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SOCT: Secure Outsourcing Computation Toolkit
using Threshold ElGamal Algorithm

Sen Hu, Shang Ci, Donghai Guan, and Çetin Kaya Koç IEEE Fellow

Abstract—Cloud computing offers inexpensive and scalable
solutions for data processing, however privacy concerns often
hinder the outsourcing of sensitive information. Homomorphic
encryption provides a promising approach for secure computa-
tions over encrypted data. However, existing models often rely
on restrictive assumptions, such as semi-honest adversaries and
inaccessible public data.

To address these limitations, we introduce the Secure Out-
sourcing Computation Toolkit (SOCT), which is a novel frame-
work based on the threshold ElGamal cryptosystem. The toolkit
employs a dual-server decryption architecture using a (2,2)
threshold additively homomorphic ElGamal (TAHEG) algorithm.
This architecture ensures that ciphertexts can be decrypted only
with the cooperation of both servers, mitigating the risk of data
breaches. The TAHEG algorithm requires the input of a secret
key for every decryption operation, preventing unauthorized
access to plaintext data. Moreover, the key generation process
does not burden users with generating or distributing partial
secret keys. We provide rigorous security proofs for our thresh-
old ElGamal cryptosystem and associated secure computation
functions.

Experimental results demonstrate that SOCT achieves signif-
icant efficiency gains compared to existing toolkits, making it a
practical choice for privacy-preserving data outsourcing.

Index Terms—Secure outsourced computation, Homomorphic
encryption, EIGamal cryptosystem, Threshold cryptosystem.

I. INTRODUCTION

Cloud servers offer computing power and storage space
through outsourced computing for users who bring in their
data, and cloud servers perform required computation tasks on
the data. However, disclosing the sensitive data to servers has
raised privacy concerns for users, which limits the application
of outsourced computing [1].

To protect the privacy of sensitive data in outsourcing
scenarios, users can choose homomorphic encryption (HE)
algorithms to achieve high-level security [2]. Craig Gentry [3]
proposed fully homomorphic encryption (FHE) to enable en-
crypted data to support multiplication and addition operations,
and therefore through them, any algebraic function. Following
Gentry’s template, the CKKS algorithm [4] supports floating-
point addition and multiplication operations, and the torus-
based fully homomorphic encryption (TFHE) [5] efficiently
supports homomorphic operations on binary data. However,
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these FHE schemes need to be used with the so-called boot-
strapping operation to achieve full homomorphic properties,
which results in low efficiency.

FHE supports homomorphic multiplication and addition op-
erations, and therefore any algebraic function through approx-
imations. For example, comparison operation often appears
in such scenarios for which Lee et al. [6] approximated the
sign function using compositions of minimax approximation
polynomials. Ong et al. [7] evaluated the efficiency of TFHE
digital gates. Wang et al. [8] designed a comparison and
sorting algorithm based on a self guided binary gate from
the TFHE library. However, the approximation error and the
multiplication usage limit the accuracy and efficiency of [6],
and circuit depth and operand bit length limit the efficiency
of [7], [8].

To improve the HE efficiency in applications, partially ho-
momorphic encryption (PHE) has received attention [9], [10],
which supports either homomorphic addition or homomorphic
multiplication, but not both. In general, the PHE is more
efficient than FHE, since it is constructed using algebraic
structures with shorter operands. Unfortunately, additive or
multiplicative homomorphism may not meet the outsourcing
requirements. To enable PHE to support more homomorphic
computations, a common approach is to combine the PHE
with multiple servers computing architectures [11], [12]. These
cloud servers interactively perform secure computing functions
to achieve homomorphic computation. Data owners can be
offline during the function execution, which reduces overhead.

Previous work on multiple decryption servers architecture
are found in [12], [13], [14], [15], [16]. Among them the
work performed by Zhao et al. [12], [16] needs particular
attention due to its similarity to our proposal. They proposed
a secure outsourced computation toolkit for integers, based on
Paillier cryptosystem with threshold decryption (PaillierTD)
[17], [18] and optimized Paillier with threshold decryption
(FastPaiTD) [16]. The user generates key pairs, splits secret
key and distributes the shares of secret key between 2 cloud
servers. However, the user needs to send partial secret keys to
cloud servers before the function execution, which requires the
existence of secure channels between the user and the cloud
servers.

II. SECURITY ISSUES IN MULTIPLE SERVER SCENARIOS

For privacy concerns, servers participating in cloud comput-
ing are often assumed to be semi-honest (also called, honest-
but-curious), that is, they will follow the system specifications,
but attempt to learn user’s private data from accessible mate-
rials.
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On the other hand, adversaries sometimes are assumed to
be semi-honest, that is, they would only receive the materials
involved in a specific function. For example, if there are 3
ciphertexts E(m1), E(m2), E(m3), and the function uses only
E(m1), E(m2) as input, then it is assumed that the adversaries
will not have access to E(m3). However, in reality, adversaries
may easily obtain any ciphertexts, which is a general principle
in almost all cryptographic settings. Therefore, we cannot
assume that the adversary is semi-honest.

