
HSPA: High-Throughput Sparse Polynomial Multiplication
for Code-based Post-Quantum Cryptography

PENGZHOU HE, Electrical and Computer Engineering, Villanova University, Villanova, United States

YAZHENG TU, Electrical and Computer Engineering, Villanova University, Villanova, United States

TIANYOU BAO, Electrical and Computer Engineering, Villanova University, Villanova, United States

ÇETIN ÇETIN KOÇ, Computer Science, University of California Santa Barbara, Santa Barbara, United

States

JIAFENG XIE, Electrical and Computer Engineering, Villanova University, Villanova, United States

Increasing attention has been paid to code-based post-quantum cryptography (PQC) schemes, e.g., HQC

(Hamming Quasi-Cyclic) and BIKE (Bit Flipping Key Encapsulation), since they’ve been selected as the fourth-

round National Institute of Standards and Technology (NIST) PQC standardization candidates. Though sparse

polynomial multiplication is one of the critical components for HQC and BIKE, hardware-implemented high-

performance sparse polynomial multiplier is rarely reported in the literature (due to its high-dimension and

sparsity of polynomials involved in the computation). Based on this consideration, in this article, we pro-

pose two novel High-throughput Sparse Polynomial multiplication Accelerators (HSPA) for the mentioned

two code-based PQC schemes. Specifically, we have designed the two accelerators based on two different

implementation strategies targeting potential applications with different resource availability, i.e., one accel-

erator deploys a memory-based structure for computation while the other does not need memory usage. We

have proposed three layers of coherent interdependent efforts to obtain the proposed accelerators. First, we

have proposed two implementation strategies to execute the targeted sparse polynomial multiplication, i.e., a

new parallel segment based accumulation (PSA) approach and a novel permutating-with-power (PWP)-based

method. Then, the proposed two hardware accelerators are presented with detailed structural descriptions.

Finally, field-programmable gate array (FPGA)-based implementation is presented to showcase the superior

performance of the proposed accelerators. A proper comparison is also carried out to confirm the efficiency of

the proposed designs. For instance, the proposed accelerator (using memory-based structure) has 56.84% and

80.25% less area-delay product (ADP) than the existing memory-based design (an extended high-speed ver-

sion) on the UltraScale+ device, respectively, for n = 17, 669 and ω = 75 (HQC) and n = 12, 323 and ω = 142

(BIKE). The proposed design strategy fits well with the two targeted code-based PQC schemes, which can

Pengzhou He, Yazheng Tu, and Tianyou Bao contributed equally.

The work of J. Xie was supported by NSF Award SaTC-2020625 and NIST-60NANB20D203. Ç. K. KoÇ was supported by

TUBITAK Project 1001-121F348.
Authors’ Contact Information: Pengzhou He, Electrical and Computer Engineering, Villanova University, Villanova, Penn-

sylvania, United States; e-mail: phe@villanova.edu; Yazheng Tu, Electrical and Computer Engineering, Villanova Univer-

sity, Villanova, Pennsylvania, United States; e-mail: ytu1@villanova.edu; Tianyou Bao, Electrical and Computer Engineer-

ing, Villanova University, Villanova, Pennsylvania, United States; e-mail: tbao@villanova.edu; Çetin Çetin Koç, Computer

Science, University of California Santa Barbara, Santa Barbara, California, United States; e-mail: cetinkoc@ucsb.edu; Ji-

afeng Xie, Electrical and Computer Engineering, Villanova University, Villanova, Pennsylvania, United States; e-mail:

jiafeng.xie@villanova.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1539-9087/2024/12-ART16

https://doi.org/10.1145/3703837

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0003-3461-4548
HTTPS://ORCID.ORG/0000-0002-1624-9500
HTTPS://ORCID.ORG/0000-0003-3321-5123
HTTPS://ORCID.ORG/0000-0002-2572-9565
HTTPS://ORCID.ORG/0000-0002-4814-1318
mailto:permissions@acm.org
https://doi.org/10.1145/3703837
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3703837&domain=pdf&date_stamp=2024-12-10


16:2 P. He et al.

be extended further to construct high-performance hardware cryptoprocessors. We hope the results of this

work will be useful for the ongoing NIST PQC standardization process.

CCS Concepts: • Hardware→Hardware accelerators; Application specific processors; • Security and

privacy→ Hardware security implementation;

Additional Key Words and Phrases: Code-based post-quantum cryptography, column-based accumulation,

hardware accelerator, high-throughput, permutating-with-power, sparse polynomial multiplication (polyno-

mial multiplication over F2)

ACM Reference Format:

Pengzhou He, Yazheng Tu, Tianyou Bao, Çetin Çetin Koç, and Jiafeng Xie. 2024. HSPA: High-Throughput

Sparse Polynomial Multiplication for Code-based Post-Quantum Cryptography. ACM Trans. Embedd. Comput.

Syst. 24, 1, Article 16 (December 2024), 24 pages. https://doi.org/10.1145/3703837

1 Introduction

Security analyses have mathematically confirmed the vulnerability of traditional cryptosystems
such as RivestShamirAdleman (RSA) and elliptic curve cryptography (ECC) when facing
attacks launched from large-scale quantum computers executing Shor’s algorithm [30]. Therefore,
the need for cryptosystems that are secure against quantum attacks, which are collectively known
as post-quantum cryptography (PQC), is at an all-time high [30, 35]. The National Institute

of Standards and Technology (NIST) started the PQC standardization process in 2016 and
has recently announced the candidates for the fourth round [2]. Among these four fourth-round
candidates, two structured code-based encryption schemes, namely Hamming Quasi-Cyclic

(HQC) and Bit Flipping Key Encapsulation (BIKE), have recently gained substantial attention
from the research community [2, 21].

Code-based cryptography refers to the cryptosystems whose security rely on the hardness of
decoding in linear error correction codes, following the seminal work of McEliece and Niederreiter
[19, 29]. HQC is a public key encryption scheme based on the hardness of decoding random quasi-
cyclic codes in Hamming metric [21]. While BIKE is built on another class of linear codes, namely
Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes [3].

Prior Research. Despite the increasing attention being paid to the mentioned two PQC
schemes (especially after they advanced to the fourth round of the NIST PQC standardization
process), only a limited amount of hardware implementation results have been reported so far. A
high-level synthesis work for HQC was presented in the original submission of Reference [21] (but
with no individual component result such as sparse polynomial multiplier). An efficient hardware
implementation of HQC was presented in Reference [6], and was revised in a later-on work [7].
Another efficient hardware-implemented sparse polynomial multiplier for HQC was recently
presented in Reference [32]. Optimized sparse polynomial multiplier for BIKE was presented
in Reference [9]. A scalable hardware implementation of BIKE was then proposed in Reference
[25], and an improved polynomial multiplication accelerator for BIKE was recently reported in
Reference [24]. To the authors’ best knowledge, these are the major hardware implementations
for the two code-based schemes up to now.

Challenges. Sparse polynomial multiplication over F2 is a key arithmetic step in both HQC and
BIKE that the efficiency of this polynomial multiplication determines the overall performance of
the final implementation to a large extent. For efficient hardware implementation of the targeted
sparse polynomial multiplication, however, there still exist two main challenges: (i) the large size
of the linear codes within HQC and BIKE has resulted in high-dimension of the polynomial mul-
tiplication length n, e.g., at least 12,323 [3] and could reach up to 57,637 [21], which involves very

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.

https://doi.org/10.1145/3703837


High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:3

large computational complexity; (ii) the sparsity of the polynomial has brought huge difficulty on
actual implementation as the majority of the coefficients in one of the input polynomials are all
‘0’s (for instance, one input polynomial of the sparse polynomial multiplication used in hqc-256
for n = 57, 637 involves only 149 random nonzero elements [21], and thus, any implementation
without appropriately considering this feature will have extremely large resource usage [7, 32]).
Note that the existing general binary polynomial multiplication computation methods like Karat-
suba are not ideal for the mentioned sparse polynomial multiplication, which has already been
approved in Reference [26]. As a result, the specific works for sparse polynomial multiplication
are not many and the state-of-the-art sparse polynomial multiplication works were merely
focusing on designing compact sparse polynomial multiplications at the cost of very long latency
[24, 32]. Due to these reasons, there has been no high-speed sparse polynomial multiplier ever
reported.

