
Journal of Cryptographic Engineering (2025) 15:2
https://doi.org/10.1007/s13389-024-00365-1

RESEARCH ART ICLE

MLFormer: a high performance MPC linear inference framework for
transformers

Siqi Liu1,6 · Zhusen Liu2 · Donglong Chen1,3 ·Wangchen Dai4 · Lu Zhou5 · Zhe Liu3 · Ray C. C. Cheung6 ·
Çetin Kaya Koç5,7

Received: 18 January 2024 / Accepted: 21 October 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Transformer-based models are widely used in natural language processing tasks, and their application has been further
extended to computer vision as well. In their usage, data security has become a crucial concern when deploying deep learning
services on cloud platforms. To address these security concerns, Multi-party computation (MPC) is employed to prevent
data and model leakage during the inference process. However, Transformer model introduces several challenges for MPC
computation, including the time overhead of the Softmax (normalized exponential) function, the accuracy issue caused by the
“dynamic range” of approximated division and exponential, and the high memory overhead when processing long sequences.
To overcome these challenges, we propose MLformer, an MPC-based inference framework for transformer models based on
Crypten Knott et al. (Adv Neural Inf Process Syst 34: 4961–4973, 2021), a secure machine learning framework suggested by
Facebook AI Research group, in the semi-honest adversary model. In this framework, we replace the softmax attention with
linear attention, which has linear time and memory complexity with input length. The modification eliminates the softmax
function entirely, resulting in lower time and memory overhead. To ensure the accuracy of linear attention, we propose the
scaled linear attention to address the dynamic range issue caused by the MPC division used and a new approximate division
function is proposed to reduce the computational time of the attention block. Furthermore, to improve the efficiency and
accuracy of MPC exponential and reciprocal which are commonly used in transformer model, we propose a novel MPC
exponential protocol and first integrate the efficient reciprocal protocol Bar-Ilan and Beaver (in Proceedings of the 8th annual
ACM symposium on principles of distributed computing, pp. 201–209, 1989) to our framework. Additionally, we optimize the
computation of causal linear attention, which is utilized in private inference of auto-regression tasks, using our novel CUDA
kernel functions. All the proceeding optimizations contribute to the construction of a more accurate and efficient framework.
The experimental results demonstrate that our framework achieves comparable accuracy with reduced inference time and
GPU memory overhead compared to the original transformer model. The speedup reaches 78.79% compared to traditional
private transformer with input length of 1024 patches.

Keywords Multi-party computation · Linear transformer · Private inference · Parallel processing · GPU

B Donglong Chen
donglongchen@uic.edu.cn

B Wangchen Dai
w.dai@my.cityu.edu.hk

Siqi Liu
siqiliua@163.com

1 Guangdong Provincial Key Laboratory of IRADS,
BNU-HKBU United International College, Zhuhai 519000,
China

2 Hangzhou Innovation Institute of Beihang University,
Hangzhou 311121, China

3 Zhejiang Lab, Hangzhou 310000, China

4 Sun Yat-sen University, Shenzhen 518107, China

5 Nanjing University of Aeronautics and Astronautics, Nanjing
210000, China

6 City University of Hong Kong, Hong Kong 310000, China

7 Iǧdır University, Turkey, and University of California Santa
Barbara, Santa Barbara, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-024-00365-1&domain=pdf

 2 Page 2 of 20 Journal of Cryptographic Engineering (2025) 15:2

1 Introduction

Since the transformer was first proposed byVaswani et al. [3]
for neural machine translation, it has been broadly applied
in Natural Language Processing (NLP) and computer vision
tasks [4, 5]. With the emergence of cloud services providing
powerful resources and offering benefits such as availability
and cost-effectiveness, deep learning models, including the
transformer-based models, are increasingly migrated to the
cloud. The computing paradigm works as follows: first, the
company shares its trainedmodelwith the cloud serverswhile
the user provides individual data; subsequently, the cloud
server processes the inference of the trained model on the
user-provided data.However, this computing paradigm raises
concerns about data security: parties may be curious, mali-
cious or corrupted, resulting in the unauthorized disclosure
of confidential models and data. For instance, ChatGPT, the
most popular artificial intelligent application recently, sup-
ported by GPT−3.5 (Generative Pre-training Transformer
[6]) takes plaintext inputs and generates human-like answers
for users. The text inputs in user requests can potentially
leak confidential information, which might lead to the iden-
tification of the individual user. Therefore, addressing the
security issue is essential for cloud services of transformer-
based models.

Researchers have proposed Privacy-Preserving Machine
Learning (PPML) to address the security issues raised by
machine learning applications. Various technologies have
been used to implement PPML, including trusted execution
environments (TEE) [7], homomorphic encryption (HE) [8],
and secure multi-party computation (MPC) [9]. TEEs rely
on trusted hardware to prevent physical attacks, provided
that the hardware implementation is free of any bugs. MPC
and HE provide strong security guarantees based on mod-
ern cryptography, but HE typically incurs more performance
overhead than MPC. MPC allows collaborating parties to
conduct computations securely without revealing their secret
data to one anotherwithin a secure cryptographic framework.
In addition, even if some parties are compromised, security
is not entirely broken due to the protection provided byMPC
protocols. This paper specifically focuses on the application
of MPC to protect transformer-based models.

Previous research on MPC-based private inference has
mainly concentrated on Convolutional Neural Networks
(CNNs) that are primarily deployed in computer vision tasks.
For instance, SecureML [10] employed a mixed protocol
consisting of Arithmetic, Boolean, and Yao sharing [11] to
implement two-party PPML. CrypTFlow [12] enabled pri-
vate inferences for large datasets such as ImageNet using
large-scale models like ResNet family [13] and VGG-16
[14]. However, the field of private inference for Transformer-
based models has not been extensively studied. In a recent
study [15], the private inference of transformer was pro-

cessed using CrypTen [1], a framework that integrates secure
MPC primitives with tensor computations and modular net-
works in machine learning. CrypTen is designed for all
types of neural network structures, rather than being tailored
specifically for transformers. The structure between CNNs
and Transformer-based models is significantly different, and
therefore, Transformer models present new challenges for
MPC-based private inference. These challenges include the
softmax function’s time overhead, the dynamic range of
approximated reciprocal and exponential, and the mem-
ory overhead, particularly when dealing with long input
sequences.

The primary challenge of implementing MPC-based pri-
vate inference for Transformer models is the significant
runtime overhead incurred by the softmax function. While
runtime overhead of non-linear functions like ReLU can be
significant when CNNs are implemented in MPC, the soft-
max function accounts for an even larger portion, around half
of the overall inference runtimewhen transformers are imple-
mented in MPC, according to [15]. The repeated use of the
softmax function at each layer of aTransformermodel further
compounds the performance penalty. Additionally, to ensure
numerical stability, the softmax function commonly needs to
compute the max, a computationally expensive operation in
MPC.

In addition to the runtime overhead, another challenge of
MPC-based inference for Transformermodels is the dynamic
range issue of reciprocal and exponential inMPC.Reciprocal
and exponential are both significant and indispensable com-
putations in Transformer. However, the complex non-linear
functions like reciprocal and exponential are often approx-
imated as polynomial functions in MPC. These approxi-
mations introduce “dynamic range”, where the accuracy is
acceptable only when inputs fall inside a particular range.
Substantial numerical errors will occur if the inputs are out-
side this range, leading to a potential loss of model accuracy.

Another issue that Transformer models have to address is
the high memory overhead when processing long sequences.
This issue is mainly caused by the use of softmax-attention,
whose memory complexity is quadratic with the input
size(i.e. O(N 2), where N refers to the input length). Similar
to the time overhead issue, the repeated use of the soft-
max function at each layer contributes to the increase of the
memory overhead. The quadratic complexity of the memory
overhead introduces a significant impediment to processing
long sequences, even for plaintexts.

To overcome the challenges discussed above, researchers
have proposed various efficient transformers. For instance,
Linformer [16] suggested to shorten sequences before com-
puting self-attention by projecting the keys and values and
Nystromformer [17] approximated softmax attention utiliz-
ing the Nystrom method [18]. Though reducing the time and

123

Journal of Cryptographic Engineering (2025) 15:2 Page 3 of 20 2

memory overhead of processing long input, both methods
still rely on the softmax function to compute self-attention.

In this paper, an MPC-based inference framework named
MLformer based on CrypTen [1] is built for privacy-
preserving inference of transformer-based models. In the
framework, we suggest using linear attention [19] of linear
time and memory complexity with input length as a replace-
ment for softmax attention. Without softmax function, linear
attention requires no computation of max in MPC, resulting
in lower runtime overhead. We also propose scaled linear
attention to handle the accuracy issue caused by the dynamic
range of MPC division used in linear attention. At the same
time, we design a new approximate division function work-
ing with scaling to reduce the computational time of linear
attention. Furthermore, we are the first to implement the
reciprocal protocol proposed by BarIlan and Beaver [2] on
an MPC-based deep learning framework. And we also intro-
duce a novel protocol for MPC exponential. Both the new
protocols for reciprocal and exponential show satisfactory
performance in accuracy and time overhead, so as to improve
the accuracy of the model result and reduce the time over-
head of the inference process. We additionally optimize and
accelerate the computation of causal linear attention, which
is utilized in private inference of autoregression tasks, using
our novel CUDA kernel functions. All the preceding opti-
mizations contribute to the construction of a more accurate
and faster framework.

The following contributions are made in this paper:

• AnMPC-based inference framework, namedMLformer,
is proposed for transformer-based models with linear
attention instead of softmax attention, resulting in linear
time and memory complexity with input length.