Existing studies [11], [12], [16] consider only untrusted
servers as semi-honest adversaries, which is unrealistic. Al-
though [12], [16] adds the definition of active semi-honest
adversaries compared to [11], the partially decrypted cipher-
text in [12], [16] still needs to be kept private. Common sense
dictates that the server will keep the secret key and the random
number selected in the encryption as private. But, there is
not much motivation to protect data that “should be” secure
by its very nature, such as ciphertext and partially decrypted
ciphertext. This will make it easy for external parties to obtain
ciphertext and partially decrypted ciphertext in the outsourcing
process. An external organization can execute the threshold
decryption function to obtain the plaintext with a sufficient
number of partially decrypted ciphertexts in the PaillierTD
cryptosystem.

In this paper, we consider internal adversaries (cloud server
CS) and external adversaries (hacker H) in outsourced com-
puting. CS is considered as an active semi-honest adversary.
He will obtain the input and output of any function and
actively execute the selected function. H is considered an
active non-malicious adversary. He can easily copy public
data (e.g. public key, ciphertext, partially decrypted ciphertext)
from CS’s internal storage, but will not disrupt the outsourcing
process.

In our proposed multi-server scenario, the data owners
encrypt their sensitive data and send ciphertext to the server,
believing that the ciphertext will not leak their privacy.
Meanwhile, the servers are allowed to have secret keys, and
therefore, we need to take into account certain privacy leakage
problems:

• Case 1: The privacy leaks if a ciphertext can be obtained
by an adversary who holds the secret key.

• Case 2: The privacy leaks if the partial decryption func-
tion does not require any secret key.

The privacy leakage Case 1 may occurs in the single server
decryption architecture such that the server holds the secret
key. It is necessary to ensure the decryption server does
not obtain a copy of the original ciphertext. For example,
[11] assumes the decryption server cannot obtain the original
ciphertext, however, this is difficult to achieve in reality. The
multiple servers decryption architecture can solve the Case
1 privacy leakage. Multiple servers hold partial decryption
keys, and the threshold setting ensures the minimum number
of partial keys to decrypt ciphertexts. For example, a threshold
setting of (t, n) requires at least t of the n partial keys to
decrypt the ciphertext. This liberates the server from treating
the ciphertexts as private data.

On the other hand, the privacy leakage Case 2 would
occur in the implementation of Paillier cryptosystem with

additively threshold decryption (PaillierTD) [12] in a multiple
server decryption scenario. The decryption algorithm of the
PaillierTD works as:

X1 ← PDec(E(m), sk1)

X2 ← PDec(E(m), sk2)

m ← TDec(X1, X2)

PDec function takes the ciphertext E(m) and secret key
ski as input, and outputs the partial decrypted ciphertext
Xi for i ∈ {1, 2}. A single X1 or X2 cannot be obtained
without the corresponding partial secret key. Thus, we can
consider X1, X2 as publicly available data. However, TDec
function can recover plaintext m without any secret key.
Assuming that 2 servers execute the PDec function and obtain
X1, X2 respectively, they might consider X1, X2 to be secure.
However, a hacker H may easily obtain X1, X2, and perform
TDec function to obtain the plaintext m. This leads to privacy
leakage. Fortunately, the current PaillierTD based functions
[12], [16] do not transmit X1, X2 together in a single function
execution. If the servers do not leak X1, X2 beyond function
transmission, it is secure in their assumption.

To compare, we consider the threshold ElGamal which
contains only PDec function in decryption process. We have
2 secret keys sk1, sk2 such that their subsequent application
to the PDec function produces the plaintext m, as follows:

X1 ← PDec(E(m), sk1)

m ← PDec(X1, sk2)

The keys sk1, sk2 are given to 2 cloud servers, and therefore,
the disclosure of partially decrypted ciphertexts X1, X2, . . .
to the hacker does not cause any privacy leakage. However,
this model still requires the cloud servers be non-collusive.
If collusion is allowed in this multiple server architecture, the
servers may share their secret keys, and they can decrypt the
ciphertext.

III. CONTRIBUTIONS

In this paper, we address the security problems in an HE-
based outsourcing computation architecture in multiple server
scenarios. We identified two cases of privacy leakages in
Section 2 for the existing secure computing architectures. We
propose the Secure Outsourcing Computation Toolkit (SOCT)
based on the Threshold Additively Homomorphic ElGamal
Algorithm (TAHEG) which brings robust solutions to the men-
tioned security problems. Compared with the existing schemes
[12], [13], [14], [16], SOCT achieves higher efficiency, and op-
timized key generation and distribution processes. The security
assumptions of the SOCT make it more suitable for real-world
applications. We have 3 contributions in this paper:

• Real-World Security Assumptions:
We identify the problems in the existing schemes, and
define a novel security model that is closer to real-world
scenarios. We take into account external adversaries who
do not adhere the semi-honest assumptions. In real-world
scenarios, hackers can obtain public keys, ciphertexts,
and partially decrypted ciphertexts through transmission
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channels, function outputs, and even server internal stor-
age. We propose the secure outsourcing computing toolkit
(SOCT) based on this threat model.

• Secure Outsourcing Architecture based on TAHEG:
We employ the (2, 2) TAHEG algorithm and built a novel
outsourced computing architecture. We optimize partial
key generation and distribution processes. The TAHEG
key generation function can be executed in parallel by
multiple participants. Our TAHEG is more secure than
PaillierTD [12] algorithm in the partial decryption pro-
cesses, since each decryption function in TAHEG requires
the input of the secret key.

• Secure Outsourcing Computation Toolkit:
SOCT contains all basic functions, but we also add 3 new
functions: Secure multiplication (SMUL), secure compar-
ison (SCOM), and secure sign and magnitude acquisition
(SSMA). We provide the correctness and security proofs
for these functions. Experimental results show that SOCT
achieves higher efficiency compared to other advanced
proposals [12], [13], [14], [16].