Motivation. Apart from the above-mentioned challenges, we also notice that the existing
hardware sparse polynomial multipliers were mostly designed with memory-processing-based
structures, and no other variant of hardware accelerators has been proposed. These existing
designs’ memory-based style limits their potential application to a wide range of environments,
e.g., applications where the memory resources are designated for other usages, specifically
that the memory resources on modern hardware platforms such as field-programmable gate

array (FPGA) devices (block RAMs (BRAMs)) are considered as critical components for other
computing systems integrated within the same chip. Therefore, a new type of sparse polynomial
multiplication accelerator, other than memory-based structures, is also greatly needed.

To fill this research gap, in this article, we propose two novel High-throughput Sparse
Polynomial multiplication Accelerators (HSPA) for HQC and BIKE (generic design), on the FPGA
platform. In particular, we have designed one accelerator using a memory-processing-based
structure targeting memory resource-abundant applications; while the other Accelerator is
designed without memory usage, specifically for the applications where the memory resources
are apportioned for other purposes. Overall, we have made three layers of contributions to carry
out the proposed work.

— We have presented a detailed mathematical formulation to derive two new computation
strategies for the targeted sparse polynomial multiplication in two code-based PQC
(HQC and BIKE). The first one is based on a new parallel segment based accumulation
(PSA) method, and the second one is originated from a novel permutating-with-power

(PWP)-based approach.
— We have constructed the proposed HSPA through efficient algorithm-to-architecture map-

ping techniques and novel hardware design strategies. Detailed architectural components
are described to illustrate the proposed accelerators’ design processes.

— We have provided sufficient complexity analysis, implementation, and comparison to
showcase the superior performance of the proposed accelerators. For instance, the proposed
high-through accelerator (with memory-processing-based structure) has at least 56.84%
and 80.25% less area-delay product (ADP) than the state-of-the-art design (extended
high-speed version) for HQC and BIKE, respectively, for n = 17, 669 and n = 12, 323.

Note that the proposed PSA strategy is introduced for memory-processing-based high-
throughput computation of the sparse polynomial multiplication, while the novel PWP-based
method is proposed to design the targeted polynomial multiplication accelerator with no memory
usage.

The rest of this article is organized as follows. The preliminaries are introduced in Section 2.
The proposed two algorithms are formulated and proposed in Section 3. Two corresponding

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:4 P. He et al.

Table 1. Notations Used Throughout This Article

General notations for HQC and BIKE

n Size of the polynomial (also security level of the PQC)

ω Hamming weight (#nonzero coefficients in polynomial)

Notations for deriving the proposed algorithms

B Polynomial with ω nonzero coefficients

P[·] The index of nonzero coefficients in B (we set as 16-bits)

D Dense polynomial

W Sparse polynomial multiplication product

rot(D) Circulant matrix (based on coefficients of D)

Notations specifically used in the proposed Algorithm 3 and related Accelerator-I

t Number of parallel segments being processed at the same time

l ∗Number of rounds to compute the sparse polynomial multiplication

z Number of parallel segments being involved in the last round

Dshif t P[·]-matched columns in rot(D)

Nmem Bit-length of the processing word (memory, data flow in the accelerator)

Notations specifically used in the proposed Algorithm 4 and related Accelerator-II

v Divided each chunk’s bit-length (within one column)

k =
⌈
logvn

⌉
Number of shifting stages

δ ′ Number of positions (bits) to be circularly-shifted to obtain the targeted vector

perm(x ′,η,p) Shifting operation (see Algorithm 4)

len_load Bit-length of the data flow (in the accelerator)

high-throughput accelerators are detailedly introduced in Section 4. FPGA-based Implementation
and comparison are presented in Section 5. Conclusions are given in Section 6.

2 Preliminaries

This section gives a brief introduction of HQC and BIKE, as well as the targeted sparse polynomial
multiplication and the existing works’ limitations.

Notations. This article uses the following notations to represent the items involved in the
mathematical derivation for the proposed algorithms (implementation strategies) and accelerators
(major ones are listed in Table 1). F2 is the binary finite field, where all computations in the
encryption schemes and proposed algorithm are taking place. Z denotes the ring of integers.
Vectors/polynomials in R = F2[X ]/(X

n + 1) with a dimension of n and represented by lower-case
bold letters, Matrices are represented by upper-case bold letters. The Hamming weight of a
vector, denoted by ω(·), is defined by the number of the nonzero coordinates in the vector.
δ is the minimum number of errors that the decoding algorithm can correct. Also, all the
additions/subtractions in index calculations are over the ring R = Zn . Interested readers may also
refer the details of these notations at [3, 21]. Note that the notations used in Algorithms 1 and 2
are ONLY limited to themselves, except those specifically specified in Table 1.

We have also used B, D, and W to represent related polynomials to derive the proposed algo-
rithms, where B is the sparse polynomial while D denotes the dense polynomial andW represents
the product of the two polynomials. P[·] denotes the index of nonzero coefficients in B. len_load
is the bit-length of the data flow (as well as Nmem ). The details of other notations can be seen in
Table 1.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:5

ALGORITHM 1: HQC.KEM [21]

Setup(1λ):

1 generate and output the global parameters param = (n,k,δ ,ω,ωr,ωe), k will be the length of the

symmetric key being exchanged, typically k = 256;

KeyGen(param):

2 samples h← R, the generator matrix G ∈ Fk×n
2 of C;

3 sk = (x, y)← R2 such that ω = ω(x) = ω(y);

4 pk = (h, s = x + h · y);

5 return (pk , sk);

Encapsulate(pk):

6 generate m← Fk
2 ;

7 derive the randomness θ =← G(m);

8 generate the cyphertext c← (u, v) = E .Encrypt(pk,m,θ );

9 derive the symmetric key K ← K(m, c);

10 d ←H(m);

11 send (c, d);

Decapsulate(pk, c, d):

12 decrypt m′ = E .Decrypt(sk, c);

13 compute θ ′ = G(m′);

14 (re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′,θ ′);

15 if c � c′, or d � H(m′) then

16 abort;

17 else

18 derive the shared key K ← K(m, c);

19 end

In July of 2022, HQC and BIKE were selected as the NIST fourth-round PQC standardization
candidates [2]. We give their brief introductions below.

HQC. HQC is an efficient encryption scheme based on the hardness of a decision version of
the Syndrome Decoding on structured codes. It is IND-CPA (Indistinguishability under Chosen-
Plaintext Attack) secure and allows to get a hybrid encryption scheme to achieve IND-CCA2
(Indistinguishability under Adaptive Chosen Ciphertext Attack) with a precise upper bound for De-

cryption Failure Rate (DFR) analysis. A decodable code C[n,k] and a random double-circulant
[2n,n] code are used in HQC. Algorithm 1 represents the key encapsulation mechanism (KEM)
version of HQC, where G(·),H(·),K(·) are random oracles realized by SHAKE function. For more
details of HQC and the public key version, interested readers may refer to Reference [21].

BIKE. BIKE is a KEM based on QC-MDPC code[3]. The QC-MDPC code was introduced to
reduce the key size as well as the resource usage during calculation. BIKE is proven to be IND-
CPA secure under assumptions of the hardness of QCSDr,t (Quasi-Cyclic Syndrome Decoding) and
QCCFr,w (Quasi-Cyclic Codeword Finding), and IND-CCA secure under the assumptions above
with the correctness of decoder [3]. Algorithm 2 describes the BIKE algorithm (KEM version). H, K,
L denote random oracles instantiated by SHAKE-based PRNG (Pseudorandom Number Generator)
and SHA2-384. Interested ones may read [3] for more details.

Security Levels. There are three security levels for both HQC and BIKE, respectively: hqc-
128, hqc-192, and hqc-256 [21] for HQC, and level 1, level 3, level 5 for BIKE [3]. The proposed
algorithms and accelerators (HSPA) are applicable to the parameter sets of all these security levels,
for both code-based HQC and BIKE.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:6 P. He et al.