• We propose “scaled linear attention" to address the
dynamic range issue of private division used in the
attention block. Meanwhile, an approximate function for
private division is proposed by linear regression working
with scaling, which achieves a 6.02× speedup.

• We propose a novel protocol for MPC exponential and
implement an efficient protocol forMPC reciprocal, both
of which demonstrate excellent performance in terms of
accuracy, dynamic range, and time overhead. Our novel
exponential protocol of 4 iterations achieves a speedup
of 12.61% and the efficient reciprocal achieves a 43.05×
speedup.

• The computational efficiency of causal linear atten-
tion in private inference is improved by utilizing our
novel CUDA kernel functions, achieving a speedup of
94.48%. The experiments on ImageNet demonstrate that
our framework works faster than previous private trans-
formers with less GPU memory and it has comparable
accuracy with original transformer on long sequence
inference tasks. The speedup reaches 78.79% compared

to the traditional private transformer with input length of
1024 patches.

2 Related work

There is a substantial corpus of previous studies that have
focused on MPC-based privacy-preserving machine learn-
ing. For example, several frameworks such as SecureML
[10], Chameleon [20], CrypTFlow [12], CryptGPU [21]
and CrypTen [1] have been proposed for private training
and inference based on MPC. A mixed protocol consist-
ing of arithmetic, Boolean, and Yao sharing [11] was used
by SecureML [10] to make PPML more practical and effi-
cient in a two-server framework. Chameleon [20] introduced
a semi-trusted third party for generating “multiplication
triples". CrypTFlow [12] enabled private inference for large
datasets such as ImageNet using large-scale models like
ResNet family [13] and VGG-16 [14]. In our work, we uti-
lize CrypTen as the base MPC framework. CrypTen [1] is
a framework that integrates secure MPC primitives such
as beaver triples, arithmetic and binary sharing with ten-
sor computations and modular networks in machine learning
based on Pytorch. CryptGPU [21] is a framework based on
CrypTen that focuses on 3-party inference using 2-out-of-
3 replicated sharing. CrypTFlow, CryptGPU, and CrypTen
all enable the implementation of GPU on inference. Dong et
al. [22] introduced FLEXBNN, which leverages flexible and
small bit-width conversion approach to accelerate the private
inference for Binary Neural Network. Optimizations for pri-
vate inference have also been suggested by ParSecureML
[23], and the optimized comparison protocol [24].

However, limited research has been conducted on private
inference for transformermodels. Resende et al. [25] focused
on the text classification task in NLP and developed a Naive
Bayes Classifier based on MPC. Feng et al. [26] developed
SecureNLP, a framework based onMPCmainly for recurrent
neural network (RNN)-based sequence-to-sequence model
for neural machine translation tasks. Meanwhile, Wang
et al. [15] attempted to protect transformer-based models
using CrypTen framework. The-X [27] provided a method
of homomorphic encryption (HE) for private inference of
transformer-based models. In this work, we focus on the use
ofMPC for private inference of transformers and aim to iden-
tify solutions for the challenges they present.

Several previous studies have attempted to optimize the
time and memory complexity of transformers through alter-
native implementations. For instance, Child et al. [28]
proposed the sparse factorization of the attention matrix
to reduce complexity from quadratic to O(N

√
N). More

recently, Kitaev et al. introduced Reformer [29], which uses
locality-sensitive hashing (LSH) to reduce complexity to
O(N log N). In their method, fewer dot products are com-

123

 2 Page 4 of 20 Journal of Cryptographic Engineering (2025) 15:2

puted under the constraint that the keys should be kept the
same as the queries. Consequently, Reformer cannot be uti-
lized to handle tasks where the keys and the queries are
different. Linformer [16] reduces the time and memory over-
head by using low-rank assumption to shorten value and
key. Nystromformer [17] makes use of the Nystrom method
to approximate softmax attention, which divides attention
into three parts. Both Linformer and Nystromformer employ
the softmax function when computing attentions, which is
expensive in MPC. Linear transformer proposed in study
[19] reduces the time and memory complexity to O(N) using
linear attention to approximate softmax attention, which
eliminates the use of softmax function. By not using the
softmax function, the linear transformer gains an advantage
in processing long sequences compared to other alternative
transformers.

3 Background

3.1 Transformer-basedmodel

Transformers, introduced by Vaswani et al. [3] at Google
Brain in 2017, are widely utilized in Natural Language
Processing (NLP) and computer vision (CV). Transformers
adopt the self-attention mechanism, which assigns differ-
ent weights to input components based on their importance.
Compared to recurrent neural networks(RNNs), transformers
perform better parallelism, allowing for each component of
the input to be processed in parallel, instead of in sequential.
This advantage enables the training of large datasets, leading
to the development of pre-trained systems like BERT [30]
(Bidirectional Encoder Representations from Transformers)
and GPT (Generative Pre-trained Transformer [6]).

Other transformer-based models include XLM [31] and
Vision Transformer (ViT) [4] employed in image classifi-
cation tasks. The model architectures of XLM and ViT are
shown inFig. 1a andb, respectively.XLMconsists of an input
embedding layer, followed by several layers of Transformers.
ViT is comprised of a fully-connected classifier on the top,
multiple transformer layers in the middle, and normalization
layers at the beginning. Though input processing layers may
differ among models, Transformer layers share a common
structure. Figure1c depicts the computation decomposition
of a Transformer Encoder, which is comprised of two main
compute building blocks: the multi-head attention block and
the feed-forward block. Figure1d presents a detailed break-
down of the computations involved in a multi-head attention
layer. Figure1e illustrates the comprehensive calculations
underlying Scaled dot-Product attention.

In many transformer models, the inputs are sentences that
can be broken down into multiple words. Specifically, for
Vision Transformer (ViT) models, the inputs are typically

images that canbe segmented intomultiple patches, similar to
how a sentence is divided into words. Throughout this paper,
we consistently refer to each element of an input sequence as
a "token". To provide position information, a position vector
is added to the token vector. We use x to represent the input
and xi to denote the token vector. Assuming the number of
tokens is N , x is composed of N xi that are packed together.
As shown in Fig. 1d, the inputs of the multi-head attention
are Q (“queries”), K (“keys”), and V (“values”), which are
derived from x . They are computed as Eq.1 shows:

Q = xWQ (1a)

K = xWK (1b)

V = xWV (1c)

In the Eq.1a–c, Q, K , and V are calculated by performing
three linear transformations on x with the weight matrices
WQ , WK , and WV , respectively.

“Scaled Dot-Product Attention" can be described as fol-
lows:

Attention(Q, K , V) = so f tmax

(
QKT

√
dk

)
V , (2)

wheredk represents the dimensionof keys. First, the dot prod-
ucts of the queries Q with all keys K are calculated and then
it is scaled by dk . Next, a softmax function is applied to the
dot product to obtain the weights on the values. Note that the
softmax function is applied row-wise to QKT . Finally, atten-
tion is computed by multiplying values V and its weights.

The feed-forward block in Fig. 1c contains a two-layer
linear operation that can be described as follows:

FF(xattn) = Linear(Activation(Linear(xattn))), (3)

where ReLU is the activation function commonly used.

3.2 Securemulti-party computation

Multi-party Computation(MPC) is a foundation of cryptog-
raphy and a significant technology for privacy-preserving
applications. The implementations of securemultiparty com-
putation typically involve one or more of the following
techniques: secret-sharing, garbled circuits, and oblivious
transfer. In this work, we make use of secret-sharing
approaches to achieve MPC, and will focus on introducing
MPC protocols that are based on secret-sharing in this sub-
section.

Arithmetic sharing and binary sharing are two primary
secret sharing formats that are widely used in MPC for shar-
ing an operand x . [x]i and 〈x〉i refer to the shares of x in
arithmetic and binary sharing, respectively. Assuming a sce-

123

Journal of Cryptographic Engineering (2025) 15:2 Page 5 of 20 2

Fig. 1 Computation decomposition of Transformer-based model: a structure of XLM; b structure of a ViT; c structure of a transformer; d multi-
headed attention; e scaled dot-product attention

nario of two-party computation, the share and reconstruct
stages can be demonstrated as follows:

Share(x)

• Arithmetic sharing: x can be divided to two additive
secret shares [x]1 and [x]2, where [x]1 = r and [x]2 =
x − r . The random variable r is sampled from a uniform
distribution.

• Binary sharing: x can be divided to two binary secret
shares 〈x〉1 and 〈x〉2, where 〈x〉1 = r and 〈x〉2 = x ⊕ r .
The random variable r is sampled from a uniform distri-
bution as well.

Reconstruct([x]i / 〈x〉i , i = 1, 2)

• Arithmetic sharing: x can be reconstructed by adding x =
[x]1 + [x]2

• Binary sharing: x can be reconstructed by an XOR com-
putation: x = 〈x〉1 ⊕ 〈x〉2

We mainly consider an ”Outsourcing Inference” sce-
nario: when the pre-trained ML(machine learning) models
are deployed on n servers, the client can securely share their
feature inputs across these servers. The servers are able to
jointly and secretly compute the result of inference and return
it to the client. Under this scenario, theMPCprotocol enables
a client to confidentially share its operands (a vector, matrix,
etc.) among various “untrusted parties" (MPC servers) with-
out revealing any information about the original operands.
In secret sharing, each MPC server receives its unique secret
share, which is the only data viewable andmanipulable by the
server. Once the local MPC computations are completed, the
MPC servers provide the outcomes to the client. To obtain the
final plaintext result, the client combines the results from var-
ious MPC servers using operations like summation or XOR.

Figure2 depicts an example of a two-server secure com-
putation in outsourcing inference where the client intends
to compute z = xy. Both x and y are in arithmetic shar-
ing format. Firstly, the client distributes the relevant secret
shares [x]i and [y]i (i = 1, 2) to the MPC servers. Next,
the servers conduct local computations on their individual
shares. Finally, the client receives the outputs from Server1
and Server2, which can be combined to obtain the result z.
During the local computation, the servers can communicate
with each other with the protection of MPC protocols.