IV. THRESHOLD ADDITIVELY HOMOMORPHIC ELGAMAL

A (t, n) threshold cryptosystem [19], [20] shares a secret
among n participants, so that the secret cannot be obtained
unless at least t participants participate to compute it. Similarly
a (t, n) threshold public-key encryption algorithm shares the
private key among n participants, so that the private key can be
recovered by t or more shares; therefore, a ciphertext can be
decrypted only if at least t participants’ shares are available.

The ElGamal cryptosystem has been described in [21],
which has multiplicative homomorphic property. The addi-
tively homomorphic ElGamal algorithm [10] was developed
from the ElGamal cryptosystem [21]. The threshold ElGamal
cryptosystem has been implemented using threshold settings
[19], [20] and the (3, n) threshold ElGamal encryption algo-
rithm was described in [20].

In this subsection, we present a (2, 2) threshold additively
homomorphic ElGamal algorithm (TAHEG), which serves as
the basic threshold PHE algorithm within our proposed secure
computation toolkit. The TAHEG algorithm consists of the
following functions:

• Parameter Setup, Gq(p, q, g)← ParSet(λ).
Take security public parameter λ, and output the cyclic
subgroup parameters Gq(p, q, g), where g is the group
generator, q is the order of g, and p is the modulus. The
p, q are large primes (p > 2048 bits and q > 256 bits) to
ensure the hardness of discrete logarithm problem (DLP).

• Key Generation: (pk, sk)← KeyGen(Gq).
Select a random number x ∈ Zq as the se-
cret key, and compute h = gx mod p. Denote the
public key as pk(p, q, g, h) and the secret key as
sk(x). Different key pairs can be generated under the
same cyclic subgroup Gq(p, q, g) by choosing differ-
ent secret keys x. For example, two different key
pairs can be represented as {pk1(p, q, g, h1), sk1(x1)},
{pk2(p, q, g, h2), sk2(x2)}, where x1 ̸= x2.

• Encryption: E(m)← Enc(m, pk1, pk2).
The plaintext m ∈ Zq can be encrypted with multiple
public keys of pk1, pk2. The data owner select the random
number r ∈ Zq , and compute the ciphertext as

E(m) = (gr, gm × hr
1 × hr

2 mod p).

The random number r should be different for each
encryption. The plaintext m is selected from a smaller
domain to ensure decryption efficiency, for example,
m ∈ Z232 .

• Decryption: m← Dec(E(m), sk1, sk2).
The ciphertext can be decrypted using all involved secret
keys. Take the ciphertext E(m) and secret keys sk1, sk2
as input, and compute

gm = (gm × hr
1 × hr

2)× (gr)−x1 × (gr)−x2 mod p,

where the (gr)−x1 = h−r
1 , (gr)−x2 = h−r

2 . After gm was
obtained, the plaintext m is extracted from the exponent
using the discrete logarithm function m← DLOG(gm).

• Partial Decryption: P (m)← PartDec(E(m), ski).
Since m is encrypted by both public keys pk1 and pk2,
E(m) can only be decrypted by both secret keys sk1
and sk2. We define the partial decryption function which
performs a “half decryption” with one of the secret keys,
to be completed by the other secret key in another step.
Partial decryption is performed by CS1 or CS2 using the
secret key sk1 or sk2, respectively. If partial decryption
is performed by sk1 to obtain P (m), then P (m) can be
decrypted by sk2 to obtain m, and vice versa.

P (m) = (gr, gm · hr
1 · hr

2 × (gr)−x1)

= (gr, gm · hr
2)

gm = (gr, gm · hr
2 × (gr)−x2

m ← DLOG(gm)

• Homomorphic Addition with Ciphertext:
E(m1 +m2)← Add(E(m1), E(m2)).
The homomorphic addition function takes two ciphertexts
E(m1), E(m2) and the public key pk(p, q, g) as input,
and outputs the ciphertext E(m1 +m2).

E(m1) = (gr, gm1 × hr
1 × hr

2),

E(m2) = (gu, gm2 × hu
1 × hu

2 ),

E(m1 +m2) = (gr × gu, gm1 × gm2 × hr+u
1 × hr+u

2 ).

• Homomorphic Addition with Scalar:
E(m1 + s)← AddSca(E(m1), s).
The homomorphic scalar addition function takes a cipher-
text E(m1) and a scalar s ∈ Zq , and also both public
keys pk1(p, q, g, h1), pk2(p, q, g, h2) as input, and outputs
the ciphertext E(m1 + s). It performs the encryption
function E(m1 + s) ← Enc(m, pk1, pk2) to encrypt the
scalar number s ∈ Z∗

q with pk1, pk2. It then executes the
following equations to compute E(m1 + s).