ALGORITHM 2: BIKE [3]

KeyGen(param = (n,ω, t , l)):
1 samples (h0, h1)← R2, with ω(h0) = ω(h1) = ω/2;

2 samples σ ← {0, 1}l uniformly at random;

3 compute h← h1h−1
0 ;

4 return sk = (h0, h1, σ ) and pk = h;

Encapsulate(pk):

5 samples σ ← {0, 1}l uniformly at random;

6 compute (e0, e1)← H(m);

7 compute C = (c0, c1)← (e0 + e1h,m
⊕

L(c0, c1));

8 compute K ← K(m,C);

9 return (C,K );

Decapsulate(pk,C):

10 compute syndrome s← c0h0;

11 decrypt (e′0, e′1), ⊥← decoder(s, h0, h1);

12 computem′ ← c1
⊕

L(e′0, e′1);

13 if H(m′) � (e′0, e
′
1) then

14 K ← K(σ ,C);

15 else

16 K ← K(m′,C);

17 end

18 return K ;

High Dimensional Sparse-Dense Polynomial Multiplication. Multiplication of a
dense polynomial and a sparse polynomial (most of the coefficients are ‘0’s) over the ring
R = F2[X ]/(X

n +1) is performed repeatedly in both HQC and BIKE, and thus determines the over-
all performance of a cryptoprocessor from this standpoint. However, the large size of operands and
the sparsity of the polynomial involved, could dreadfully influence the multiplication efficiency
when executing traditional strategies like the schoolbook method (or even sub-quadratic complex-
ity approaches like Karatsuba algorithm [14] and Toeplitz Matrix-Vector Product [8]) and make
them inappropriate for sparse-dense polynomial multiplication involved in code-based cryptogra-
phy (HQC and BIKE). Note that since both KA and TMVP are not built on the sparsity of the sparse
polynomial multiplication, the deploying of these two methods has been proved as inefficient, as
shown in [26]. Briefly speaking, for a sparse polynomial multiplication of n = 57, 637 with sparsity
ofω = 149 (149 nonzero values), the latest work of Reference [32] can achieve a complexity of only
O(nω), which is weight better the newest subquadratic complexity presented in works such as
[15, 23]. As a result, in this work, we do not deploy the subquadratic complexity approach in our
proposed work.

Limitation of the Existing Hardware Designs. Almost all the existing designs, though not
many, have decided to use the compact design style (i.e., memory-based processing) to obtain effi-
cient implementation for sparse polynomial multiplication (but involves very long latency cycles)
[24, 32]. For high-throughput operations, however, no such accelerator has ever been reported.

Meanwhile, apart from the memory-based structures, there have not been other types of accel-
erators, thus limiting the potential applications for a wide range of environments. To fill the above
mentioned research gap, we hereby propose two new accelerators for the targeted sparse polyno-
mial multiplication for high-performance operations, i.e., one based on memory-processing-based
structure, while the other does not need memory usage.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:7

3 Algorithmic Operation

This section gives the detailed process to obtain the desired high-performance (high-throughput)
implementation strategies (algorithms) for the targeted sparse polynomial multiplication in both
HQC and BIKE.

3.1 Definitions and Sparse Polynomial Multiplication

Definition 1. We first define the sparse-dense polynomial multiplication for the targeted HQC
and BIKE as

W = BD mod f (x) = DB mod f (x), (1)

where B is a polynomial with only ω nonzero coefficients while D is the dense polynomial. More
specifically, f (x) = xn + 1,W =

∑n−1
i=0 wix

i , B =
∑n−1

i=0 bix
i , and D =

∑n−1
i=0 dix

i . Meanwhile, bi , di ,
and wi are (binary) 1-bit values in the ring F2/(x

n + 1), respectively.

Then, we have

W =
(
b0 + b1x + · · · + bN−1x

N−1
) (

d0 + d1x + · · · + dN−1x
N−1

)
mod f (x)

=
(
d0 + d1x + · · · + dn−1x

n−1) b0 mod f (x)

+
(
d0 + d1x + · · · + dn−1x

n−1) b1x mod f (x)

+ · · · · · · · · ·

+
(
d0 + d1x + · · · + dn−1x

n−1) bn−1x
n−1 mod f (x),

(2)

which can be further derived as (since xn + 1 ≡ 0, thus xn ≡ −1 is substituted into (2))

W =
(
d0 + d1x + · · · + dn−1x

n−1) b0

+ · · · · · · · · ·

+
(
d0x

n−1 + d1 + · · · + dn−1x
n−2) bn−1,

(3)

where we can have

w0 = d0b0 + dn−1b1 + · · · + d1bn−1,

· · · · · · · · ·

wn−1 = tdn−1b0 + dn−2b1 + · · · + d0bn−1,

(4)

where eachwi (0 ≤ i ≤ n− 1) can be obtained as (transferred into the matrix-vector product form)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w0

w1

...
wn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d0 dn−1 · · · d1

d1 d0 · · · d2

...
... · · ·

...
dn−1 dn−2 · · · d0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

...
bn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Definition 2. For a polynomial D = (d1,d2, . . . ,dn−1) ∈ F
n
2 , we define its circulant matrix rot(D)

as

rot(D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d0 dn−1 · · · d1

d1 d0 · · · d2

...
...

. . .
...

dn−1 dn−2 · · · d0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Fn×n

2 . (6)

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:8 P. He et al.

Fig. 1. The memory-processing-based high-throughput sparse polynomial multiplier (extended from Refer-

ence [32]). Mul.: multiplication. Nmem = 128, refers to the memory processing word-length. The memories

and multiplication executors are paired to process one column-wise related accumulation that the output

elements of [W ] are produced in parallel (extra resources are needed to transfer these parallel outputs in

serial for outputting, as highlighted in red). A control unit is used to handle the operation of the accelerator.

3.2 Proposed Algorithm-I (Implementation Strategy-I)

PSA Method Motivation of the Proposed Computation Strategy. For high-throughput
(high-performance) computation of sparse polynomial multiplication, it is desirable that the
matrix-vector product of (6) can be obtained through column-based computation, i.e., connecting
with Definition 2, we can rewrite (5) as

[W ]n×1 = rot(B) × [D]n×1 = rot(D) × [B]n×1

=

n−1∑
i=0

rot(D)(:, i)[B]

=

ω−1∑
i=0

rot(D)(:, i)P[i].

(7)

where rot(D)(:, i) denotes the ith column of rot(D) and P[i] denotes the non-zero element/index
within vector [B]n×1 (ith position). One can easily observe that the final output [W ] can be
obtained through the accumulation of non-zero coefficients P[i]-matched columns of rot(D)(:, i)
(in total ω columns).

It is noted that the memory-processing-based high-throughput sparse polynomial multiplier
has not been reported in the literature. Nevertheless, we can follow the existing compact design
format to design a high-speed accelerator, e.g., following the very recent one of Reference [32].
In this case, as shown in Figure 1, 
n/Nmem� pairs of multiplication executors and memories are
connected in a loop format to process one column-wise related accumulation based on (7), i.e., a
column (n-bit) of rot(D) is divided into 
n/Nmem� segments and each segment is processed by
one memory and its paired multiplication executor. Finally, all the output coefficients of [W ] are
produced in parallel after the required number of accumulations.

This type of design (Figure 1), however, involves huge (inefficient) hardware resource usage,
extra processing cycles, and complicated control setup. (i) One single column of the matrix rot(D)
involves at least 12,323 bits (for BIKE [3], or at most 57,637 bits for HQC [21]), which requires

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:9

Fig. 2. Illustration of the proposed PSA method, where the positions of t number of P[i]-matched columns

are determined by the actual situation. Each column is decomposed into 
n/Nmem� segments, and there

will be t parallel segments being processed in the same cycle. These parallel segments will be multiplied with

respective P[i] to be added together (in the same colored dash boxes), and the result is accumulated with

the following parallel segments related results (as demonstrated by the accumulation sequence).

hundreds of BRAMs to store/process all the elements of that certain column of rot(D) at the same
time for high-throughput processing. Besides that, extra resources are needed to transfer the final
output results in serial for practical application. (ii) The final output results (n bits) are available
in parallel, which takes extra clock cycles to deliver them out in serial for practical usage (due to
the size of n, it is almost impossible to process these data in parallel with other components in the
further PQC processor). (iii) Due to the circularly-shifted features of the elements between different
columns in rot(D) in (6), it is complicated to generate proper control signals for each memory to
read/write the correct data for column-wise based accumulation (because of the randomness of
P[i], the matched column within rot(D) is hard to predict in advance).

Proposed Computation Strategy. Based on the above consideration, we propose to use a new
strategy for memory-processing-based computation for sparse polynomial multiplication. Specif-
ically, we notice that the typical processing word-length in the cryptoprocessor is much larger
than the bit-length of one index P[i] (e.g., could be 128-bit, as shown in the one of Figure 1), i.e.,
multiple indices can be conveyed in one typical processing value of the accelerator. Meanwhile, we
also notice that the complete one-column-based accumulation in Figure 1 requires extra resources
to transfer these parallel values into serial outputting. Finally, we decided to have the proposed
computation strategy as follows: (i) fully utilize all the indices (t numbers) contained in one
processing word of the accelerator, i.e., these indices will be multiplied with the matched columns
in rot(D) in parallel; (ii) evenly decompose these related columns (in rot(D)) into 
n/Nmem�

segments (except for the last segment, due to the prime number of n); (iii) the indices will be mul-
tiplied with these decomposed segments, respectively, in sequential order, i.e., from the first to the
last; (iv) all the multiplied results (in the same level) are added together to be stored in the memory,
while the following results will be carried out in an accumulation format. The overall procedure
of this computation strategy is illustrated in Figure 2, and we name it as “PSA” method due to
its involved arithmetic feature. Based on the illustration in Figure 2, we can have the proposed
sparse polynomial multiplication implementation strategy (for HQC and BIKE) in Algorithm 3.