For operations such as matrix multiplications and convo-
lutions that are typically used in modern machine learning
models, arithmetic secret sharing is especially well-suited.
On the other hand, for other commonly used functions such as
rectified linear units (ReLU), binary secret sharing is required
for evaluation. The homomorphic properties of arithmetic
and binary secret sharing make them useful for secure com-
putation implementation.

3.3 CrypTen

CrypTen is an MPC framework designed for the private
inference and training of machine learning models. The
framework utilizes both arithmetic and binary secret shar-
ing, as well as the conversion between them. Private addition
and multiplication are the fundamental building blocks for
computations in CrypTen. Linear and non-linear functions
are implemented in different manners.

Linear functions: In CrypTen, linear operations such as
matrix products, dot products, and convolutions are com-
puted by breaking them down into combinations of private
additions and multiplications.

Non-linear functions:CrypTenemploys standard approx-
imations that only require private additions and multiplica-
tions to construct non-linear functions. It employs a limit

123

 2 Page 6 of 20 Journal of Cryptographic Engineering (2025) 15:2

Fig. 2 Two server example of secure computation in outsourcing infer-
ence

approximation to evaluate exponential, Householder itera-
tions to evaluate logarithms, and Newton-Rhapson iteration
to evaluate reciprocal. These techniques enable CrypTen to
implement fundamental machine learning model functions
such as the sigmoid, softmax, and logistic-loss functions,
along with their corresponding gradients.

The MPC computations are demonstrated in detail in the
following subsections.

3.3.1 MPC addition

In an arithmetic secret sharing operation to add two values, x
and y, [z] = [x]+[y], each party p has their respective shares
of [x] and [y]: [x]p and [y]p. Subsequently, each participant
p ∈ P performs local summation: [z]p = [x]p + [y]p to
obtain the shares of the sum z.

3.3.2 MPCmultiplication

Beaver triples [32] are used to implement the multiplication
of two values x and y in arithmetic sharing: [z] = [x][y]. The
triples are produced offline by a trusted third party (TTP) or
a trusted first party (TFP). By utilizing TFP, the triples are
generated by one of the parties participating in the MPC
process through additive homomorphic encryption or other
techniques, eliminating the need for a third party. Although
CrypTen provides both TFP and TTP methods, currently
only TFP is feasible in practice. Values of a Beaver triple
(([a], [b], [c])) in arithmetic sharing must satisfy the prop-
erty of c = ab. a and b are randomly generated from the ring
Z/QZ . After obtaining the beaver triple, the parties calcu-
late [ε] = [x] − [a] and [δ] = [y] − [b]. [ε] and [δ] are then
decrypted as ε and δ and transmitted to all the parties in one

communication round. No information can be revealed as a
and bwere drawn at random. Thereafter, each party can com-
pute [x][y] by computing [c]+ε[b]+[a]δ+εδ. Correctness
of the private multiplication can be verified using:

[c] + ε[b] + [a]δ + εδ = [a][b] + [x][b] − [a][b]
+ [y][a] − [b][a]
+ ([x] − [a])([y] − [b])

= [x][y]

3.3.3 MPC square

To calculate the square [x2], a beaver pair ([a], [b]) provides
by the TFP is used by the parties. Values of the pair must
satisfy the property of b = a2. The parties then compute
[ε] = [x] − [a] and next reveal [ε] as ε = x − a. The result
is then obtained via [x2] = [b]+2ε[a]+ε2. The correctness
can be verified using:

[b] + 2ε[a] + ε2 = [a]2 + 2([x] − [a])[a] + ([x] − [a])2
= [x2]

3.3.4 MPC comparisons

The comparison of two additive shared values x and y:
[x < y], can be computed by obtaining [d] = [x] − [y] and
comparing the result to zero: [d < 0]. [d] in additive sharing
is then converted into 〈d〉 in binary sharing. The sign bit of
〈d〉 can be fetched by shifting it to the LSB: 〈s〉 = sgn(〈d〉).
Subsequently, the sign bit 〈s〉 is converted from binary share
to additive share to obtain [x < y]. Other comparison results
can be computed based on x < y. The conversions between
additive and binary sharing are used in comparisons.

3.3.5 MPC ReLU

In plaintext, ReLU can be defined as ReLU (x) = x × (x >

0). It can be computed by the variation ReLU ([x]) =
[x][x > 0]. To compute the variation, x > 0 is calculated
first and then the multiplication of [x] and [x > 0] is exe-
cuted. Comparison is used when computing ReLU, which
makes the operation expensive in MPC.

3.3.6 MPC exponential

CrypTen leverages limit approximation to approximate expo-
nential, which is the key operation of softmax function. The
approximation can be described as follows:

ex = lim
n→∞

(
1 + x

2n

)2n
(4)

123

Journal of Cryptographic Engineering (2025) 15:2 Page 7 of 20 2

where n represents the number of approximation iterations.
Due to the faster growth rate of exponential functions com-
pared to polynomials, polynomial approximations like the
Taylor Series are not utilized.

3.3.7 MPC reciprocal

Similar to the exponential function, the reciprocal is also
computed using an approximation function. CrypTen com-
putes reciprocals using the Newton–Raphson iteration as
following described:

1

x
= lim

n→∞ yn = yn−1 (2 − xyn−1) (5)

where y0(x) = 3e0.5 − x + 0.003 and the default number of
iterations is 10.

4 Framework description

In order to address the aforementioned challenges, we have
developed an MPC-based framework named MLformer for
private inference of transformer-based models. Based on
CrypTen [1], MLformer utilizes the MPC protocols which
have been introduced in Section 3.3, which have been proven
to be secure in study [1]. In our framework MLformer, we
implement linear attention [19] as a replacement for the stan-
dard softmax attention, which bestows the framework linear
time and memory complexity with input length. To over-
come the dynamic range problem for MPC division used
in the attention block, we introduce scaled linear attention
and a novel approximation division function, which ensures
the accuracy of linear attention and reduces the time over-
head. Furthermore, an efficient reciprocal protocol is utilized
for faster and more accurate reciprocal in MPC used in the
whole framework. Meanwhile, to improve the accuracy and
efficiency of exponential used in our framework, we propose
a novel protocol for it as well. Given the crucial role of recip-
rocal and exponential computations in transformer inference,
these advancements significantly accelerate inference speed
and yield more precise results. Collectively, these compo-
nents constitute our framework and enable it to performbetter
than previous works in terms of speed and accuracy. Each
component will be sequentially elucidated in this section.

Similar to previous privacy-preserving inference frame-
works CrypTen [1] and CryptGPU [21], MLformer follows
a semi-honest model, in which the servers observe the proto-
col honestly but curiously. Assuming that there are a total of
n parties, a maximum of t parties (t ≤ n − 1) may collude.
As illustrated in Fig. 3, to perform private Transformer infer-
ence on client data, cloud servers first acquire the transformer
model from themodel owner and convert it to theMPCmode,

Fig. 3 An illustration of the private transformer inference through our
proposed MLformer framework

which takes shared data as input, through our framework
MLformer. The client subsequently shares his data with the
cloud servers through secret sharing, which ensures that the
servers have no visibility into the client’s private data. Fol-
lowing this, the cloud servers can provide private inference
services for the client on the shared data and next return the
results to the client. Ultimately, the plaintext result can only
be reconstructed by the client.

4.1 Linear transformer

The linear transformer, originally proposed in [19], is con-
structed by using a feature map-based dot product attention
mechanism in place of the traditional softmax attention used
in the standard transformer [3]. This modification yields
lower time and memory overhead when processing long
sequence inputs.

4.1.1 Linearized attention

Equation6 utilizes softmax attention which computes a sim-
ilarity score by taking the exponential of the dot product
between a query and a key. Regarding the i-th row of amatrix
as a vector, the attention Eq.2 can be generalized as follows,

Ai =
∑N

j=1 sim
(
Qi , K j

)
Vj∑N

j=1 sim
(
Qi , K j

) (6)

Assuming that the input is a sentence and N denotes the
number of word vectors of the input. sim(·) is the similarity
function that computes the similarity score. Equation6 can
be equivalent to Eq. 2 by replacing sim(·) with sim (q, k) =
exp(q

T k√
dk

). Obeying the definition of Eq.6, other attention

123

 2 Page 8 of 20 Journal of Cryptographic Engineering (2025) 15:2

mechanisms can be described. The only condition that needs
to be satisfied is to ensure that sim(·) is non-negative.

With the feature kernel φ(x), Eq. 6 can be rewritten as
follows:

Ai =
∑N

j=1 φ (Qi)
T φ

(
K j

)
V T
j∑N

j=1 φ (Qi)
T φ

(
K j

) (7)

Utilizing the property of matrix multiplication, it can be
simplified as:

Ai = φ (Qi)
T ∑N

j=1 φ
(
K j

)
V T
j

φ (Qi)
T ∑N

j=1 φ
(
K j

) (8)

Using the packed Q, K , and V , we can write it in vector-
ized form as follows:

Ai = φ(Q)
(
φ(K)T V

)
φ(Q)

(∑N
j φ(K j)

)T
(9)

“A” refers to the attention matrix and the feature map φ(·)
above is employed to the matrices Q and K in row wise.

4.1.2 Feature Maps

In a linear transformer, a feature map that produces a positive
similarity score is utilized:

φ(x) = elu(x) + 1 (10)

where elu(·) refers to exponential linear unit [33], which
is an activation function. It can prevent the gradients from
vanishing by ensuring that the score does not become zero
when x is negative.