E(m1) = (gr, gm1 × hr
1 × hr

2),

E(s) = (gu, gs × hu
1 × hu

2 ),

E(m1 + s) = (gr × gu, gm1 × gs × hr+u
1 × hr+u

2 ).
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TABLE I
BASIC TAHEG FUNCTIONS

Name Function Participants
Parameter Setup Gq(p, q, g)← ParSet(λ) DO
Key Generation (pk1, sk1)← KeyGen(Gq) CS1
Key Generation (pk2, sk2)← KeyGen(Gq) CS2
Encryption E(m)← Enc(m, pk1, pk2) DO or CS1 or CS2
Decryption m← Dec(E(m), sk1, sk2) CS1 and CS2
Partial Decryption P (m)← PartDec(E(m), ski) CS1 or CS2, i = 1 or 2
Decryption after Partial Decryption m← Dec(P (m), skj) CS2 or CS1, j = 2 or 1
Homomorphic Addition with Ciphertext E(m1 +m2)← Add(E(m1), E(m2)) CS1 or CS2
Homomorphic Addition with Scalar E(m1 + s)← AddSca(E(m1), s) CS1 or CS2
Homomorphic Multiplication with Scalar E(m1 × s)← MulSca(E(m1), s) CS1 or CS2

• Homomorphic Multiplication with Scalar:
E(m1 × s)← MulSca(E(m1), s).
The homomorphic scalar multiplication function takes a
ciphertext E(m1) and a scalar s ∈ Zq as input, and
outputs the ciphertext E(m1 × s), computed as

E(m1) = (gr, gm1 × hr
1 × hr

2),

E(m1 × s) = [(gr)s, (gm1 × hr
1 × hr

2)
s].

When E(m1 × s) is obtained, it is necessary to refresh
the related random number r. This operation can be
performed by a scalar addition E(m1 × s + 0) ←
AddSca(E(m1 × s), 0)

The set of functions given above are summarized in Table 1.
However, they are not complete for implementing most com-
mon privacy-preserving applications, such as PPML (Privacy-
Preserving Machine Learning). We need to add three new
functions to the set that allow two cloud servers CS1 and CS2
collaboratively implement any privacy-preserving application.
These functions are

• Secure Multiplication Function (SMUL)
• Secure Comparison Function (SCOM)
• Secure Sign and Magnitude Acquisition Function (SSMA)
These new functions are defined and described in Section 6.

The executions of these functions require the participation of
the data owner (DO) or both cloud servers (CS1, CS2). Since
secure outsourcing computation requires interactions between
the data owner and the cloud servers, a system architecture
needs to be established. Several existing systems define either
a single server which keeps the entire secret key or two servers
each of which holds a part of the secret key. The dual-server
decryption model is more complex but also more secure since
it withstands to the single point of failure [12].

V. SYSTEM ARCHITECTURE AND THREAT MODEL

In our model, there are 4 participants: Data Owner (DO),
Cloud Server 1 (CS1), Cloud Server 2 (CS2), and Hacker (H).

• DO generates and distributes the cyclic subgroup param-
eters Gq(p, q, g). After receiving cloud servers’ public
keys (pk1, pk2), DO encrypts plaintext data with multiple
public keys. Then, DO sends the encrypted data to the
cloud servers CS1 and CS2, as shown in Figure 1. DO
can be offline during the outsourced computing process.
When the outsourcing computation is completed, DO

Fig. 1. System Architecture and Threat Model

receives the encrypted results and severs’ secret keys
(sk1, sk2) from the cloud servers.

• CS1 generates his own key pairs (pk1, sk1), and broad-
casts the public key pk1. CS1 interactively performs
functions with CS2.

• CS2 generates his own key pairs (pk2, sk2), and broad-
casts the public key pk2. CS2 interactively performs
functions with CS1.

• H can easily copy public data (e.g. public key, cipher-
text, partially decrypted ciphertext) from cloud servers’s
internal storage, and he will not disrupt the outsourcing
process.

Since the public key and ciphertext are secure in almost
all encryption settings, the servers CS1, CS2 will treat them
as public data. Although the cloud servers do not broadcast
the encrypted intermediates and results during the function
execution, it remains relatively easy for the hacker H to obtain
them. We define the external individual or organization as the
hacker H, who is considered a threat to all of the public data
in system model, as shown in Figure 1.

Participants DO, CS1, CS2 hold private data. When this
data is disclosed by any untrusted party, security would be
breached. Specifically, DO’s plaintext data contains private
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information, and she hopes to outsource the computation
without compromising privacy. CS1, CS2 generate secret keys
and treat them as private data. Also, the CS1, CS2 carefully
select random numbers in the function to counter hacker
threats. Private data held by the three parties are as follows:

• DO: The plaintext m, and random number r0 used during
in the encryption.

• CS1: The secret key sk1; the plaintext m and the random
numbers r1, u1 used in the function.

• CS2: The secret key sk2; the plaintext m and the random
numbers r2, u2 used in the function.

In our threat model, the DO is considered as honest, the
servers CS1, CS2 are considered as semi-honest (also called
honest-but-curious), and the hacker H is considered a threat
to all of the public data in system model.

• The cloud servers CS1, CS2 obtain data through the
secure function passively. Curious cloud servers CS1,
CS2 can also actively select plaintext and ciphertext,
perform homomorphic operations and secure functions
to obtain private data.

• The hacker H eavesdrops on the communication link
between CS1 and CS2 to obtain data. The hacker H
can disguise himself as a server and execute the secure
function with either CS1 or CS2. The hacker H can copy
public data from cloud servers’ internal storage.

Moreover, an important assumption we make is that CS1
and CS2 are non-collusive; they will not exchange data in any
way other than as specified in the functions. Also, the servers
will not collude with hacker H. We provide Figure 1 that
includes all participants and the data they hold. In our security
outsourcing computing model, public keys, ciphertexts, and
partially decrypted ciphertexts are considered public data,
which conforms to the general principles of cryptographic
systems. The preparation and execution phases of the secure
computation function generate public data, as shown in the
“initialization data” and “function products” in Figure 1. More
importantly, we consider the curious cloud server to be an
active semi-honest adversary, who can perform homomorphic
operations and secure functions to obtain private data.