Some Details of Algorithm 3. In Algorithm 3, the calculation is divided into two conditions:
the first l rounds corresponding to Lines 8–11, where all the parallel segments are involved; and

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:10 P. He et al.

ALGORITHM 3: Proposed PSA Originated Implementation Strategy for Sparse Polynomial Multiplica-

tion of HQC and BIKE

Input :G and D are binary polynomials.

Output :W = GD mod (xn − 1).

Initialization step

1 make ready the inputs G and D.

2 record the indices of nonzero elements in G into P (P contains all P[i]).
Main step

3 W = 0;

4 Dshif t = [t];

5 l = �ω/t
;

6 z = ω mod t ;

7 for i = 0 to l do

8 if i < l then

9 for j = 0 to t − 1 do

10 Dshif t [j] = rot(D)[:,P[t · i + j]];

11 end

12 else

13 for j = 0 to t − 1 do

14 if j ≤ z − 1 then

15 Dshif t [j] = rot(D)[:,P[t · i + j]];

16 else

17 Dshif t [j] = 0;

18 end

19 end

20 end

21 W =W + Dshif t [0] + Dshif t [1] + · · · + Dshif t [t − 1];

22 end

Final step

23 Store the coefficients of outputW ;

the last ((l + 1)th) round, where only some (ω mod t ) of the segments are operating. In each round
of the operation, t different columns (denoted asDshif t [i]) in rot(D) will be loaded at the same time
and then be summed together withW obtained in the previous round to calculate the answer. Note
that all of t columns loaded (Dshif t [0],Dshif t [1], . . .Dshif t [t−1]) are used during the first l rounds,
and only (ω mod t ) columns are involved in the last round (which means that the rest t − (ω mod
t) elements in Dshif t are set as zero). Finally, as the accumulation is done in a sequential format
through memory-based processing, no extra resources are needed for final output data transferring
(e.g., as that in Figure 1).

Extra Consideration. As the operational time of the proposed computation strategy is deter-
mined by ω, t , and n, and the number of cycles for each segment to load a column from memory
is consistent every time, the proposed Algorithm 3 is thus constant-time operated. The following
hardware accelerator design in Section 4 also reflects this feature.

3.3 Proposed Algorithm 2 (Implementation Stategy-II): Permutation-with-Power

(PWP)-Based Strategy

Motivation. Although Algorithm 3 can also be implemented using a memory-less design, the
area usage for the t parallel storing components (especially when t is large) for the polynomials/

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:11

Fig. 3. Example of shifting a 7-bit long polynomial by six positions (circularly downward) using the proposed

computation strategy in Definition 3, where we get k =
⌈
logvn

⌉
= 2, and v2 = 16 (thus v1 = 4 and v0 = 1).

columns as well as the component where W is stored, would be humongous. Furthermore, since
we need to circularly shift the polynomial (column) according to different random numbers of
P[i], the related logic circuits to realize the shifting would be very complicated, which would
lead to a significantly long critical path in the design and thus bring the frequency down to an
extremely low level. Based on these considerations, we propose a novel implementation strategy
(algorithm) for memory-less based processing.

Proposed Computation Strategy. From (6), one can also observe that all the columns in rot(D),
which are rot(D)(:,0), rot(D)(:,1), . . . , rot(D)(:,n-1), can be derived from each other by simply circu-
larly shifting the difference between the indices, e.g., circularly-shifting the elements of rot(D)(:,0)
by one position (downward) to obtain rot(D)(:,1). Thus the calculation could be developed to a
shift-addition procedure: first derive a specific column of rot(D)(:, i) according to the index P[i],
and then add it to the final result.

Definition 3. When shifting the columns, we first divide the column into chunks with a length of
v bits. Let us define again k =

⌈
logvn

⌉
be the number of shifting stages, where we at most operate

v − 1 times of shifting. Then, we can represent the number-to-shift using v0, v1, . . . , vk , and shift
the column by vk , v(k−1), . . . , v0 bits (circularly), each with a different number of times to derive
the desired column.

Example. Here, we give an example to initiate our proposed computation strategy. As shown
in Figure 3, let δ ′ be the number we need to circular-shift obtain the vector (rightmost) from the
vector at the leftmost. As the length of the shown polynomial u is 7 (n = 7), we can get δ ′ as 6.
Following the above Definition 3, we can choosev as 4 (v can be any powers of 2 integers). In this
case, we get k =

⌈
logvn

⌉
= 2, and v2 = 16, v1 = 4, and v0 = 1. We thus can circularly shift six bits to

obtain the vector (rightmost) from the one at the leftmost, i.e., by first shifting four bits once, and
then shifting one bit twice.

Permutating-with-Power (PWP). The above example can be used to derive a novel PWP-
based method to calculate the targeted sparse polynomial multiplication, i.e., for any nonzero index
P[i]-matched column vector within matrix rot(D), one can obtain it through the circular-shifting
of a previous column vector (matched with P[i − 1]), where the positions to be circularly-shifted
are in the format of vk , v(k−1), . . . , v0. Due to the definition of the positions to be shifted (in the
power of v format), we define this method as “PWP”. In the following part of this article, we use
perm(x ′,η,p) to represent the shifting operation involved within the proposed PWP-based method,
where x ′ is the polynomial to be shifted, η is the number of shifting, and p is the number of bits (or

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:12 P. He et al.

ALGORITHM 4: Proposed PWP-Based Strategy (Algorithm) for High-Performance Computation of

Sparse Polynomial Multiplication (Applicable to Both HQC and BIKE)

Input :D is a dense binary polynomials, P[i] is the indices of non-zero coefficients in the sparse

polynomial B, and v is the chunk size;

Output :W = BD mod (xn + 1);

Initialization step

1 Load input coefficients in serial.

2 D ′ = D,W = 0;

Main step

3 for i = 0 to ω − 1 do

4 if i = 0 then

5 δ ′ ← P[i];

6 else

7 δ ′ ← P[i] − P[i − 1];

8 end

9 k ← 
loдvn�;

10 for j = 0 to k − 1 do

11 η ← δ ′ | v ;

12 δ ′ ← δ ′ mod v ;

13 D ′ = perm(D ′,η,vk−j−1); // p = vk−j−1

14 end

15 W =W + D ′;

16 end

Final step

17 Serially deliver all the coefficients of outputW ;

positions) to be shifted each time. For instance, in the example given above, the shiftings executed
areperm(u, 1, 41) andperm(u, 2, 40). We can finally derive the proposed computation process based
on these definitions, as shown in Algorithm 4.

Some Details of Algorithm 4. According to Algorithm 4, one column’s shifting operation (by
δ ′ positions) is completed from Lines 4 to 14, where δ ′ is the difference between the indices of two
non-zero elements in [B]. In the example mentioned above, where δ ′ = 6, v = 4, and k = 2, we
can complete the shifting in two iterations, as shown in Lines 10–13 (j = 0 and j = 1). In the first
iteration (j = 0), η = 6 | 4 = 1, so we shift the polynomial by 4-bits’ positions, and meanwhile
δ ′ = δ ′ mod v = 6 mod 4 = 2; then, in the second iteration, we have η = 2 | 1 = 2, so we just shift
the polynomial by 1-bit twice to obtain the final result.

Constant-Time Consideration. The constant-time computation of the proposed PWP-based
method basically determines if the proposed algorithm can be used for practical applications. We
seriously take this into consideration and the following description gives a detailed introduction
to how the proposed computation strategy is operated in a constant-timing manner.

Overall, we can divide Algorithm 4 into differentk stages, where each stage we need to circularly
shift vi (i = 0, 1, . . . ,k − 1) bits. It is obvious that the number of shifting times at each stage may
vary (e.g., shown in the example above), and it will cause hindrance for constant-time operation.
To solve this problem, for the proposed Algorithm 4, we propose to execute at most v − 1 times of
shifting at the ith stage, i.e., we can execute the circular-shifting p times and wait forv−1−p times
to make the execution time at all stages equally the same. Therefore, the proposed Algorithm 4
is time-constant with a time complexity of ω(v − 1)k . The corresponding hardware accelerator
design will also cover this aspect.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:13

Fig. 4. Overview of the proposed Accelerator-I. Col. Exe.: Column Executor. Notions follow Algorithm 3 and

Table 1. addr: address; rd: read; wr: write. Nmem : processing bit-length of the memory.

