proposed kernel operations.

Operation Description
ADD(C,S,a,b) (C, S) := a + b
ADD2(C,S,a,b,c) (C, S) := a + b + c
MUL(C,S,a,b) (C, S) := a · b
MULADD(C,S,a,b,c) (C, S) := a · b + c
MULADD2(C,S,a,b,c,d) (C, S) := a · b + c + d
MUL2ADD2(CC,C,S,a,b,c,d) (CC, C, S) := 2 · a · b + c
SQU(C,S,a) (C, S) := a2

SQUADD(C,S,a,b) (C, S) := a2 + b

These operations need to be coded in the assembly language as macros or in-line assembly
code segments. They can be written as functions, but this creates considerable overhead. The
best situation will be the one in which these operations are supported by the hardware either as
instructions or macro instructions.

The amount of assembly language is indeed minimal: each one of these operations can be coded
using about 4 to 8 lines of assembler instructions. Therefore, the entire set requires about 60 lines
of assembly code. The resulting standard C plus assembler code, if carefully constructed, can be
ported to another machine quite easily: only the assembly code segments need to be developed for
the new machine, replacing the existing segments.

2.5 Determination and Utilization of Kernel Operations

The arithmetic operations in the kernel are obtained by analyzing the algorithms and implemen-
tations of the number-theoretic cryptosystems. The proposed kernel is quite minimal in the sense
adding other similar or more complicated operations does not provide any considerable speedup
gain. Since our objective is to write as little assembly code as possible, we carefully selected these
operations among several candidates. These experiments were run on the Intel 486 DX4, Intel Pen-
tium, and Sun UltraSparc-II V8+ machines by examining the algorithms and source codes for the
RSA, Diffie-Hellman, and DSA algorithms. These algorithms require modular arithmetic with large
integers. A typical time-consuming operation is the multiprecision modular exponentiation which is
computed using the Montgomery multiplication and squaring operations [9, 12, 10]. Furthermore,

5



the RSA private key operation uses the Chinese remainder in order to speedup the computation
[14]. Therefore, typical multiprecision arithmetic operations used in these number-theoretic cryp-
tosystems are multiprecision addition, multiplication, modular and Montgomery multiplication and
squaring operations. As an example, the addition and multiplication of two 4-word integers are
illustrated below:

a3 a2 a1 a0

+ b3 b2 b1 b0

s4 s3 s2 s1 s0

(c0, s0) = a0 + b0

(c1, s1) = a1 + b1 + c0

(c2, s2) = a2 + b2 + c1

(s4, s3) = a3 + b3 + c2

A word of the 5-word sum (s4, s3, s2, s1, s0) can be computed using the ADD2 kernel operation, as
illustrated in the pseudocode given below. Here, the variables a, b and c are arrays of type word, k
is the number of words, and C and S are word variables.

C = 0
for i=0 to k-1 do
ADD2 (C, S, a[i], b[i], C)
s[i] = S

s[k] = C

In order to multiply two 4-word unsigned integers, we accumulate the partial products in the 8-word
array s as depicted below. The accumulation requires the addition of the previous product word si

to the partial product word xi,j . The words of these these partial products are computed by

(ci,j , xi,j) = aj · bi + ci,j−1 ,

where ci,−1 = 0 and i, j = 0, 1, . . . , k − 1. This operation can be accomplished using the MULADD
primitive. In order to add the computed product, the previous carry, and the accumulated result,
we need to perform the operation

(ci,j , si+j) = aj · bi + ci,j−1 + si+j ,

which can be accomplished using MULADD2 primitive.

a3 a2 a1 a0

× b3 b2 b1 b0

x0,4 x0,3 x0,2 x0,1 x0,0 −→ a · b0 =
∑3

j=0 aj · b0

x1,4 x1,3 x1,2 x1,1 x1,0 −→ a · b1 =
∑3

j=0 aj · b1

x2,4 x2,3 x2,2 x2,1 x2,0 −→ a · b2 =
∑3

j=0 aj · b2

+ x3,4 x3,3 x3,2 x3,1 x3,0 −→ a · b3 =
∑3

j=0 aj · b3

s7 s6 s5 s4 s3 s2 s1 s0

The pseudocode given below computes the product a·b in the k-word array s employing the MULADD2
kernel operation. Other primitive operations, e.g., MUL2ADD2 and SQUADD, are used in squaring when
a = b.