VI. THREE NEW HOMOMORPHIC FUNCTIONS

Our proposed secure computation toolkit contains 3 new
homomorphic functions which are needed for implement-
ing privacy-preserving machine learning applications. These
functions are Secure Multiplication Function (SMUL), Secure
Comparison Function (SCOM), and Secure Sign and Magnitude
Acquisition Function (SSMA).

We define the positive plaintexts as integers in [1, q/2], and
the negative plaintexts as integers in [q/2, q−1] for the cyclic
subgroup Gq . For instance, if m > 0 implies m ∈ [1, q/2];
otherwise, m < 0 then m ∈ [q/2, q − 1].

A. Secure Multiplication Function (SMUL)

The cloud servers CS1 and CS2 execute the secure multi-
plication function (SMUL) to compute E(m1 ×m2) using the
inputs E(m1) and E(m2). Even though CS1 and CS2 have

access to sk1 and sk2 respectively, SMUL function given below
computes E(m1×m2) collaboratively with CS1 and CS2, and
the plaintexts m1 and m2 are not exposed to the servers CS1,
CS2 or the hacker.

Function 1 Secure Multiplication Function (SMUL)
Input: E(m1), E(m2)
Output: E(m1 ×m2)
Step 1. CS1 executes

Generate random number u ∈ Zq

E(m1 + u)← AddSca(E(m1), u)
P (m1 + u)← PartDec(E(m1 + u), sk1)
Send P (m1 + u) to CS2

Step 2. CS2 executes
(m1 + u)← Dec(P (m1 + u), sk2)
E(m2 × (m1 + u))← MulSca(E(m2), (m1 + u))
Send E(m2 × (m1 + u)) to CS1

Step 3. CS1 executes
E(m2 × u)← MulSca(E(m2), u)
E(m1 ×m2)← E(m2 × (m1 + u))× E(m2 × u)−1

The correctness of this function is based on the identity

m2 × (m1 + u)− u×m2 = m1 ×m2 .

In the beginning of the algorithm the ciphertexts E(m1) and
E(m2) are available for CS1 and CS2. Recall that E(m1) and
E(m2) are obtained using both public keys pk1 and pk2, and
cannot be decrypted without the corresponding secret keys sk1
and sk2. CS1 homomorphically computes E(m1 + u) using
a random scalar u, and applies partial decryption function to
obtain P (m1+u), and sends it to CS2 which can decrypt using
its private key sk2 to obtain m1 + u, which is not equal to
m1, therefore, m1 remains unknown. CS2 multiplies the scalar
m1 + u with E(m2) using MulSca function, and obtains
E(m2×(m1+u)), and sends it to CS1. Finally, CS1 performs
the operation E(m2× (m1+u))×E(m2×u)−1, and obtains

E(m2 ×m1 +m2 × u−m2 × u) = E(m1 ×m2)

This computation is accomplished without the non-colluding
servers CS1, CS2 exposing the plaintexts m1 + u, random
number u and secret keys sk1, sk2.

From the hacker’s perspective, the ciphertext of
E(m1), E(m2), E(m1 + u), P (m1 + u), E(m2 × (m1 +
u)), E(m2× u), E(m1×m2) are accessible. He cannot learn
any plaintext information from these ciphertexts due to the
security of (2, 2) TAHEG.

B. Secure Comparison Function (SCOM)

The cloud servers CS1 and CS2 execute secure comparison
function (SCOM) with the inputs E(m1) and E(m2). The
output of SCOM is either the encryption of 0 or the encryption
of 1. If m1 > m2 the output is the pair (E(0), E(1)),
otherwise the output is the pair (E(1), E(0)).
In Step 1, CS1 takes E(m1) and E(m2) as input, and
homomorphically computes E(m1 − m2) or E(m2 − m1)
depending on the random bit b = 0 or b = 1. The sign of
d = m1 − m2 or d = m2 − m1 gives whether m1 > m2
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Function 2 Secure Comparison Function (SCOM)
Input: E(m1), E(m2).
Output: cr = (E(0), E(1)) if m1 > m2.

cr = (E(1), E(0)) if m1 ≤ m2.
Step 1. CS1 executes

Generate the random bit b ∈ {0, 1}
If b = 0, then E(d)← Add(E(m1), E(m2)

−1)
If b = 1, then E(d)← Add(E(m2), E(m1)

−1)
E(d · v)← MulSca(E(d), v)
E(d · v + e)← AddSca(E(d · v), e)
P (d · v + e)← PartDec(E(d · v + e), sk1)
Send P (d · v + e) to CS2

Step 2. CS2 executes
(d · v + e)← Dec(P (d · v + e), sk2)
E(0)← Enc(0, pk1, pk2)
E(1)← Enc(1, pk1, pk2)
If d · v + e > 0, then cr = (E(0), E(1))
If d · v + e ≤ 0, then cr = (E(1), E(0))
Send cr to CS1.

Step 3. CS1 executes
If b = 0, then the output is cr
If b = 1, then the output is Rotate(cr)

or m1 ≤ m2. However, CS1 cannot discover the unencrypted
value d since it has access to sk1 but not sk2. Both are needed
for correct decryption of E(d).