Employing the feature map defined by Eq.10 to the
attention function defined by Eq.9, linear attention has a
complexity of O(NDM) of multiplications and additions,
where N represents the number of input word vectors, D
represents the dimensionality of the vectors, and M repre-
sents the number of attention heads. Thus linear attention
has a linear time complexity with input sequence length.

4.1.3 Causal linear attention

The high parallelism of the transformer architecture makes
it highly efficient for autoregressive tasks. In tasks such as
autoregressive text generation, the transformer masks the
attention computation, such that a position can only be influ-
encedby the positions aheadof it. For example, in the decoder
stage of translation tasks, the i-th word can be predicted
leveraging the information of the j-th word only if j ≤ i .
The linear transformer provides causal linear attention to

deal with autoregressive tasks. Causal linear attention can
be defined by modifying Eq.6 as follows:

Ai =
∑i

j=1 sim
(
Qi , K j

)
V j∑i

j=1 sim
(
Qi , K j

) (11)

The masked attention mechanism can also be linearized,
and can be expressed in the following manner:

Ai = φ (Qi)
T ∑i

j=1 φ
(
K j

)
V T
j

φ (Qi)
T ∑i

j=1 φ
(
K j

) (12)

By introducing Si = ∑i
j=1 φ

(
K j

)
V T
j and Zi =∑i

j=1 φ
(
K j

)
, Eq. 12 can be simplified as follows:

Ai = φ (Qi)
T Si

φ (Qi)
T Zi

(13)

The computation time for Si and Zi can be constant if we
leverage Si−1 and Zi−1 that have been previously computed.
As a result, causal linear attention has linear computational
complexity with sequence length as well.

4.2 Utilizing linear attention

To address the issue of high time and memory overhead
whenprocessing long sequences, linear attention is employed
instead of softmax attention. Algorithm 1 and Algorithm
2 illustrate the process for computing Scaled Dot Product
Attention (softmax attention) and Linear Attention, respec-
tively.

Algorithm 1 Scaled Dot Product Attention [3].
Input: queries Q(l × dq), keys K (l × dk), values V (l × dk) from

Equation 1, where dq = dk
Output: Attention(l × dk)
1: R1 ← QKT

2: R2 ← R1/
√
dk

3: R3 ← so f tmax(R2)

4: Attention ← R3V

Algorithm 2 Linear Attention [19].
Input: queries Q(l × dq), keys K (l × dk), values V (l × dk) from

Equation 1, where dq = dk
Output: Attention(l × dk)
1: Compute φ(Q) and φ(K)

2: S ← φ(K)T V
3: R1 ← φ(Q)S
4: Z ← ∑N

j=1 φ
(
K j

)
5: R2 ← φ(Q)ZT

6: Attention ← R1/R2

123

Journal of Cryptographic Engineering (2025) 15:2 Page 9 of 20 2

As shown in Algorithms 1 and 2, the inputs of both atten-
tions, denoted as Q, K , and V , share the same row dimension
of l, which represents the number of token vectors equal to
the input sequence length. Linear attention, unlike scaled
dot-product attention, does not compute the costly softmax
function; instead, it requires the computation of the feature
map function. However, the input matrix of softmax func-
tion, R2 in Algorithm 1, is of dimension l × l, whereas
inputs of the feature map function, Q and K in Algorithm 2,
are of the same dimension l × dk . Thus, the softmax func-
tion has a quadratic computational complexity with the input
length, while the feature map function has a linear computa-
tional complexity instead. It should be noted that in softmax
function and feature map function, operations, such as expo-
nentials, require to be computed based onmultiplications and
additions. Therefore, the total cost of multiplications and
additions scales as O(N 2) for softmax attention, where N
refers to the sequence length. It is the same for the memory
requirements, since the full attention matrix must be retained
to facilitate the computation of gradients related to queries,
keys and values. However, for linear attention, the computa-
tional cost of multiplications and additions scales linear with
the input length, O(N). This also holds for memory require-
ments since S = ∑N

j=1 φ
(
K j

)T
Vj and Z = ∑N

j=1 φ
(
K j

)
can be computed only once and be reused for every query.
Thus our framework utilizing linear attention works faster
than that with softmax attention when the input is long
sequence.

4.3 Scaled linear attention

The MPC reciprocal is approximated using the Newton–
Raphson iteration in CrypTen [1]. Nevertheless, this method
of approximation has a range of accuracy mentioned in [15].
Onlywithin a specified range does this approximatedmethod
produce results of negligible error. If the input is beyond
this range, the approximated outcome will have a significant
error, rendering the model output useless. As the number of
iterations increases, the accuracy range also expands, but it’s
impossible to increase the iteration number infinitely because
it will increase the computational overhead at the same time.

The percentage of error1 for MPC reciprocal is displayed
inFig. 4. There is a great fluctuation in the errors of the values,
where only the reciprocal errors of x ∈ (0, 150] can be lim-
ited to under 20%. For x > 250, the errors may even become
infinite. The division is used in the last step of linear attention
computation, see R1/R2 in Algorithm 2. However, R2 may
become very large due to the summation of K j at step 4 of
Algorithm 2, leading to substantial error of the reciprocal of
R2. This error can have an adverse effect on the linear atten-

1 abs(MPC − Actual)/Actual

Fig. 4 Error percentage of Newton–Raphson iteration approximated
reciprocal in MPC (Default iterations: 10)

tion result and influence the result of inference in a negative
way.

To address the accuracy issue of the approximated recip-
rocal used in linear attention, we propose scaled linear
attention, which is demonstrated by Algorithm 3. In the
scaled linear attention, the featured Q and K are scaled by√
dk , respectively. The succeeding computations remain the

same as linear attention in Algorithm 2. Scaling the featured
Q and K ensures that R2, whose reciprocal needs to be
calculated, falls within the accuracy range of the approxi-
mated reciprocal. The scaling of featured Q and K does not
affect the result of attention since the final step of Algorithm
3, R1/R2, will ultimately eliminate the influence. Thus the
scaled linear attention can ensure the accuracy of the infer-
ence result of transformer using linear attention.

Algorithm 3 Scaled Linear Attention.
Input: queries Q(l × dq), keys K (l × dk), values V (l × dk) from

Equation 1, where dq = dk
Output: Attention(l × dk)
1: Compute φ(Q) and φ(K)

2: Qs ← φ(Q)/
√
dk

3: Ks ← φ(K)/
√
dk

4: S ← KsV
5: R1 ← Qs S
6: Z ← ∑N

j=1 φ
(
K j

)
7: R2 ← Qs ZT

8: Attention ← R1/R2

4.4 Novel division approximated function

Different fromNewton’s method, we suggest to approximate
reciprocal by polynomial functions inspired by [34]. We uti-
lize linear regression to generate a polynomial of a given

123

 2 Page 10 of 20 Journal of Cryptographic Engineering (2025) 15:2

degree(we set 3), which will be the approximation of recip-
rocal. We develop a single-layer linear neural network to
carry out the linear regression.

R(x) = nn.linear(x) (14)

We randomlygenerate input values in [0.3, 2] andutilize their
reciprocal results as the mean squared error (MSE) targets.
After training for 20,000 epochswith a learning rate of 0.001,
the polynomial approximation is as follows:

1

x
= 4.6043 − 6.6698(x) + 3.7314

(
x2

)
− 0.7028

(
x3

)
(15)

This approximation yields an L1 error of 0.006 for x ∈
(0.3, 2). It can be utilized in scaled linear attention since the
scaling method guarantees that the range of x is satisfied. On
the other hand, since Qs and Z in Algorithm 3 are always
positive, R2, the input of our reciprocal approximation func-
tion is also ensured to be positive. Newton’s iteration method
(default iteration number of 10) uses multiple MPC mul-
tiplications to compute reciprocal, while our approximated
method employs lessmultiplications so as towork faster than
it. Thus this new approximated function reduce the run time
of linear attention, which speed up the whole inference pro-
cess as well.

4.5 Implementing the efficient reciprocal protocol

To address the accuracy issue brought by approximated divi-
sion, we have endeavored to find a protocol that can calculate
the reciprocal more accurately and efficiently. The protocol
proposed by Bar-Ilan and Beaver [2] computes reciprocal
using a single MPCmultiplication rather than requiring mul-
tiplemultiplications inNewton’s iterationmethod.We are the
first to integrate the protocol intoMPC frameworks designed
for deep learning. This reciprocal protocol (we name as “Effi-
cient Reciprocal”) can be described as Algorithm 4.

Algorithm 4 Efficient Reciprocal [2].
Input: N MPC servers; each party has [X]i , where X can be a matrix

or a value
Output: Y = X−1 (X−1 is the multiplicative inverse of X)
1: Generate a random group element Z (by a trusted third party or

trusted first party)
2: Share the random Z to parties: each party has [Z]i
3: for parties 1 to n do
4: Compute [W]i = [X Z]i by beaver triples
5: Broadcast [W]i to retrieve W = X Z
6: Compute W−1 secretly and locally (W−1 is the multiplicative

inverse of W)
7: [Y]i ← [Z]i W−1

8: end for

The following equation can demonstrate the correctness
of the protocol:

[Y] = [Z]W−1 = [Z](Z X)−1 = [Z]
Z

X−1 = [X−1]

Different from Newton’s iteration approximated method,
this reciprocal protocol needs only one MPC multiplication
and one round of communication among parties to obtain
the share of X−1. Eliminating the approximated function,
the efficient reciprocal protocol can compute the reciprocal
of x accurately. We set the range of random Z as (−238, 238)
when the ring size is 264 tomake a trade-off between the accu-
racy range and security guarantee. This protocol is proven to
be secure in study [2] and other MPC primitives used are
from CrypTen [1]. The efficient reciprocal protocol can be
implemented in all the operations where the secret recipro-
cal is computed. By incorporating this protocol, the private
inference can experience enhancements in both speed and
accuracy.