6



for i=0 to 2*k-1 do s[i] = 0
for i=0 to k-1 do
C = 0
for j=0 to k-1 do
MULADD2 (C, S, a[i], b[j], s[i+j], C)
s[i+j] = S

s[i+k] = C

The plain C versions of the given code fragments can be obtained by replacing the addition and
multiplication statement sequences given in the previous sections. The use of these kernel operations
drastically reduce the code size. Moreover, the performance gained by the kernel operations exceeds
the benefits of the extended types in both speed and code size.

3 Implementation Results

The proposed kernel of operations were implemented in the assembly languages of the Intel 486,
Intel Pentium, and Sparc V9 machines. The Intel 486 DX4 processor has the speed of 100 MHz,
and runs the NextStep operating system v3.0. We used the C compiler of the NextStep. On the
other hand, the Microsoft Visual C++ v4.2 and and Intel VTune v2.0 are used in the development
and analysis for the Intel Pentium processor on a Windows NT 3.51 system. The SPARCompiler
SC4.0 is used for the Sparc V9 processor on a UltraSparc-II V8+ system. The C compiler was
configured to obtain the speed-optimized code.

We implemented the 512-bit and 1024-bit bit modular exponentiation operations which are
common in the RSA and Diffie-Hellman algorithms. The exponentiation algorithm is the binary
method [9] using the Montgomery multiplication [12, 10]. The size of the modulus is 512 bits and
1024 bits. The exponent was selected as 1-word (32-bit) and full-size (the size of the modulus).
Table 2 tabulates the timings in milliseconds for these operations.

Table 2. Modular exponentiation timings in milliseconds.

32-bit exponent full exponent
Modulus C with C with C with C with

Processor and OS Size C E. Types Kernel Asm. C E. Types Kernel Asm.
i486DX4 100 MHz 512 29 28 26 10 488 405 363 205
NextStep v3.0 1024 110 103 95 39 3,775 3,195 2,800 1,559
UltraSparc-II V8+ 512 8 5 6 3 150 103 106 55
Solaris 5.5.1 1024 31 21 23 12 1,144 790 795 414
Pentium 120 MHz 512 15 11 8 5 206 151 91 59
NT v3.51 1024 57 43 28 18 1,618 1,166 694 446

The fastest implementation is obtained using assembly language programming. For example, the
assembler implementation of full-size modular exponentiation with 1024 bits is about 3.63 times
faster than the standard C implementation on the Pentium machine. The standard C coupled with
kernel operations produces a code which is 2.33 times faster than the standard C code, which is
about 64 % of the speed increase gained by the assembler implementation. Table 3 illustrates the
speedup of the other three approaches to the standard C implementation for performing modular
exponentiation where the exponent is the full size (i.e., it is equal to the modulus size).

7



Table 3. Speedup with respect to the standard C implementation.

Processor Modulus C with C with Kernel
and OS Size E. Types Kernel Asm vs Asm
i486DX4 512 1.20 1.34 2.38 56 %
NextStep v3.0 1024 1.18 1.34 2.42 55 %
UltraSparc-II V8+ 512 1.46 1.42 2.73 52 %
Solaris v5.5.1 1024 1.45 1.45 2.76 53 %
Pentium 512 1.36 2.26 3.49 65 %
NT v3.51 1024 1.39 2.33 3.63 64 %

On the UNIX machines (NextStep and Solaris), we implemented the kernel operations using func-
tions since in-line assembly coding is not flexible due to inability to access the C variables within
the inline assembly code. In this case, the speed increase gained by the use of kernel operations
is given away due to the overhead of function calling. For example, the C with kernel operations
case is only slightly slower (or faster) than the C with extended types case for the Sparc machine
running Solaris (or the Next machine).

4 Conclusions

We have proposed a design methodology and a small set of kernel operations for obtaining high-
speed implementations of the number-theoretic cryptographic algorithms. It is shown that about
64 % of speed increase gained by the use of full assembler implementation can be obtained by coding
only the proposed set of kernel operations in the assembly language of the underlying processor.
It is preferred that the development system provide in-line assembly coding in order to avoid the
overhead of function calling in implementing the kernel operations.

This approach allows the programmer to drastically reduce assembly language programming
while gaining a significant speedup. Since the assembler portion is quite minimal (a total of 60
lines at most), the maintainability and testability of the code are retained. The code can easily
be ported to a different platform (processor) by implementing only the suggested set of kernel
operations. Furthermore, the kernel operations proposed in this paper are easy to implement in
hardware. If they are available as instructions (or macros) on microprocessors or signal processors,
high-speed implementations of number-theoretic cryptographic algorithms can easily be obtained.

References

[1] M. Atkins and R. Subramaniam. PC software performance tuning. IEEE Computer Magazine,
29(8):47–54, August 1996.