On the other hand, if CS1 sends PartDec(E(d), sk1) to CS2,
then d can be computed by CS2, which is not acceptable by our
security assumption that neither CS1, nor CS2 should discover
the value of d. Instead, CS1 applies a sign-preserving homo-
morphic transformation to E(d) and computes E(d · v+ e),
and sends PartDec(E(d · v + e), sk1) to CS2, where v and e
are random values such that v > e. Notice that since v > e,
if d is negative then d · v+ e is negative, and likewise, if d is
positive then d · v + e is positive.

In Step 2, CS2 decrypts P (d · v+ e), and obtains d · v+ e.
Depending on the sign of d · v + e, CS2 forms either the pair
cr = (E(0), E(1)) or the pair cr = (E(1), E(0)), and sends
cr to CS1.

In Step 3, CS1 rotates the pair cr if the random bit b = 1,
otherwise it keeps it as received. Now both CS1 and CS2
have access to cr which is equal to (E(0), E(1)) if m1 >
m2 or (E(1), E(0)) if m1 ≤ m2. The exact value of cr can
be discovered only if CS1 and CS2 collude and decrypt cr
together. Our security assumption forbids that.

From the hacker’s perspective, the ciphertext of
E(m1), E(m2), E(d), E(d · v), E(d · v + e), P (d · v + e), cr
are accessible. He cannot learn any plaintext information
from these ciphertexts due to the security of (2, 2) TAHEG.

C. Secure Sign & Magnitude Acquisition Function (SSMA)

The cloud servers CS1 and CS2 execute the secure sign and
magnitude acquisition function (SSMA) to obtain the sign and
magnitude of m in the ciphertext E(m). The positive sign is
represented with the pair cr = (E(0), E(1)), and the negative
sign is represented with the pair cr = (E(1), E(0)), which

is computed by SCOM function. We denote the magnitude
by E(|m|) which can be computed using SCOM and SMUL
functions as shown below.

Function 3 Secure Sign & Magnitude Acquisition (SSMA)
Input: E(m)
Output: cr, E(|m|)
Step 1. CS1 and CS2

cr← SCOM(E(m), E(0))
Step 2. CS1 and CS2

A1 ← SMUL(E(m)−1, cr[1])
A2 ← SMUL(E(m), cr[2])
E(|m|)← Add(A1, A2)

The sign of m in E(m) is obtained using SCOM function
in Step 1. The comparison result is the vector (cr[1], cr[2]).
We now show that the magnitude E(|m|) can be computed
by the servers CS1 and CS2 by performing an inner-product
operation with the vectors (E(m)−1, E(m)) and cr. Assume
m > 0, then we have cr = (E(0), E(1)) and |m| = m. The
result of the inner-product operation would be

SMUL(E(m)−1, cr[1]) = E(−m · 0) = E(0)

SMUL(E(m), cr[2]) = E(m · 1) = E(m)

Add(E(0), E(m)) = E(m)

as required. On the other hand, if m < 0, we have cr =
(E(1), E(0)) and |m| = −m. In this case, the result of the
inner-product operation would be

SMUL(E(m)−1, cr[1]) = E(−m · 1) = E(−m)

SMUL(E(m), cr[2]) = E(m · 0) = E(0)

Add(E(−m), E(0)) = E(−m)

In this function, the perspective of the hacker is consistent
with SMUL and SCOM. H cannot learn any plaintext infor-
mation from these ciphertexts due to the security of SMUL
and SCOM functions.

VII. EXPERIMENTAL EVALUATION

To evaluate the performance of SOCT, we implemented the
toolkit using gmpy2 version 2.1.5 in Python 3.11 on a PC with
an Intel(R) Core(TM) i5-1155G7 @ 2.50GHz CPU and 8GB
RAM. We also implemented the advanced works of SOCI [12]
and SOCI+ [16] in the same environment for a comparative
efficiency analysis.

The parameter p in the cyclic subgroup is set to 2048 bits,
following the parameter settings in SOCI and SOCI+, where
N = 2048 bits and the modulus N2 = 4096 bits. This
ensures that the ciphertexts have the same bit length across
the SOCI, SOCI+, and SOCT toolkits. The secret key in SOCI
and SOCI+ is 128 bits, while our secret key is 256 bits.

The TAHEG algorithm defines the plaintext space as Z2σ

and prepares a look-up table {gm : m} for m ∈ Z2σ+1

to reduce the DLOG(gm) computation during the decryption
process (σ = 16). We repeat the operations 1000 times and
compute the average as the final results. Additionally, we
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TABLE II
TIME COMPARISON OF BASIC CRYPTOGRAPHIC OPERATIONS OF SOCI, SOCI+ AND OUR TOOLKIT WITH THE SAME CIPHERTEXT SIZE (2048 BITS)

HE algorithms Toolkit Enc Dec PDec(sk1)1 PDec(sk2)1 Addition ScalarMul Subtraction

PaillierTD SOCI 9.250 8.986 17.868 17.646 0.039 0.075 0.076
FastPai SOCI+ 0.421 2.050 0.690 11.087 0.006 0.068 0.067
BCP SOCHE 4.750 2.420 2.420 2.430 2.430 4.410 -
BGV-Circuits Pockit 147.0 51.0 - - 0.120 - -
MK-CKKS - - - - - 10.0 120.0 -
TAHEG SOCT 1.020 0.744 0.374 0.375 0.004 0.012 0.031
1 PDec(sk1) and PDec(sk2) perform with sk1, sk2 respectively.
2 The time unit is ms.