4.6 ProposedMPC exponential protocol

Under a ring size of 264 and a fixed point precision of 16 bits,
the CrypTen framework is capable of generating an exponen-
tial of x only when ex ∈ (1/216, 247), with x ranging from
(-10,31). Thus we focus on the exponential computation of
x ∈ (−10, 31). CrypTen uses the limit approximation to
compute exponential, which has the accuracy issue caused
by “dynamic range” similar to reciprocal. Figure5 shows
the error percentage of the MPC exponential computed by
limit approximation with the default iteration number of 8.
The exponential errors are limited to under 20% only when
x ∈ (−9, 10) and the errors are even larger than 100% when
x is close to 30.

Fig. 5 Error percentage of limitation approximated exponential inMPC
(Default iterations: 8)

123

Journal of Cryptographic Engineering (2025) 15:2 Page 11 of 20 2

To address the accuracy issue of MPC exponential, we
have proposed a novel protocol for computing the exponen-
tial of value x in MPC. First, a random value z ∈ (−4, 4) is
generated and shared with parties. Having the share [x], each
party then locally computes [x − z] = [x] − [z]. [x − z] is
next revealed to all the parties and its exponential e(x−z) can
be computed in plaintext by each party. Following this, each
party computes exponential of [z] using the alternative limit
approximation proposed by us. Finally [ex] can be obtained
by multiplying [ez] and e(x−z). The alternative limit approx-
imation can be described as follows:

ex = lim
n→∞

(
1 + x

2n
+ 1

2

(x

2n

)2)2n

(16)

Instead of using the first two terms of the exponential Tay-
lor polynomial, as the limit approximation used by CrypTen
(Eq.4) does, we make use of the first three terms of the poly-
nomial. By employing more polynomial terms, the number
of iterations required for achieving the same level of accuracy
can be reduced, leading to less computation time.

Algorithm 5 Exponential.
Input: N MPC servers; each party has [x]i
Output: Y = ex

1: Generate a random value z ∈ (−4, 4) and m = z/2n (by trust third
party or trust first party)

2: Share z and m to parties: each party has [z]i and [m]i
3: for parties1 to n do
4: [x − z]i ← [x]i − [z]i
5: Broadcast [x − z]i to retrieve x − z
6: Compute ex−z locally
7: [em]i ← 1 + [m]i + 1

2

∏
Square ([m]i)

8: [ez]i ←
(∏

Square ([em]i)
)n

9: [Y]i ← [ez]i ex−z

10: end for

The correctness can be described as the following:

[Y] = [ez]ex−z = [ez]
ez

ex = [ex]

Algorithm 5 demonstrates our protocol for MPC expo-
nential in detail, where

∏
Square(·) refers to the MPC Square

protocol provided by CrypTen. In Algorithm 5, the random
z whose exponential needs to be computed secretly is gener-
ated from a small range of (-4,4), leading to a smaller n, the
number of iterations, aswell. It should be noted that this range
is large enough to allow for exponential of x ∈ (−10, 30)
to be computed securely using our exponential protocol.
Through experiments, we have determined that time-efficient
exponential with satisfied accuracy can be achieved with an
iteration number of 4. Since this exponential protocol will
be utilized for feature map computation, wherein only the

exponential of x < 0 needs to be computed, we set the
default iteration number as 4 in our framework. By utiliz-
ing our exponential protocol, both the accuracy and speed of
the private inference of transformer can be improved.

5 GPU acceleration

To optimize the computation of causal linear attention, which
is utilized in private inferenceof autoregression tasks,wepro-
pose several novel CUDA kernel functions including Matrix
multiplication (Matmul), Cumulative summation (Cumsum),
and Causal product. Among them, the CUDA function for
Matrix multiplication could be implemented not only in
causal linear attention but on every instancewithin the frame-
work where it is employed. Meanwhile, the CUDA functions
for Cumulative summation and Causal product are utilized
particularly in causal linear attention. All these accelerations
help speed up the private inference of transformer based on
our framework when using GPU.

CrypTen is a framework based on PyTorch, which allows
off-loading computations to theGPU.On theGPU, functions
such as matrix multiplication can be optimized using highly-
optimized implementations from CUDA libraries such as
cuDNN and cuBLAS. However, these libraries are primarily
designed to perform computations over floating-point num-
bers and are inconsistent with the integer types needed for
executingMPCcomputations. To address this issue, CrypTen
utilizes the method described in CryptGPU [21]. Noting that
integers a and b belong to Z ∩ �−226, 226, the computa-
tion of their product ab can be carried out via floating-point
representations of 64-bit and can still recover an accurate
result for the integers. CrypTen divides every 64-bit variable
into four components: a = a0 + 216a1 + 232a2 + 264a3,
wherein each ai refers to a 16-bit integer component. The
64-bit integer product ab is computed by summing 10 pair-
wise products of their 16-bit components. This method is
utilized for matrix multiplications and convolutions as well.
However, the process of splitting and recovering results in
extra time overhead. Our CUDA kernel functions for matrix
multiplication and causal product are implemented over inte-
ger data type, thus eliminating the need for the splitting and
recovery process and saving additional time overhead.

5.1 Matrix multiplication acceleration

To accelerate the computation of 3-dimensional matrix mul-
tiplication, we have designed a CUDA kernel function that
improves the parallelism by organizing the threads and
reduces the IO time by utilizing shared memory. Threads
on the GPU are organized by (grid, block, thread) as illus-
trated in Fig. 6. A kernel function can apply to a grid that
contains multiple blocks, where each block is made up of

123

 2 Page 12 of 20 Journal of Cryptographic Engineering (2025) 15:2

Fig. 6 An overview of the
threads organization: one grid of
dim (16, 2, 2) containing blocks
of dim (4, 4)

several threads. The global memory of the GPU is where ker-
nel functions read inputs andwrite results. On the other hand,
shared memory on the GPU is different from global mem-
ory because it can be easily accessed by all threads within a
block, resulting in lower data transmission time cost.

To illustrate, we present an example of a CUDA kernel
function for matrix multiplication of K and V . Assuming
that all the sizes of K , V , and the result matrix S are of
(16, 8, 8). The shape (16, 8, 8) is merely an example, and in
practice, the dimensions can be of any size.Wefirst apply one
grid of size (16, 2, 2) which contains 64 blocks. Each block
is of size (4, 4) and contains 16 threads. Shared memory Ks
and V s of size (4, 4) are applied by each block to store values
of K and V , respectively. Every thread in the block first reads
values of K and V on global memory to the shared memory
Ks and V s. Next, every thread of the block uses the values
of Ks and V s to compute the matrix multiplication result.

More specifically, asFig. 7 shows, K [0][i][j] andV [0][i][j]
are divided to 4 blocks respectively as Kb0, Kb1, Kb2, Kb3
andVb0, Vb1, Vb2, Vb3. To compute the result of S[0][6][6],
threads in Block(0, 1, 1) first read values of Kb2 and Vb2
to shared memory Ks and V s. For instance, thread(2, 2)
reads K [0][6][2] and V [0][2][6] to Ks[2][2] and V s[2][2],
respectively. Once all the threads complete their fetching, the
thread(2, 2) employs the values of Ks(row2) and V s(col2)
to calculate the first half of the result S[0][6][6]. The second
half is computed by following the identical steps by threads of
Block(0, 1, 1) using values of Kb3 andVb3. Finally, thread(2,
2) writes the sum of the two halves to S[0][6][6] in global
memory.

Overall, to accelerate 3D matrix multiplication, we’ve
developed aCUDAkernel function that enhances parallelism
and reduces IO timeusing sharedmemory and efficient thread

organization. Moreover, the kernel function is highly adapt-
able, capable of handling inputs of various shapes.

5.2 Cumulative summation acceleration

Similar to matrix multiplication, shared memory is also uti-
lized to optimize the summation of K j . Assuming that the
dimensions of K and the resultantmatrix R are (8, 8); namely,
the shape (8, 8) is merely an example, and the dimensions
can be of any size in practice. Then the block size is set as (2,
8), and the grid size is (4, 1). Each block uses shared memory
of size (2, 8) to store values of K . As Fig. 8 illustrates, every
thread within the block first fetches values of K to store in
Ks. Then every thread of the block cumulatively adds the
elements in Ks of the same row to compute the sum of K j .
More specifically, to compute R[1][1], threads in Block(0,
0) reads values of Kb0 to Ks. For instance, thread(1, 1) of
the Block(0, 0) reads K [1][0] to Ks[1][0]. Once the reading
is completed, thread(1, 1) then adds Ks[1][0] and Ks[1][1]
to obtain the result of R[1][1]. Finally, the result is written
to R in global memory.

5.3 Causal product acceleration

The Linear Transformer [19] sequentially computes causal
products of queries duo to the cumulative operations used
when computing Si and Zi . This results in linear time and
space complexity, but limits the parallelism of causal prod-
uct computation. To address this issue, we propose CUDA
kernel functions that compute causal product of each query
in parallel. To obtain the causal product of a given query
Qi (where i < N), two steps are involved: first, comput-
ing Si = ∑i

j=1 φ
(
K j

)
V T
j , and second, computing Ci =

123

Journal of Cryptographic Engineering (2025) 15:2 Page 13 of 20 2

Fig. 7 The thread organization
of our kernel function for
3-dimensional Matrix
Multiplication

Fig. 8 The thread organization of our kernel function for the cumulative
summation of K j

φ(Qi)Si . We propose optimized CUDA kernel functions for
both steps, where each Si and eachCi are computed in paral-
lel, respectively. To simplify the description, φ(Q) and φ(K)

are represented by Q and K . Assuming a size of (8, 8) for
Q, K , and V , namely, the shape (8, 8) is merely an exam-

ple to illustrate, and the dimensions can be of any size when
implementing the kernel functions in practice.