[2] T. Beth and D. Gollmann. Algorithm engineering for public key algorithms. IEEE Journal on
Selected Areas in Communications, 7(4):458–466, May 1989.

[3] P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal, 29(4):526–
538, 1990.

[4] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22:644–654, November 1976.

8



[5] S. R. Dussé and B. S. Kaliski, Jr. A cryptographic library for the Motorola DSP56000. In I. B.
Damg̊ard, editor, Advances in Cryptology — EUROCRYPT 90, Lecture Notes in Computer
Science, No. 473, pages 230–244. New York, NY: Springer-Verlag, 1990.

[6] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, July 1985.

[7] B. S. Kaliski, Jr. The Z80180 and big-number arithmetic. Dr. Dobb’s Journal, pages 50–58,
September 1993.

[8] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Englewood Cliffs, NJ:
Prentice-Hall, 1978.

[9] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Reading, MA: Addison-Wesley, Second edition, 1981.

[10] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16(3):26–33, June 1996.

[11] D. Laurichesse and L. Blain. Optimized implementation of RSA cryptosystem. Computers &
Security, 10(3):263–267, May 1991.

[12] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, April 1985.

[13] National Institute for Standards and Technology. Digital signature standard (DSS). Federal
Register, 56:169, August 1991.

[14] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryptosys-
tem. Electronics Letters, 18(21):905–907, October 1982.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

9



A Implementation of Kernel Operations

A.1 Pentium

ADD(C,S,a,b)

mov eax,dword ptr [a]
mov ebx,dword ptr [b]
mov dword ptr [C],0
add eax,ebx
mov dword ptr [S],eax
setc byte ptr [C]

ADD2(C,S,a,b,c)

mov eax,dword ptr [a]
mov ebx,dword ptr [b]
xor edx,edx
mov ecx,dword ptr [c]
mov dword ptr [C],edx
add eax,ebx
setc byte ptr [C]
add eax,ecx
mov dword ptr [S],eax
adc dword ptr [C],0

MUL(C,S,a,b)

mov eax,dword ptr [a]
mul dword ptr [b]
mov dword ptr [C],edx
mov dword ptr [S],eax

MULADD(C,S,a,b,c)

mov eax,dword ptr [a]
mov ebx,dword ptr [c]
mul dword ptr [b]
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx

MULADD2(C,S,a,b,c,d)

mov eax,dword ptr [a]
mov ebx,dword ptr [c]
mul dword ptr [b]
add eax,ebx
mov ebx,dword ptr [d]
adc edx,0
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx

MUL2ADD2(CC,C,S,a,b,c)

mov eax,dword ptr [a]
mul dword ptr [b]
add eax,eax
mov dword ptr [CC],0
adc edx,edx
mov ebx,dword ptr [c]
adc byte ptr [CC],0
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx
adc byte ptr [CC],0

SQU(C,S,a)

mov eax,dword ptr [a]
mul eax
mov dword ptr [S],eax
mov dword ptr [C],edx

SQUADD(C,S,a,b)

mov eax,dword ptr [a]
mov ebx,dword ptr [b]
mul eax
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx

10



A.2 Sparc V9

ADD(C,S,a,b)

clruw %o2
clruw %o3
add %o2,%o3,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

ADD2(C,S,a,b,c)

clruw %o2
clruw %o3
clruw %o4
add %o2,%o3,%g1
add %g1,%o4,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MUL(C,S,a,b)

clruw %o2
clruw %o3
mulx %o2,%o3,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MULADD(C,S,a,b,c)

clruw %o2
clruw %o3
clruw %o4
mulx %o3,%o2,%g1
add %g1,%o4,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MULADD2(C,S,a,b,c,d)

clruw %o2
clruw %o3
clruw %o4
clruw %o5
mulx %o2,%o3,%g1
add %o4,%o5,%g2
add %g1,%g2,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MUL2ADD2(CC,C,S,a,b,c)

clruw %o3
clruw %o4
clruw %o5
mulx %o4,%o3,%g1
mov %g0,%g2
addcc %g1,%g1,%g1
movcs %xcc,1,%g2
addcc %g1,%o5,%g1
movcs %xcc,1,%g2
stuw %g1,[%o2]
srlx %g1,32,%g1
stuw %g2,[%o0]
retl
stuw %g1,[%o1]

SQU(C,S,a)

clruw %o2
mulx %o2,%o2,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

SQUADD(C,S,a,b)

clruw %o2
clruw %o3
mulx %o2,%o2,%g1
add %g1,%o3,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

11