4 HSPA: Proposed Hardware Accelerators

We follow the proposed implementation strategies to design the hardware accelerators (HSPA).
Specifically, Algorithm 3 is mapped into an efficient high-throughput memory-processing-
based accelerator, while Algorithm 4 is designed into a novel memory-less high-throughput
accelerator.

4.1 Proposed Accelerator-I: High-Throughput Memory-Processing-Based Accelerator

As shown in Figure 4, the proposed accelerator contains three major parts, namely the Column

Executor (CE) Component, Accumulation Component, and Control Unit (CU). The inputs to
the Accelerator-Include: the coefficients of D (already stored in the memories inside of the CE
Component); the indices of non-zero elements in B (P[i], which is assumed to be generated by a
uniformly distributed sampler and then stored in the memory); and the speed choice t . While the
outputs of the accelerator are mostly the product polynomial W and an indicator signal “done”.
The structural details of the proposed accelerator are described below.

The Column Executor (CE) Component. The CE Component is responsible for loading co-
efficients of D from memory and the formation of the segments based on the read coefficients and
the non-zero indices P[i] coming from the CU. It takes the indices P[i] and the clear signal “clr_i”
as its inputs and delivers out the columns Dshif t [i], corresponding to Lines 7–20 in Algorithm 3.
The CE Component consists of t parallel CE Cores, where each core corresponds to one column
(Dshif t [0],Dshif t [1], . . . ,Dshif t [t − 1]) and the details of the CE Core are shown in Figure 5.

As shown in Figure 5, three sub-components, one sub-control cell, one memory (where one copy
of coefficients of D are stored), and a Column Former (which reads the coefficients from memory
and then forms the segments), are involved in the CE Core. The sub-control cell determines the
address and the position of the starting coefficient (of the column to be read) according to the
incoming index P[i]. Then, the Column Former will take the data read from memory and put the
coefficients (those should be involved) in the segment, while storing the rest for future use. When
a segment (with the length of Nmem ) is formed, it will output the segment to the Accumulation
Component. Note the CE Core is deactivated when the clear signal (“clr”) is ‘1’ so that only a correct

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:14 P. He et al.

Fig. 5. Internal structure of the CE Core.

Fig. 6. Internal structure of the Point-wise Adder.

number of CE Cores are working during the last round of the sparse polynomial multiplication
process (with some of the CE Cores shut down, following Algorithm 3).

The Accumulation Component. The Accumulation Component is in charge of the accumu-
lation of columns Dshif t [i] with the result W from the previous round during the multiplication
process, as well as outputting and storing the final result in the memory, as is shown in Line 21
of Algorithm 3. After receiving the segments of different columns from the CE Component, the
Accumulation Component sums up all the segments together with W read from memory in the
Point-wise Adder and then writes the result back to the memory to store the newly obtained W
for future calculation/usage. The CU decides the reading/writing address of the resulting memory
during the accumulation. Note here we realize the Point-wise Adder by implementing a simple
segment-length XOR-tree-based combinational logic circuit (with t number of Nmem inputs, see
Figure 6) since all the additions are bit-wise XOR operations under GF (2). When the polynomial
multiplication is done, the final resultW will be stored in the memory (RAM_W) and can be read
out serially with the word-length of Nmem (no extra resources are needed in this case).

The Control Unit (CU). The CU is responsible for controlling the operations of the other
two components throughout the polynomial multiplication process. A series of control signals
are generated, such as “clr_i” (which activates/deactivates the CE Cores), the write-enable signal
for the accumulation memory, and calculating signals for the reading/writing addresses of all the
memories. Also, the CU takes in the data from memory (RAM_P) stored with all the non-zero
indices, and then distributes them to corresponding CE Cores. Overall, CU is realized by a finite

state machine (FSM) with five different states as shown in Figure 7, namely Reset , Rd_idx (read
indices), Full (the first l rounds according to Algorithm 3), Last round , andDone , respectively, each

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:15

Fig. 7. Major states of the FSM inside the CU, where Rd_idx refers to the stage of reading indices; Full refers

to the first l rounds according to Algorithm 3. addr: address; rd: read; wr: write.

Fig. 8. Overview of the proposed Accelerator-II.

with different control signals generated to navigate the operations of the accelerator. The FSM
switches between different stages multiple times to execute the whole polynomial multiplication
process smoothly.

Work Flow of the Accelerator. When a “clr” signal is received from outside, the CU enters
the Reset state where all the registers and components are reset. Then, it takes the accelerator

t/(Nmem/16)� cycle(s) to read non-zero indices from the memory and distribute the indices to
the parallel CE Cores (note in the implementation we use t = 8 and Nmem = 128 that this step
needs only 1 cycle). After that, the accelerator enters the Full stage where all parallel CE Cores are
activated for 
n/Nmem� + 1 cycles to load whole columns from memory while the Accumulation
Component executes the accumulation. For the first �ω/t
 rounds, the accelerator goes back to
state Rd_idx to accumulate the first �ω/t
 · t non-zero columns of rot(D). For the last round, the
accelerator enters state Last round to load and accumulate the last ω mod t columns of rot(D),
which also costs 
n/Nmem�+1 cycles and the final result ofW is stored in the memory by the time
the accelerator completes the accumulation. The proposed accelerator finally moves to state Done
where an indicator “done” is generated to indicate that the polynomial multiplication is completed.

4.2 Proposed Accelerator-II: Novel High-Throughput Memory-Less Hardware

Accelerator

Following the procedure of the proposed Implementation Strategy-II (Algorithm 4), we further
present the hardware structure of the proposed Accelerator-II in this subsection. As shown in
Figure 8, the proposed accelerator contains three major components, namely the Load and Shift

(LS) Component, Accumulation and Output (AO) Component, and CU. The inputs are the
coefficients of D, the indices of non-zero elements in B, and the speed choice/chunk size v ; while
the outputs are the product polynomial W and an indicator signal “done”. The structural details
of Accelerator-II are provided below.

The LS Component. The LS Component is responsible for loading the coefficients of D to
the accelerator and shifting coefficients (executing perm() function in Algorithm 4) to obtain the
desired column in rot(D) while executing the multiplication, corresponding to Lines 10–13 in

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:16 P. He et al.

Fig. 9. The internal structure of the LS Component for v = 2. The perm(·) function here is a simplified form

for the one in Algorithm 4. din: data-in; dout: data-out.

Algorithm 4. Figure 9 shows the internal structure of the LS Component, where perm(i, j) denotes
the ith element in the polynomial obtained by shifting j bits. The inputs of the first MUX are the
corresponding bits in the polynomials after being shifted by v0, v1, . . . , vk bits, which are also
outputs of other registers, and are selected by a signal “count” which will count up by 1 every

sel_cnt = 2
log2k� cycles. The second MUX is responsible for determining if the LS Component
is taking in or shifting the coefficients of D, which is controlled by the signal “load”. When the
LS Component is loading in the inputs, the first len_load registers will take the input while the
others will take the output of the register len_load in front of it. During the shifting operation,
the registers will take the bit from the proper position according to perm function. The “en” signal
(when shifting the coefficients) is connected to the control signal “index_cnt”, which is used to
determine if the shifting should be executed according to the calculated η. The output of the LS
Component is the shifted polynomial D ′ and will be delivered to the AO Component directly.

The AO Component. The AO Component is responsible for accumulating the shifted poly-
nomial D ′ with the result W during calculation and outputting the final result, corresponding to
Lines 15–17 in Algorithm 4 (shown in Figure 10). The accumulation is realized by the addition of
the coefficients coming out of the IS Component and the coefficients stored in the registers. Here,
the addition is depicted by XOR gates since it is a bit-wise addition under GF (2). When execut-
ing the accumulation, all the registers will take the output from the XOR gates. When outputting,
the registers will take the output from the register of len_load position before it as its input (e.g.,

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:17

Fig. 10. The internal structure of the AO Component.

Fig. 11. Major stages of the FSM, where related control signals produced during each stage can be found in

Figs. 9 and 10, respectively.