5.3.1 CUDA Kernel function for computing Si

The first step is to compute Si . As illustrated in Fig. 9a, the
grid is of size (2, 2) containing 4 blocks and the block is of
size (8, 4, 4) containing 128 threads. The size of the result
matrix KV is (8, 8, 8). In each block, every thread first reads
the values of K and V into shared memory Ks of size (8,
4, 1) and V s of size (8, 1, 4), respectively. The threads then
compute the product of the corresponding values in Ks and
V s and store the results on KVs, which is the sharedmemory
of size (8, 4, 4) applied by each block. As Fig. 9a shows, the
outcomeof kTj v j is stored in KVs[j]. Each kTj v j is computed
in parallel through these steps.

More specifically, to compute the value of KV0[0][2][2],
the threads in Block(0,0) first read values of Kb0 and Kb1 to
Ks and Vb0 and Vb1 to V s, respectively. For example, the
thread(0,2,2) reads K [2][0] and V [0][2] to Ks[0][2][0] and
V s[0][0][2]. After the read is completed by all the threads,
the thread(0,2,2) can multiply values in Ks[0][2][0] and
V s[0][0][2] to get KVs[0][2][2]. Then KV0 is computed
by cumulatively summing KVs on dimension 0. Each block
computes KVi in parallel. Finally, the Si is stored in KV [i].

123

 2 Page 14 of 20 Journal of Cryptographic Engineering (2025) 15:2

Fig. 9 The thread organization of our kernel function for computing causal product. a computation of Si . b computation of Ci

5.3.2 CUDA Kernel function for computing Ci

After the computation of Si is completed, Ci is computed
next. As Fig. 9b shows, the applied grid is of size (8, 2),
consisting of 16 blocks with a block size of (1, 4). Firstly,
every thread in a block reads the values of Q and KV into
shared memory Qs of size (1, 4) and KVs of size (4, 4),
respectively. Then the threads proceed to compute Ci using
the values of Qs and KVs. The results are stored in matrixC
of size (8, 8). For instance, as Fig. 9b illustrates, the thread(0,
2) of Block(0, 0) is designated to compute C[0][2]. After the
threads inBlock(0, 0) have read the values of q0 to Qs and the
values of KV0 to KVs, thread(0, 2) calculates the first half of
C[0][2] by multiplying vector Qs by the 3rd column vector
of KVs. Subsequently, the other half ofC[0][2] is computed
by a thread(0, 2) using values ofq1 and KV1 through the same
steps. In these steps, Ci (row vector of C) can be computed
in parallel by blocks.

With our proposed CUDA kernel functions, it is now fea-
sible to compute each Si and each Ci in parallel for each
query, thus to compute the causal product of each query in
parallel and reduce the time overhead during inference.

6 Experimental evaluation

6.1 Experimental setup

To evaluate our framework when processing inputs of dif-
ferent sequence lengths, we conduct an image classification
task. For this task, we utilize the ViT [4] model, which is
a transformer-based neural network consisting of multiple
transformer encoder layers. And we use a small portion of
the ImageNet dataset, a large-scale visual recognition dataset
containing more than a million training images as the train-
ing dataset. Each example in ImageNet is an RGB image
center-cropped to dimensions of 224 × 224. In the train-

ing and inference process of ViT, images are sliced into
sequential patches. For instance, if each patch is of dimen-
sion 14 × 14, then a 224 × 224 image can be sliced into a
sequence with 16× 16 patches. Thus altering the size of the
input image changes the input length, while the patch size
remains unchanged.

To evaluate our framework, we compare it with the origi-
nal transformer, linformer, and nystromformer, which are all
implemented on the MPC framework CrypTen [1]. We pro-
vide three versions of our framework, version 1 (MLformer1)
with linear attention but original division and exponential,
version 2 (MLformer2) with linear attention, our division
approximation and our exponential protocol(4 iterations),
version 3 (MLformer3) with linear attention, efficient recip-
rocal protocol and our exponential protocol(4 iterations).
CrypTen Softmax refers to the private ViT model with soft-
max attention based on CrypTen, CrypTen Linformer refers
to its usage of linformer, and CrypTen Nystrom refers to the
model employing Nystromformer.

All experimentswere conducted on a server equippedwith
an Nvidia GeForce RTX 3070, running Ubuntu 20.04 LTS.

6.2 Benchmarks for private inference

6.2.1 Inference time

Table 1 presents the MPC inference time of 1-layer ViTs
conducted on different frameworks with inputs of varying
sequence lengths. The training dataset utilized in our experi-
ments is derived from a tiny subset of ImageNet, comprising
13,000 images from10different classes. The input images for
inference are also drawn from this subset (2 images). The dif-
ferent frameworks used in our experiments are all configured
with identical settings: a batch size of 2, training epochs of 5,
learning rate of 0.001, and a patch size of 14×14. We varies
the lengths of the input sequence by changing the image size.

123

Journal of Cryptographic Engineering (2025) 15:2 Page 15 of 20 2

Table 1 1-layer ViTs’ private inference times of different frameworks

Framework Seq Length: 100 Seq length: 256 Seq Length: 625 Seq length: 1024
Time/s Speedup/% Time/s Speedup/% Time/s Speedup/% Time/s Speedup/%

CrypTen Softmax [1] 0.4238 – 0.4880 – 0.7923 – 1.386 –

CrypTen Nystrom [17] 0.6192 −46.10 0.6293 −28.94 0.6621 16.43 0.7005 49.45

CrypTen linformer [16] 0.4312 −1.729 0.4404 9.768 0.4909 38.04 0.5063 63.46

This work (MLformer1) 0.4135 2.449 0.4394 9.958 0.4740 40.18 0.5025 63.73

This work (MLformer2) 0.3571 15.74 0.3603 26.18 0.4138 47.78 0.4247 69.35

This work (MLformer3) 0.2022 52.30 0.2220 54.50 0.2517 68.22 0.2938 78.79

Bold indicates the best results of our methods in different evaluations

Table 1 shows that the private inference of traditional
transformer based on Crypten (Crypten Softmax) works the
slowest on input length of 625 and 1024, all the other mod-
els outperform it. On the other hand, our framework, which
incorporates efficient reciprocal and our novel exponential
(MLformer3), presents the fastest performance, achieving a
speedup of 68.22% and 78.79% compared to Crypten Soft-
max on sequence lengths of 625 and 1024, respectively.
Even our framework with original division and exponential
(MLformer1) works faster than models using Linformer and
Nystromformer. Frameworks with Linformer and Nystrom-
former have no advantage on processing short length input
(such as length of 100), running slower than Crypten Soft-
max.

Among the threeMLformer versionsweprovided,MLformer3
performs the best, MLformer2 s andMLformer1 the slowest.
MLformer2 outperforms MLformer1 due to our new divi-
sion approximation and new protocol for exponential, which
reduces the time overhead for MPC division used in linear
attention and the MPC exponential used in the whole frame-
work. On the other hand, MLformer3 performs better than
MLformer2 because we implement the efficient reciprocal
protocol to compute divisions of thewhole framework,which
speeds up the inference process.

In addition, compared to CrypTen Softmax, the speedup
rates of our MLformer of all three versions increase as the
sequence length grows. Figure10 illustrates how the run time
of CrypTen Softmax and MLformer1 scales with increasing
sequence length when the model employs a single layer. The
run time of CrypTen Softmax with softmax attention grows
quadratically, while that of our framework MLformer1 with
linear attention grows linearly, providing an advantage for it
to deal with tasks of long input.

6.2.2 MPC reciprocal

Wecompare our newdivision approximation and the efficient
reciprocal protocol [2] with the original reciprocal method
used in Crypten. Crypten employs the Newton’s iteration
approach for reciprocal approximation with the default iter-

Fig. 10 1-layer ViTs’ private inference time of CrypTen Softmax and
MLformer1

Table 2 Time cost of MPC reciprocal

Operation Time cost/ms Speedup

CrypTen reciprocal [1] 27.85 1×
Our approximated reciprocal 4.627 6.02×
The efficient reciprocal [2] 0.6468 43.05×

ation number of 10, while our reciprocal approximation is
generated by linear regression. The reciprocal is computed
accurately using the efficient reciprocal protocol instead of
approximating the result. Table 2 shows the time cost of dif-
ferent methods to compute reciprocal of encrypted input.
Our new reciprocal approximation achieves a 6.02× speedup
compared to the Crypten reciprocal. Meanwhile, the efficient
reciprocal protocol works far faster than the two approxi-
mated methods, achieving a 43.05× spee-dup compared to
the Crypten reciprocal.

123

 2 Page 16 of 20 Journal of Cryptographic Engineering (2025) 15:2

Fig. 11 Error percentage of MPC reciprocal approximated by linear
regression

Figure11 shows the percentage of error of our new
MPC reciprocal approximation to actual reciprocal for x ∈
(0.3, 2). The error for x is predominantly under 20%, thus
resulting in negligible impact on inference accuracy, accord-
ing to the analysis presented in part 5 of this subsection. This
new approximation is implemented on the last step of scaled
linear attention, specifically as algorithm 3 presents. The last
step can be rewritten as r ∗ (1/z), where 1/z can be calcu-
lated utilizing our new approximation, so as to reduce the
computational time of linear attention block.