TABLE III
COMPARISON OF SECURE FUNCTIONS OF SOCI, SOCI+ AND OUR

TOOLKIT WITH THE SAME CIPHERTEXT SIZE (2048 BITS)

Schemes Runtime (ms) Communication cost (KB)

SMUL SCOM SSMA SMUL SCOM SSMA

SOCI 107.788 54.208 175.386 2.498 1.498 3.996
SOCI+ 15.210 19.185 36.878 1.498 1.497 2.997
Pockit 29580 2030 - - - -
SOCT 4.256 4.868 14.545 1.000 1.500 3.500
* The time unit is ms.

compare our experimental results with those from Pockit [14]
and SOCHE [13].

We conducted experiments to evaluate the performance of
basic operations in the HE algorithms: PaillierTD [18], FastPai
[22], BGV-Circuits [14], BCP [23], MK-CKKS [24] and
TAHEG. The SOCI and SOCI+ implementations are based on
the PaillierTD and FastPai, with SOCI+ outperforming SOCI
due to optimizations in the FastPai algorithm. The SOCHE
utilizes the BCP [23] algorithm, as proposed by Bresson,
Catalano, and Pointcheval. Meanwhile, Pockit [14] designs
homomorphic circuits based on the BGV algorithm [25].

Table II presents a runtime comparison of the HE algo-
rithms. The BCP is a partially homomorphic encryption (PHE)
algorithm, where the ciphertext consists of a tuple containing
two large integers modulo N2 = 4096 bits. The larger
ciphertext size results in lower efficiency. The multi-key CKKS
(MK-CKKS) [24] algorithm supports homomorphic operations
on ciphertexts encrypted with different keys. It is developed
using the CKKS algorithm, and it optimizes the multiplication
efficiency of [26]. Due to the conceptual differences between
PHE and FHE algorithms, we only selected the homomorphic
operation times of addition and multiplication for comparison.

The BGV-Circuits [14] construct homomorphic circuits,
requiring integers to be encrypted as strings of bits, which
reduces efficiency in both encryption and decryption. Our
toolkit, based on the ElGamal cryptosystem, features a more
efficient decryption function compared to the Paillier cryp-
tosystem. In the partial decryption function of SOCI+, the
cloud servers’ secret keys sk1 and sk2 are additively shared,
with sk1 = 128 bits, resulting in sk2 having a bit length of
2495 bits. The larger operand leads to increased processing
time, resulting in a significant performance difference between
PDec(sk1) and PDec(sk2).

For basic homomorphic operations such as addition, scalar

multiplication, and subtraction, the modulus in the ElGamal
cryptosystem is 2048 bits, while the modulus in the Paillier
cryptosystem is nearly 4096 bits. Consequently, operating on
two 2048-bit numbers is faster than operating on a single 4096-
bit number, making the TAHEG algorithm more efficient.

We conducted experiments to evaluate the consumption of
secure computation functions SMUL, SCOM, and SSMA. As
shown in Table III, the runtime measures the time consumed
by two servers executing the function, while the communi-
cation cost calculates the size of data transmitted over the
channel.

Pockit designs the SMUL and SCOM functions using homo-
morphic circuits that minimize interaction between servers.
The SOCI+ demonstrates significant efficiency improvements
over SOCI, as FastPaiTD [16] is more efficient than Pail-
lierTD.

Our SOCT exhibits greater efficiency in function steps
compared to the functions in SOCI+. Specifically, we reduce 3
encryption and 4 addition operations in the SMUL function, and
3 encryption and 1 addition operation in the SCOM functions.
Consequently, our toolkit achieves the best performance in
these experiments.

In SOCI+, the SSMA function employs 1 SMUL and 1 SCOM,
while our SOCT employs 2 SMUL and 1 SCOM, aligning with
the experimental results. The communication cost for these
comparison toolkits has reached the ”KB” level. The modulus
in SOCI and SOCI+ is computed with N2, where N is 2048
bits. Thus, the N2 in our experiments may be less than 4096
bits (e.g., 4094 bits = 0.496 KB).

TABLE IV
USER RUNTIME IN PARAMETER GENERATION AND ENCRYPTION (SEC)

Schemes Group or Key Generation Thousands Enc Millions Enc

SOCI 0.069 9.462 9488.892
SOCI+ 0.003 0.437 439.227
SOCT 74.839 1.029 1047.615

We evaluate the user overhead in our SOCT. Before exe-
cuting the secure computation functions, users are required to
generate cyclic subgroup parameters Gq(p, q, g) and broadcast
them to the cloud servers. Subsequently, CS1 and CS2 select
their secret keys sk1 and sk2 and upload h1 = gsk1 and
h2 = gsk2 to construct the public key pk(p, q, g, h1, h2).

Users must encrypt their plaintext data and send the ci-
phertexts to CS1 and CS2. This means users must complete
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two tasks: generating the group parameters Gq(p, q, g) and
encrypting plaintexts before function execution, as shown in
Table IV. The user’s time consumption of SOCI and SOCI+

includes key generation, key splitting, and data encryption.
The key generation efficiency of Paillier cryptosystem is
better than that of ElGamal cryptosystem. The user’s time
consumption in the encryption phase is mainly related to the
consumption of Enc function. More importantly, the SOCI
and SOCI+ additionally require users to distribute the partial
secret keys, which requires the secure channel before the
outsourcing process. Our SOCT key pairs are generated by
servers, and user only need to broadcast group parameters
Gq(p, q, g).