Rn−1 will take in Rn−len_load ’s output). And the output of the final len_load-length registers will
be the overall output of the accelerator to be delivered out. Here len_load is set as 128 in the final
implementation, which is the same as Nmem in Accelerator-I (Figure 4). Finally, whether the AO
Component is accumulating or outputting is controlled by the signal “csh_out”.

The Control Unit (CU). The CU is responsible for controlling the operations of the other two
components throughout the multiplication process by generating control signals such as “csh_out”,
“count”, “load”, and “index_cnt”. This unit is also realized by an FSM with five different states,
as shown in Figure 11. Different control signals are generated during those states to determine

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:18 P. He et al.

related operations such as input loading, shifting, and output delivering. CU is also responsible for
calculating parameters for the perm function like k , η, and δ ′ (it takes the indices as the input), i.e.,
CU decides how the IS Component should shift (e.g., v0, v1, . . . , or vk ) for each input according to
the calculated parameters.

Overall Operation of the Accelerator. The workflow of the proposed Accelerator-II can be
depicted through five consecutive stages, namely Reset , Load ,Calculate ,Output , andDone , respec-
tively. After receiving a “1” from the “clr” port, the accelerator enters the Reset state, where all the
components are cleared and reset to prepare for the coming calculation. Then, in the next clock
cycle, the proposed accelerator moves into the Load state that all the coefficients of polynomial D
are loaded into the IS Component, which lasts for 
n/len_load� clock cycles. Having completed
the loading process, the proposed accelerator enters theCalculate state and stays for ω · (v − 1) ·k
cycles to operate the circular shiftings and the accumulation of ω columns of B in the IS as well
as the AO Component. In order to deliver the obtained polynomial, it takes the proposed design
another 
n/len_load� cycles to output all the coefficients serially in a data length of len_load bits.
The proposed Accelerator-II will finally move to the Done state, which indicates the completion of
the whole multiplication process and outputs the indicator signal “done”.

Constant-time Operation. During the process of circular shifting of the column, the number
of execution of shiftings may vary at each stage. For example, in the example given above, to shift
6 bits, the proposed Accelerator-II needs to shift 4 bits once and 1 bit twice. The inconsistency in
the number of execution makes the design operate in a non-constant time. To solve this problem,
we set the time for each stage to v − 1 cycles, controlling the IS component to shift p times and
not to work v − 1 − p cycles. In this way, we can avoid the variation of the clock cycles required
for each stage and thus have a constant calculation time of ω · (v − 1) · k cycles.

5 Implementation and Comparison

Complexity Analysis. The proposed Accelerator-I contains t+1 copies of memories (with a depth
of 
n/Nmem�), 2 · t Nmem-bit long registers, t 128-bit XOR gates, and some logic circuits for the
CU and logic conditional statements. For each round of calculation, it takes 
t/8� cycle(s) to load
the non-zero indices and 
n/Nmem� + 1 cycles to load the whole columns and execute the point-
wise addition. The whole accelerator has a computation latency of ω · (
n/Nmem� + 2) cycles, and

n/Nmem� cycles for outputting (reading stored W out of the memory). Both timing complexity
and area usage of the proposed accelerator are determined mostly by t , n, and ω (constant-time
operation). Additionally, t sub-control cells are needed for the proposed accelerator.

Meanwhile, the proposed Accelerator-II contains 2n registers, 2n 2-to-1 MUXes,n k-to-1 MUXes,
n XOR gates, and some logic circuits. When loading and outputting, both the LS Component and
AO Component work in a serial fashion with the data flow of len_load bits. The whole accelerator
has a computation latency of ω · (v − 1) · k cycles, and 
n/len_load� cycles for input/output. The
complexities of the proposed accelerator under different parameter settings are determined mostly
by the specific n and v values. Additionally, a control unit is needed for the proposed accelerator.

Implementation on the FPGA Platform. We have implemented the proposed two acceler-
ators for different security levels of HQC and BIKE, on the FPGA platform. The experimental
setup is as follows: (i) the proposed designs were described in VHDL1 and (ii) the correctness of
the proposed accelerators with all security levels of HQC and BIKE was tested using Modelsim;
(iii) the tested designs were implemented on a high-performance UltraScale+ XCZU9EG-2FFVB
FPGA (with enough resources) using Vivado 2020.2 (after place and route) since the proposed
accelerators are designed for high-speed applications; (iv) performance of the implemented

1We have published the source code of this work at https://github.com/nobsessive/HSPA

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.

https://github.com/nobsessive/HSPA


High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:19

Table 2. Implementation Results of the Proposed HSPA on AMD-Xilinx Device

HQC-128 (n = 17,669, ω = 75)

Design Device LUT FF CLB Fmax BRAM Latency1 Delay Thru.2

Accelerator-I UltraScale+ 20,334 4,942 4,172 403 18 1,410 4 5.05

Accelerator-II (v=16) UltraScale+ 53,041 53,457 8,943 471 0 4,500 10 1.85

Accelerator-II (v=8) UltraScale+ 53,041 53,522 10,147 445 0 2,625 6 3.00

Accelerator-II (v=4) UltraScale+ 70,710 53,320 12,173 441 0 1,800 4 4.33

Accelerator-II (v=2) UltraScale+ 121,188 53,324 20,219 200 0 1,125 6 3.14

HQC-192 (n = 35,581, ω = 114)

Accelerator-I UltraScale+ 18,905 4,181 3,923 376 18 4,200 11 3.19

Accelerator-II (v=16) UltraScale+ 106,763 107,146 18,194 458 0 6,840 15 2.38

Accelerator-II (v=8) UltraScale+ 128,415 107,222 21,698 400 0 4,788 12 2.97

HQC-256 (n = 57,637, ω = 149)

Accelerator-I UltraScale+ 18,466 4,675 3,920 378 18 9,508 23 2.53

Accelerator-II (v=16) UltraScale+ 172,896 173,363 28,407 442 0 8,940 20 2.85

Accelerator-II (v=8) UltraScale+ 202,004 173,241 35,154 275 0 6,258 23 2.53

BIKE Level 1 (n = 12,323, ω = 142)

Accelerator-I UltraScale+ 18,901 5,317 3,950 404 18 891 2 5.59

Accelerator-II (v=16) UltraScale+ 37,006 37,334 6,453 467 0 4,260 9 1.35

Accelerator-II (v=8) UltraScale+ 37,006 37,187 6,991 444 0 2,485 6 2.20

BIKE Level 2 (n = 24,659, ω = 206)

Accelerator-I UltraScale+ 18,219 5,087 3,747 393 18 2,535 6 3.82

Accelerator-II (v=16) UltraScale+ 74,014 74,407 12,097 439 0 6,180 14 1.71

Accelerator-II (v=8) UltraScale+ 74,014 74,465 14,337 417 0 3,605 9 2.85

BIKE Level 3 (n = 40,973, ω = 274)

Accelerator-I UltraScale+ 19,515 5,334 3,606 373 18 5,653 15 2.70

Accelerator-II (v=16) UltraScale+ 122,955 123,294 19,743 413 0 8,220 20 2.06

Accelerator-II (v=8) UltraScale+ 147,847 123,171 26,183 333 0 5,754 17 2.37

Unit for Fmax: MHz.

Unit for delay (calculated by Latency/Fmax): μs .
1: Latency refers to the computation time.
2: Thru. (Throughput)=n/delay (×103).

accelerators for three security level parameter sets of both HQC and BIKE (hqc-128, hqc-192,
hqc-256, BIKE-Level 1, BIKE-Level 3, BIKE-Level 5), including the number of resource usage (LUTs,
FFs, Slices, BRAMs), maximum frequency (Fmax, MHz), latency, delay time, and the throughput,
are listed in Table 2. Note that due to the large size of n for HQC-192, HQC-256, BIKE Level 2, and
BIKE Level 3, we just implemented the proposed Accelerator-II with v = 16 and v = 8.

Performance Discussion. The proposed two accelerators overall obtain superior performance
on the targeted FPGA device, as evidenced by their low-latency computation, high operational
frequency, and high throughput rate. Proposed Accelerator-I, because of the use of BRAMs for
accumulation-related computation, involves low resource usage comparatively. While Accelerator-
II has to process all the computations within the non-memory based combinational circuits, it
involves a relatively large logic resource usage, especially when v becomes smaller. Nevertheless,
Accelerator-II involves higher frequency (in most cases) and better flexibility than Accelerator-II.
Meanwhile, we want to mention that the proposed Accelerator-II is probably the first try in the
field to design large-scale sparse polynomial multiplication with no memory usage (or similar),

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:20 P. He et al.