Figure12 shows the percentage of error of the efficient
reciprocal protocol to actual reciprocal for x ∈ (−100, 600).
The error percentage of the efficient reciprocal is close to
zero for x ∈ (−100, 500), which is far lower than theCrypten
reciprocal approximated byNewton’s iteration.Additionally,
the input range where the reciprocal is computed accurately
of the efficient reciprocal is larger than the Crypten recipro-
cal. Thus, the efficient reciprocal outperforms the Newton’s
approximated reciprocal both in runtime and accuracy. This
protocol can be implemented to all the operations where the
secret reciprocal is computed. It is able to speed up the private
inference process and enhance the accuracy of the inference.

6.2.3 MPC exponential

We compare our exponential (iteration number 4) with
Crypten exponential. Table 3 shows the time costs of
these two methods when they are implemented directly on
encrypted values. Our exponential achieves 12.61% com-
pared to the Crypten exponential.

Figures5 and 13 present the error percentage to actual
exponential of Crypten exponential and our exponential pro-
tocol, respectively. For Crypten exponential, the errors are
limited to under 20% only when x ∈ (−9, 10) and the errors

Fig. 12 Error percentage of efficient reciprocal proposed by Bar-Ilan
and Beaver [2]

Table 3 Time cost of MPC exponential

Operation Time cost/ms Speedup(1)/%

CrypTen exponential [1] 4.187 –

Our exponential 3.660 12.61

Bold indicates the best results of our methods in different evaluations

are even larger than 100%when x is close to 30.However, the
error percentage of our exponential is under 10% and 30%
for x ∈ (−6, 30) and x ∈ (−10,−6), respectively. Obvi-
ously, our exponential protocol can compute the exponential
of x ∈ (−10, 30) more accurately than the Crypten expo-
nential. Thus, our exponential of 4 iterations outperforms the
default Crypten exponential both in runtime and accuracy.

This exponential protocol is used in the feature map com-
putation, where exponential of x < 0 needs to be computed
only. It can accelerate the private inference process and
improve the inference accuracy. On the other hand, for those
negative inputs of feature map whose exponential are too
small to be represented in the ring, their exponentials com-
puted by our protocol is 0, which has no influence on the
subsequent computations.

6.2.4 Memory overhead

Table 4 shows the GPU memory overhead of 1-layer ViTs
of different frameworks. It is obviously that our framework
MLformer3 requires significantly less memory than Crypten
Softmax which uses softmax attention. Moreover, the mem-
ory saving rate increases as the sequence length grows.On the
other hand, the memory overhead scales with growing input
lengths in both frameworks, the scale of Crypten Softmax
is evidently larger than that of our framework. This results
from the quadratic memory complexity of softmax function
with input length. Given the considerations of both time and

123

Journal of Cryptographic Engineering (2025) 15:2 Page 17 of 20 2

Fig. 13 Error percentage of MPC exponential using our protocol (iter-
ation number:4)

memory overhead, linear attention is better suited for long
sequence inference.

6.2.5 Inference accuracy

We conduct experiments on the Fashion_Mnist dataset [35]
to analyze the effect of linear attention and new reciprocal
and exponential methods on transformermodel accuracy.We
trained two distinct transformer models, one using softmax
attention with actual division (traditional transformer) and
the other employing linear attention with the efficient recip-
rocal and our exponential protocol (MLformer3). The two
models are trained under identical conditions, with a layer
depth of 2, training epoch of 10, and learning rate of 0.001.
As Table 5 shows, the accuracy of the two transformer mod-
els on test images is similar, with traditional transformer
achieving an accuracy of 83.66% and MLformer3 achieving
83.67%. The experiments demonstrate how our framework
MLformer3 can performas accurately as the traditional trans-
former model, while requiring less time overhead.

6.3 Benchmarks of GPU acceleration

We have proposed CUDA kernel functions for Matmul
(matrix multiplication), Cumsum (cumulative summation),

Table 5 Test accuracy of different frameworks

Framework Test accuracy/%

Traditional transformer [3] 83.66

This work(MLformer3) 83.67

and Causal Product and integrated them into our framework.
For private inference implemented on our framework, the
model is initially converted into an ONNX model, consist-
ing ofmultiple computing nodes.We also createmodules that
map our CUDA kernel functions with the nodes of ONNX
in our MPC framework. To evaluate our kernel functions,
we have implemented the operations directly on arithmetic
encrypted matrices.

6.3.1 Matrix multiplication

In Table 6, it is evident that the use of our CUDA kernel
function significantly enhances the performance of matrix
multiplication across variousmatrix sizes. Specifically, when
considering two input matrices, (Aenc and Benc), each with
dimensions (16, 8, 8), our approach achieves a speedup
of approximately 69.52% compared to the method with-
out our kernel, as referenced from [1]. Additionally, notable
speedups are observed for other matrix dimensions, such
as (8, 8, 8) × (8, 8, 8) and (16, 8, 64) × (16, 64, 8),
where speedups of 68.69% and 69.09% are achieved, respec-
tively, demonstrating the robustness of our kernel function in
improving computational efficiency across a range of matrix
sizes. TheMatmul operation is frequently used in the server’s
local computations, particularly in computingMPCmultipli-
cation using beaver triples. Thus, implements of our CUDA
function for Matrix multiplication can greatly contribute to
the acceleration of the inference.

6.3.2 Cumulative summation

When computing Zi in causal linear attention, the cumula-
tive summation of K is calculated. Table 7 demonstrates the
performance improvement achieved through the use of our
kernel function for the cumulative sum operation across dif-
ferent matrix sizes. Specifically, when the input matrix (K)
has dimensions of (8, 16, 16), our kernel function enhances

Table 4 1-layer ViTs’ GPU
memory overhead of different
frameworks

Seq length/patches CrypTen Softmax [1]/MB This Work(MLformer3)/MB Save rate/%

100 1997 1997 0

256 2369 2071 12.58

625 4393 2247 48.85

1024 6917 2321 66.44

Bold indicates the best results of our methods in different evaluations

123

 2 Page 18 of 20 Journal of Cryptographic Engineering (2025) 15:2

Table 6 MPC time cost of
matrix multiplication using our
Kernel function

Matrices size Without our Kernel [1]/ms Using our Kernel/ms Speedup/%

(8,8,8)×(8,8,8) 3.309 1.036 68.69

(16,8,8)×(16,8,8) 3.435 1.047 69.52

(16,8,64)×(16,64,8) 3.568 1.103 69.09

Bold indicates the best results of our methods in different evaluations

Table 7 MPC time cost of
cumulative sum using our
Kernel functions

Matrix size Without our Kernel [1]/ms Using our Kernel/ms Speedup/%

(4,8,8) 0.3509 0.2977 15.18

(8,8,8) 0.3512 0.3007 14.39

(8,16,16) 0.3609 0.3049 15.53

Bold indicates the best results of our methods in different evaluations

computational efficiency with a speedup of approximately
15.53% over the original cumulative sum function, as refer-
enced from [1]. Furthermore, significant performance gains
are consistently observed across other tested matrix sizes,
such as (4, 8, 8) and (8, 8, 8), with speedups of 15.18% and
14.39%, respectively, underscoring the effectiveness of our
kernel function in optimizing the cumulative sum operation.
Thus, this CUDA function can speed up the computation of
causal linear attention, which is important for Transformer
inference of autoregression tasks.

6.3.3 Causal product

In linear transformer [19], the causal product was com-
puted through a “for loop” where Si is computed by Si−1,
resulting in a linear time complexity while sacrificing the
parallel computation of queries’ causal products. Our CUDA
kernel functions for causal product make it possible to com-
pute causal products for queries in parallel during inference.
According to Table 8, our kernel function, when applied to
encrypted tensors (Q), (K), and (V) each with dimensions of
(8, 8), exhibits a substantial performance improvement over
the method detailed in [19], achieving a remarkable speedup
of 94.48%. The substantial acceleration of Causal product
can greatly speed up the causal linear attention, a vital com-
ponent for private inference of autoregression tasks based on
Transformer.

6.3.4 Autoreggressive task: image generation

To evaluate the impact of GPU acceleration on the total
inference time for autoregressive tasks, we conducted an

Table 9 MPC time cost of image generation task using our Kernel
functions

Methods Inference time/s Speedup/%

Without our Kernel [19] 15.86 –

Using our Kernel 6.28 60.40

Bold indicates the best results of our methods in different evaluations

experiment using an image generation task. We utilized a
trained Transformer model with causal masking attention
from the study by Katharopoulos et al. [19] and performed
private inference on the MNIST dataset. Our goal was to
measure the total inference time required to generate a single
image.Weused a batch size of 1 and run the private inferences
on our GPU device, an Nvidia GeForce RTX 3070. As Table
9 shows, the inference time without our kernel is 15.86 s.
In contrast, using our kernel functions reduces the inference
time significantly to 6.28 s, achieving a notable speedup of
60.40%. This demonstrates the significant advantage of our
optimized kernel functions in enhancing the computational
efficiency of private inference in Transformers for autore-
gressive tasks.