During our parameter generation process, the function
Gq(p, q, g) ← ParSet() randomly selects large primes p and
q such that q|(p − 1), with p ≥ 2048 bits and q ≥ 256 bits.
This can result in variable time costs. In practical applications,
users can choose to utilize pre-computed Gq(p, q, g) to reduce
their overhead.

VIII. RELATED WORK

Homomorphic algorithms with partial decryption can be
applied in dual-server decryption architecture. The existing
partial decryption is mainly achieved by threshold homo-
morphic encryption [19], [20] and multi-key encryption [27].
Threshold homomorphic encryption requires a trusted party to
split the secret key and distribute it to the servers. Multi-key
encryption supports each participant to generate their own key
pairs, and then the ciphertext is encrypted by multiple public
keys. However, additional operations are required to ensure
homomorphic operations between ciphertexts encrypted with
different keys. In these methods, a single untrusted party can-
not decrypt the ciphertext with his secret key, and decryption
of the ciphertext requires a partial decryption process with the
input of multiple parties’ secret key.

Existing multi-key homomorphic encryption is mainly im-
plemented with FHE algorithms. Chen et al. [28] proposed
a multi-key implementation of the TFHE [29] algorithm. Li
et al. [30] propose a DGHV-type MKHE scheme. Che et al.
[31] proposed RLWE-based multi-key FHE scheme. Kim et
al. [24] proposed multi-key implementation of the BFV [32],
[33] and CKKS [4].

In these schemes, additional operations are employed at the
expense of efficiency to support homomorphic operations on
ciphertexts encrypted with different keys. In MK-TFHE [28],
the ciphertexts encrypted with different keys are stored in the
extended ciphertext. Therefore, as the number of participants
increases, the computational complexity increases by O(n2).
The decryption process requires all parties to partially decrypt
the ciphertext. The DGHV-type MKHE [30] requires an ex-
tended key to convert ciphertexts encrypted with different keys
to the same key to support homomorphic operations. In partial
decryption process, each participant partially decrypts the
ciphertext and uploads it to the cloud server, which completes
the final decryption. Che et al. [31] expands the ciphertext of
each participant into a (k + 1) × (k + 1) matrix, where k is
the number of participants. Partial decryption process requires

the secret keys of all participants. Kim et al. [24] introduces
the homomorphic gadget decomposition to allow arithmetic
operations on the decomposed vectors, which reduces the
complexity of multi-key multiplication to O(n). Ciphertexts
encrypted with different keys can be directly operated ho-
momorphically, and the associated keys are recorded using
a reference set. The partial decryption process requires secret
key of the corresponding participants, which are recorded in
the reference set.

Threshold homomorphic encryption is mainly implemented
based on the PHE algorithm. Limited by the need for
trusted parties to distribute secret keys, research on threshold
homomorphic encryption has progressed slowly. The most
representative ones are PaillierTD [17], [18] and threshold
EIGamal [19], [20]. PaillierTD is developed from Paillier [34]
algorithm. After generating the traditional Paillier key pair, the
trusted party needs to split the secret key and distribute it to
other parties. Although the PaillierTD implementation in [12],
[16] claims to eliminate the need for trusted parties to generate
and distribute keys compared to [35], [36], they instead leave
this task to the user (data owner) of homomorphic outsourc-
ing computation. This still requires users to consider secure
channels to transfer secret keys before outsourcing operations
begin. For the partial decryption process of PaillierTD, it relies
on threshold setting and requires multiple secret keys to jointly
decrypt the ciphertext.

In the above MKHE scheme, the ciphertext requires mul-
tiple related secret keys to be decrypted. Since the secret
key is usually private data of the participants, in actual
implementation, it is necessary for multiple participants to
perform partial decryption separately, and then collect all the
partial decryption results to obtain the plaintext. However, such
a partial decryption setting allows the plaintext to be computed
from multiple partially decrypted results without requiring any
private data. This will cause the channel eavesdropper to easily
obtain partial decryption results from multiple participants and
decrypt the ciphertext.

In this paper, we employ the threshold homomorphic en-
cryption of threshold additive EIGamal and let semi-honest
parties generate key pairs. All ciphertexts are encrypted with
the same public keys, making it support traditional EIGamal
homomorphic operations. Each function in the partial decryp-
tion process requires a partial secret key to prevent an external
hackers from obtaining plaintext through partial decryption
results.

IX. CONCLUSION

In this paper, we introduced the Secure Outsourcing Compu-
tation Toolkit based on the threshold ElGamal cryptosystem.
Our security assumptions are closer to real-world scenarios.
We describe a (2, 2) threshold additively homomorphic ElGa-
mal algorithm derived from the existing threshold ElGamal
cryptosystem. Experiments show that the efficiency of our
algorithms are better than existing toolkits [12], [13], [14],
[16]. The SOCT supports the construction of computation
functions for floating-point numbers [35] and rational num-
bers [36], and can be applied to more complex outsourced



9

computing scenarios. A limitation of our SOCT architecture
is that external hackers do not collude with internal servers,
which will be studied in future work. The SOCT library is
available for public access, and it can be downloaded from
the GitHub site: https://github.com/KocLab2023/SOCT.
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