Table 3. The Comparison of Implementation Results between Proposed Designs and the Related Work on

AMD-Xilinx UltraScale+ Device

Design LUT FF CLB Fmax1 BRAM WCLB2 Latency3 Delay4 Thru.5 ADP6

HQC-128 (n = 17,669, ω = 75)

Extended from [32] 215,508 45,923 38,575 287 278 58,035 225 0.8 22.09 45.50

Accelerator-I 20,334 4,942 4,172 403 18 5,612 1,410 3.5 5.05 19.64

Accelerator-II (v=4) 70,710 53,320 12,173 441 0 12,173 1,800 4 4.33 49.69

BIKE Level 1 (n = 12,323, ω = 142)

Extended from [32] 148,229 32,702 25,610 287 194 39,190 426 1.5 8.22 58.17

Accelerator-I 18,901 5,317 3,950 404 18 5,210 891 2.2 5.59 11.49

Accelerator-II (v=8) 37,006 37,187 8,092 444 0 8,092 2,485 5.6 2.20 45.29

1: Unit for Fmax: MHz.
2: WCLB (Weighted CLB) = #CLB+#BRAMs×70, where we have adopted the method presented in [17] (also used in

[32]) that 1 BRAM(8k) is equivalent to 70 CLBs.
3: Latency refers to the computation time (input loading and output delivery are not included).
4: Calculated by Latency/Fmax. Unit: μs .
5: Thru. (Throughput)=n/delay (×103).
6: ADP=(WCLB)×Delay/1000, which is a normalized metric to measure the overall area-time complexities of a design.

further efforts can be made to improve its performance better. Finally, as the two accelerators are
originated from two completely different design concepts with their own unique features, they
shall be evaluated in a balanced format.

Note that from Table 2, we can see that the latency of Accelerator-II decreases linearly, which
aligns the theoretical timing complexity analysis. However, the delay, being calculated by La-
tency/Fmax, is affected by the dropping frequency, which decreases from 441 to 200 Mhz when
it comes to v = 2. This is mainly because the number of signals being fed into the MUXes before
every register (see Figure 9) increases as v decreases, which increases the size of the MUXes and
the number of wires connecting different components in the accelerator, and thus prolongs the
critical path when the design is being implemented. In summary, the theoretical computation time
(latency) of Accelerator-II still drops linearly, and the tradeoff between v and computation time is
still clear, but the actual delay increases due to the nearly cut-half frequency.

Comparison Consideration. As mentioned in Sections I and II, the existing designs for sparse
polynomial multiplications of HQC and BIKE are all memory-based compact designs with very
long latency cycles [6, 24, 26, 32]. As the proposed accelerators are targeting high-throughput
applications, we do not directly compare the proposed designs with them (different design style
originated accelerators have different advantages over each other). Nevertheless, we consider the
fact that: (i) the design of Reference [32] is the most recent compact structure for sparse polynomial
multiplication in the literature and has shown its advantages over the other ones like [6, 9, 24, 26]
(the one in Reference [7] did not consider the input memory usage, and we thus do not include
it here, see Figure 1 of Reference [7]), (ii) Figure 1 is the extended high-speed version of the most
recent work of [32], we thus decided to use the high-speed structure of Figure 1 (extended from
Reference [32]) as our comparison counterpart.

Again, we have faithfully coded the design of Figure 1 (extended from Reference [32]) with
VHDL (with function verified through ModelSim) and have implemented it on the same UltraScale+
XCZU9EG-2FFVB FPGA through the same Vivado 2020.2. We have obtained the corresponding
area and time complexities, such as the number of LUTs, FFs, and CLBs, maximum frequency,
BRAM usage, latency, and related ADPs in Table 3. Meanwhile, we have listed the complexities
of the proposed Accelerator-I and Accelerator-II (v = 4/v = 8) in the same table. Note that the

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:21

extended architecture of Reference [32] has very large resource usage, and we just obtained its
performance following the parameter sets of HQC-128 and BIKE Level 1.

Comparison and Discussion. As seen from Table 3, the proposed two accelerators have more
balanced area-time complexities than the high-speed structure extended from Reference [32] (see
Figure 1). Though the extended high-speed version of Reference [32] involves very low latency, its
resource usage is huge (e.g., 278 BRAMs for HQC-128) and thus is not ideal for general-purpose
high-performance applications. To have a balanced comparison, we have also adopted the strategy
proposed in [17] (used in Reference [32] as well) that 1 BRAM equals to 70 CLBs to calculate the
overall weighted ADP. One can see that the proposed memory-based Accelerator-I involves 56.84%
and 80.25% smaller ADP than the extended high-speed version of Reference [32], for HQC-128
and BIKE Level 1, respectively. While comparing with the proposed Accelerator-II, the extended
high-speed structure of [32] has 0.84% less ADP for HQC-128 but involves 22.14% larger ADP for
BIKE Level 1, i.e., the proposed Accelerator-II has better balanced area-time complexities than the
extended version of Reference [32].

Apart from the normalized ADP comparison, we also want to emphasize the fact that the exist-
ing design (extended of [32], see Figure 1) probably is not practical for actual applications due to its
large resource usage. The proposed Accelerator-I, built on the proposed PSA algorithm, is desirable
for quite a number of high-performance applications because of its small area occupation and high
throughput capability. In some memory-demanding applications, however, we recommend using
the proposed Accelerator-II since it does not require any memory usage (benefited from the pro-
posed PWP-based method). Note that the proposed Accelerator-II processes all the computation-
related operations such as loading, shifting, accumulation, and even outputting in the correspond-
ing structure (which potentially increases the resource usage). Nevertheless, its resource usage is
still considered as decent and its throughput is very high (as revealed in Tables 2 and 3), and can
be extended to build high-speed code-based cryptoprocessors with small memory usage.

Further Discussion and Future Research. The proposed two accelerators have constant op-
erational time (connecting with Sections 3 and 4), and hence are considered as secure against
regular timing attacks [28]. However, for related side-channel power and fault attack resistances,
we recommend this research as one of our future exploration directions as these attacks generally
require sophisticated attack setups and dedicated countermeasure designs.

Other future research can also be: (i) extending the proposed sparse polynomial multiplication
accelerators to the actual cryptographic processor designs for HQC/BIKE (which will be desirable
when the NIST fourth-round PQC standardization process is completed [1]); (ii) developing new
design techniques to obtain a unified accelerator (a more parameterized design) for different v
and/or security levels; (iii) propose novel implementation strategies to deploy other resources like
DSPs (dedicated designs to be designed to conduct parallel operations in each DSP to compensate
the overhead) to obtain further efficiency.

Side-Channel Considerations. The parallel processing featured Accelerator-I, and the
sequential shifting operations in Accelerator-II’s LS Component could potentially expose power
consumption patterns, which may be vulnerable to differential power analysis. Future implemen-
tations could incorporate countermeasures such as masking techniques for intermediate value
randomization and power consumption balancing circuits. However, these protective measures
commonly introduce overhead in area utilization and reduce performance. Evaluate the security-
performance tradeoff by validating it through differential power analysis, which would be valuable
for security-critical applications. We believe comprehensive side-channel security analysis and
implementation of corresponding countermeasures are important directions for future research.

Related Works. Traditional way of implementing polynomial multiplication over F2 (binary
field) can be seen in quite a number of literature works [10, 13, 14, 16, 20, 22, 23, 27, 34, 36]. Most

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.



16:22 P. He et al.

notably, two sub-quadratic methods, namely Karatsuba algorithm and TMVP, are widely used to
reduce the computational complexity [8, 14]. These methods, however, cannot be deployed for
implementing the targeted very large size sparse polynomial multiplier (see the explanation in the
Paragraph of High Dimensional Sparse-Dense Polynomial Multiplication of Section 2).

Besides that, multiple polynomial multiplication accelerators for lattice-based PQC have been
proposed recently. A systolic multiplication accelerator for KEM and Ring-LWE based PQC was
reported in Reference [4]. A high-performance polynomial multiplication accelerator was reported
in Reference [33]; Optimized high-performance and lightweight polynomial multiplication archi-
tectures were presented in [5]. Another High-speed polynomial multiplication architecture was
proposed in Reference [31]. An efficient implementation for Inverted Binary Ring-LWE Based
PQC was reported in Reference [11] and a lightweight hardware accelerator for Binary Ring-LWE
PQC was presented in Reference [18]. Area-optimized polynomial multiplication for NTRU was
proposed in Reference [12]. There may also exist other works, which we do not list them here (but
they are all considered as related works in the PQC field).