7 Conclusions

We propose an MPC based framework MLformer for pri-
vate inference of transformer basedmodels. To overcome the
security and efficiency challenges brought by Transformer
when implementing MPC protocols, we implement an alter-
native attention and propose several novel protocols. First,
we suggest replacing the softmax attention mechanism with

Table 8 MPC time cost of
causal product using our Kernel
functions

Operation Without our Kernel [1]/ms Using our Kernel/ms Speedup/%

Causal Product 37.49 2.069 94.48

Bold indicates the best results of our methods in different evaluations

123

Journal of Cryptographic Engineering (2025) 15:2 Page 19 of 20 2

linear attention, which eliminates the use of softmax func-
tion and has a linear time and memory complexity with
input length. By removing the maximum operation, which
is expensive in MPC, the time overhead is reduced. Sec-
ond, to address the dynamic range issue for MPC division
used in linear attention, we propose scaled linear attention
where inputs are scaled with no influence on the output.
Additionally, we introduce a new method for approximat-
ing MPC division using linear regression, which reduces
the run time of attention block. Furthermore, to improve the
accuracy and efficiency for MPC reciprocal and exponential,
we implement an efficient reciprocal protocol and propose a
novel exponential protocol. Lastly, we integrate our proposed
CUDA kernel functions to the framework to accelerate the
computations of attention blocks. Overall, The implements
of the linear attention and our proposed protocols improve
the efficiency of the framework while ensuring its accuracy,
making itmore efficientwhen handling long input sequences.
Finally, our framework achieves considerable speedups com-
pared to previous MPC based frameworks for Transformer
while maintaining similar accuracy performance with tradi-
tional Transformer.

Acknowledgements This work is partially supported by the National
Natural Science Foundation of China (62002023, 62002239, 62372417,
62132008, 62071222, U22B2030, U20A20176), Guangdong Provin-
cialKeyLaboratory IRADS(2022B1212010006,R0400001-22),Guang-
dong Province General Universities Key Field Project (New Genera-
tion Information Technology) (2023ZDZX1033), Zhejiang Lab open
research project (No. K2022PD0AB03), the Natural Science Foun-
dation of Jiangsu Province (BK20220075) and the Fok Ying-Tong
Education Foundation for Young Teachers in the Higher Education
Institutions of China (No. 20193218210004).

Author Contributions (1) Siqi Liumade substantial contributions to the
conception, design, implementation of the work; (2) Siqi Liu, Zhusen
Liu, and Donglong Chen analyzed the restults and wrote the main
manuscript; (3) Wangchen Dai, Lu Zhou, Zhe Liu, Ray C. C. Cheung,
and Çetin Kaya Koç gave sufficient guidance on the paper revision; (4)
All authors reviewed the manuscript.

Data Availibility Statement No datasets were generated or analysed
during the current study.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim,
M., Maaten, L.: Crypten: Secure multi-party computation meets
machine learning. Adv. Neural. Inf. Process. Syst. 34, 4961–4973
(2021)

2. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant comput-
ing in constant number of rounds of interaction. In: Proceedings

of the 8th Annual ACM Symposium on Principles of Distributed
Computing, pp. 201–209 (1989)

3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need.
Adv. Neural Inf. Process. Syst. 30 (2017)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X.,Unterthiner, T.,Dehghani,M.,Minderer,M.,Heigold,G.,Gelly,
S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words:
transformers for image recognition at scale. arXiv:2010.11929,
[cs.CV] (2020)

5. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo,
B.: Swin transformer: Hierarchical vision transformer using shifted
windows. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 10012–10022 (2021)

6. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.:
Improving language understanding by generative pre-training.
OpenAI (2018)

7. Hashemi, H., Wang, Y., Annavaram, M.: DarKnight: a data pri-
vacy scheme for training and inference of deep neural networks.
arXiv:2006.01300, [cs.CR] (2020)

8. Sun, X., Zhang, P., Liu, J.K., Yu, J., Xie,W.: Private machine learn-
ing classification based on fully homomorphic encryption. IEEE
Trans. Emerg. Top. Comput. 8(2), 352–364 (2018)

9. Lindell, Y.: Securemultiparty computation. Commun. ACM 64(1),
86–96 (2020)

10. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-
preserving machine learning. In: 2017 IEEE Symposium on
Security and Privacy, pp. 19–38 (2017). IEEE

11. Yao, A.C.: Protocols for secure computations. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), pp.
160–164 (1982). IEEE

12. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A.,
Sharma, R.: Cryptflow: Secure tensorflow inference. In: 2020 IEEE
Symposium on Security and Privacy, pp. 336–353 (2020). IEEE

13. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

14. Simonyan, K., Zisserman, A.: Very deep convolutional net-
works for large-scale image recognition. arXiv:1409.1556, [cs.CV]
(2015)

15. Wang, Y., Suh, G.E., Xiong, W., Lefaudeux, B., Knott, B.,
Annavaram, M., Lee, H.-H.S.: Characterization of MPC-based
private inference for transformer-based models. In: 2022 IEEE
International Symposium on PerformanceAnalysis of Systems and
Software (ISPASS), pp. 187–197 (2022). IEEE

16. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer:
Self-attention with linear complexity. arXiv:2006.04768, [cs.LG]
(2020)

17. Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y.,
Singh, V.: Nyströmformer: A nyström-based algorithm for approx-
imating self-attention. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, pp. 14138–14148 (2021)

18. Baker, C.T., Taylor, R.: The numerical treatment of integral equa-
tions. J. Appl. Mech. 46(4), 969 (1979)

19. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers
are RNNs: Fast autoregressive transformers with linear attention.
In: International Conference onMachine Learning, pp. 5156–5165
(2020). PMLR

20. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schnei-
der, T., Koushanfar, F.: Chameleon: A hybrid secure computation
framework for machine learning applications. In: Proceedings of
the 2018 on Asia Conference on Computer and Communications
Security, pp. 707–721 (2018)

21. Tan, S., Knott, B., Tian, Y., Wu, D.J.: CryptGPU: Fast privacy-
preserving machine learning on the GPU. In: 2021 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1021–1038 (2021). IEEE

123

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2006.01300
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2006.04768

 2 Page 20 of 20 Journal of Cryptographic Engineering (2025) 15:2

22. Dong, Y., Chen, X., Song, X., Li, K.: FlexBNN: fast private binary
neural network inference with flexible bit-width. IEEE Trans. Inf.
Forens. Secur. (2023)

23. Zhang, F., Chen, Z., Zhang, C., Zhou, A.C., Zhai, J., Du, X.: An
efficient parallel secure machine learning framework on GPUs.
IEEE Trans. Parallel Distrib. Syst. 32(9), 2262–2276 (2021)

24. Sutradhar, K., Om, H.: A privacy-preserving comparison protocol.
IEEE Trans. Comput. 72(6), 1815–1821 (2023). https://doi.org/10.
1109/TC.2022.3215640

25. Resende, A., Railsback, D., Dowsley, R., Nascimento, A.C.,
Aranha, D.F.: Fast privacy-preserving text classification based on
secure multiparty computation. IEEE Trans. Inf. Forensics Secur.
17, 428–442 (2022)

26. Feng, Q., He, D., Liu, Z., Wang, H., Choo, K.-K.R.: SecureNLP:
A system for multi-party privacy-preserving natural language pro-
cessing. IEEE Trans. Inf. Forensics Secur. 15, 3709–3721 (2020)

27. Chen, T., Bao,H., Huang, S., Dong, L., Jiao, B., Jiang,D., Zhou,H.,
Li, J., Wei, F.: THE-X: privacy-preserving transformer inference
with homomorphic encryption. arXiv:2206.00216, [cs.CR] (2022)

28. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long
sequences with sparse transformers. arXiv:1904.10509, [cs.LG]
(2019)

29. Kitaev, N., Kaiser, Levskaya, A.: Reformer: the efficient trans-
former. arXiv:2001.04451, [cs.LG] (2020)

30. Kenton, J.D., Chang, M.-W., Kenton, L., Toutanova, K.: Bert:
Pre-training of deep bidirectional transformers for language under-
standing. In: Proceedings of NAACL-HLT, vol. 1, p. 2 (2019)

31. Conneau, A., Lample, G.: Cross-lingual language model pretrain-
ing. Adv. Neural Inf. Process. Syst. 32 (2019)

32. Beaver, D.: Efficient multiparty protocols using circuit randomiza-
tion. In: Advances in Cryptology—CRYPTO’91: Proceedings 11,
pp. 420–432 (1992). Springer

33. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accu-
rate deep network learning by exponential linear units (ELUs).
arXiv:1511.07289, [cs.LG] (2016)

34. Watson, J.-L., Wagh, S., Popa, R.A.: Piranha: A GPU platform for
secure computation. In: 31st USENIX Security Symposium, pp.
827–844 (2022)

35. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747, [cs.LG] (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1109/TC.2022.3215640
https://doi.org/10.1109/TC.2022.3215640
http://arxiv.org/abs/2206.00216
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1708.07747

	MLFormer: a high performance MPC linear inference framework for transformers
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Transformer-based model
	3.2 Secure multi-party computation
	3.3 CrypTen
	3.3.1 MPC addition
	3.3.2 MPC multiplication
	3.3.3 MPC square
	3.3.4 MPC comparisons
	3.3.5 MPC ReLU
	3.3.6 MPC exponential
	3.3.7 MPC reciprocal

	4 Framework description
	4.1 Linear transformer
	4.1.1 Linearized attention
	4.1.2 Feature Maps
	4.1.3 Causal linear attention

	4.2 Utilizing linear attention
	4.3 Scaled linear attention
	4.4 Novel division approximated function
	4.5 Implementing the efficient reciprocal protocol
	4.6 Proposed MPC exponential protocol

	5 GPU acceleration
	5.1 Matrix multiplication acceleration
	5.2 Cumulative summation acceleration
	5.3 Causal product acceleration
	5.3.1 CUDA Kernel function for computing Si
	5.3.2 CUDA Kernel function for computing Ci

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Benchmarks for private inference
	6.2.1 Inference time
	6.2.2 MPC reciprocal
	6.2.3 MPC exponential
	6.2.4 Memory overhead
	6.2.5 Inference accuracy

	6.3 Benchmarks of GPU acceleration
	6.3.1 Matrix multiplication
	6.3.2 Cumulative summation
	6.3.3 Causal product
	6.3.4 Autoreggressive task: image generation

	7 Conclusions
	Acknowledgements
	References