Note that both above-mentioned types of polynomial multiplications are not suitable for direct
qualitative comparison with the proposed HSPA. (i) The conventional polynomial multiplications
like [10, 13, 14, 16, 20, 22, 23, 27, 34, 36] are specific works for small-size binary polynomial multipli-
cations ranging fromn = 163, 233, 283, 409, and 571, which is too small to be compared with the size
we targeted here like n = 57, 637. Besides that, these polynomial multiplications did not consider
the sparsity of the coefficients (i,e., coefficients can be “0”/“1”), and hence, these approaches cannot
be directly compared with the work presented here. (ii) For the polynomial multiplication used in
lattice-based PQC, we want to mention that these polynomial multiplications are integer polyno-
mials (not binary values), and again, the related size is also relatively small, e.g., n = 256/512 in [18,
31]. Hence, comparing these designs with the proposed works qualitatively is also inappropriate.

6 Conclusion

This article, for the first time, presented two novel high-throughput hardware accelerators for the
sparse polynomial multiplier found in two code-based PQC schemes (HQC and BIKE). First, we
have proposed two new algorithms for the targeted sparse polynomial multiplication for high-
throughput operation. Then, the architectural details of the proposed two accelerators (according
to the proposed algorithms) are demonstrated. Finally, the complexity analyses and implementa-
tion results are provided, along with the comparison with the state-of-the-art design, confirming
the superior performance of the proposed accelerators. We hope the proposed work will benefit the
efficient implementation of code-based PQC and the ongoing NIST PQC standardization process.

References

[1] 2024. Are we there yet? An Update on the NIST PQC Standardization Project. NIST 5th PQC Standardization Confer-

ence. Retrieved from https://csrc.nist.gov/Presentations/2024/update-on-the-nist-pqc-standardization-project

[2] 2022. PQC Standardization Process: Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates.

Retrieved from https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4. (2022).

[3] Nicolas Aragon et al. 2022. BIKE: Bit Flipping Key Encapsulation (Round 4 Submission). Retrieved from https:

//bikesuite.org/#content. (2022).

[4] Tianyou Bao, Pengzhou He, and J. Xie. 2022. Systolic acceleration of polynomial multiplication for KEM saber and

binary ring-LWE post-quantum cryptography. In 2022 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST). 157–160. DOI:https://doi.org/10.1109/HOST54066.2022.9839980

[5] Andrea Basso and Sujoy Sinha Roy. 2021. Optimized polynomial multiplier architectures for post-quantum KEM saber.

In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 1285–1290.

[6] Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer, and Chuanqi Xu. 2022. Towards a Fast and Efficient

Hardware Implementation of HQC. Cryptology ePrint Archive, Paper 2022/1183. (2022). Retrieved from https://eprint.

iacr.org/2022/1183

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.

https://csrc.nist.gov/Presentations/2024/update-on-the-nist-pqc-standardization-project
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://bikesuite.org/#content
https://doi.org/10.1109/HOST54066.2022.9839980
https://eprint.iacr.org/2022/1183


High-Throughput Sparse Polynomial Multiplication Accelerators for Code-Based PQC 16:23

[7] Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz, and Jakub Szefer. 2022. Fast and efficient hardware

implementation of HQC. Cryptology ePrint Archive (2022), 1–30.

[8] Haining Fan and M Anwar Hasan. 2007. A new approach to subquadratic space complexity parallel multipliers for

extended binary fields. IEEE Trans. Comput. 56, 2 (2007), 224–233.

[9] Jingwei Hu, Wen Wang, Ray CC Cheung, and Huaxiong Wang. 2019. Optimized polynomial multiplier over com-

mutative rings on FPGAs: A case study on BIKE. In 2019 International Conference on Field-Programmable Technology

(ICFPT). IEEE, 231–234.

[10] José L Imaña. 2015. High-speed polynomial basis multipliers over GF (2m ) for special pentanomials. IEEE Transactions

on Circuits and Systems I: Regular Papers 63, 1 (2015), 58–69.

[11] José L. Imaña, Pengzhou He, Tianyou Bao, Yazheng Tu, and J. Xie. 2022. Efficient hardware arithmetic for inverted

binary ring-LWE based post-quantum cryptography. IEEE Transactions on Circuits and Systems I: Regular Papers 69, 8

(2022), 3297–3307. DOI:https://doi.org/10.1109/TCSI.2022.3169471

[12] Safiullah Khan, Wai-Kong Lee, Ayesha Khalid, Abdul Majeed, and Seong Oun Hwang. 2022. Area-optimized constant-

time hardware implementation for polynomial multiplication. IEEE Embedded Systems Letters 15, 1 (2022), 5–8.

[13] Chang Hoon Kim, Chun Pyo Hong, and Soonhak Kwon. 2005. A digit-serial multiplier for finite field GF (2m ). IEEE

Transactions on Very Large Scale Integration (Vlsi) Systems 13, 4 (2005), 476–483.

[14] Chiou-Yng Lee and J. Xie. 2018. Digit-serial versatile multiplier based on a novel block recombination of the modified

overlap-free karatsuba algorithm. IEEE Transactions on Circuits and Systems I: Regular Papers 66, 1 (2018), 203–214.

[15] Chiou-Yng Lee and Jiafeng Xie. 2018. Digit-serial versatile multiplier based on a novel block recombination of the

modified overlap-free karatsuba algorithm. IEEE Transactions on Circuits and Systems I: Regular Papers 66, 1 (2018),

203–214.

[16] Chiou-Yng Lee and J. Xie. 2019. High capability and low-complexity: Novel fault detection scheme for finite field

multipliers over GF (2m ) based on MSPB. In 2019 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST). IEEE, 21–30.

[17] Weiqiang Liu, Sailong Fan, Ayesha Khalid, Ciara Rafferty, and Máire O’Neill. 2019. Optimized schoolbook polynomial

multiplication for compact lattice-based cryptography on FPGA. IEEE TVLSI Systems 27, 10 (2019), 2459–2463.

[18] Benjamin J. Lucas, Ali Alwan, Marion Murzello, Yazheng Tu, Pengzhou He, Andrew J. Schwartz, David Guevara,

Ujjwal Guin, Kyle Juretus, and J. Xie. 2022. Lightweight hardware implementation of binary ring-LWE PQC accelerator.

IEEE Computer Architecture Letters 21, 1 (2022), 17–20. DOI:https://doi.org/10.1109/LCA.2022.3160394

[19] Robert J. McEliece. 1978. A public-key cryptosystem based on algebraic. Coding Thv 4244 (1978), 114–116.

[20] Pramod Kumar Meher. 2008. Systolic and super-systolic multipliers for finite field GF (2m )) based on irreducible

trinomials. IEEE Transactions on Circuits and Systems I: Regular Papers 55, 4 (2008), 1031–1040.

[21] Carlos Aguilar Melchor et al. Hamming Quasi-Cyclic (HQC) (NIST Round 3 Submission). Retrieved from https://pqc-

hqc.org/index.html. (n.d.).

[22] Ashkan Hosseinzadeh Namin, Huapeng Wu, and Majid Ahmadi. 2012. An efficient finite field multiplier using redun-

dant representation. ACM Transactions on Embedded Computing Systems (TECS) 11, 2 (2012), 1–14.

[23] Jeng-Shyang Pan, Chiou-Yng Lee, Anissa Sghaier, Medien Zeghid, and J. Xie. 2019. Novel systolization of subquadratic

space complexity multipliers based on toeplitz matrix–vector product approach. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 27, 7 (2019), 1614–1622.

[24] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Güneysu. 2021. Racing BIKE: Improved polyno-

mial multiplication and inversion in hardware. IACR Transactions on Cryptographic Hardware and Embedded Systems

2022, 1 (Nov. 2021), 557–588. DOI:https://doi.org/10.46586/tches.v2022.i1.557-588

[25] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. 2021. Folding BIKE: Scalable hardware implementation

for reconfigurable devices. IEEE Trans. Comput. 71, 5 (2021), 1204–1215.

[26] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. 2020. Folding BIKE: Scalable Hardware Implementation

for Reconfigurable Devices. Cryptology ePrint Archive, Paper 2020/897. (2020). Retrieved from https://doi.org/10.1109/

TC.2021.3078294 https://eprint.iacr.org/2020/897.

[27] Erkay Savaš, Alexandre F Tenca, and Cetin K Koç. 2000. A scalable and unified multiplier architecture for finite fields

GF (p) and GF (2m ). In Cryptographic Hardware and Embedded SystemsCHES 2000: Second International Workshop

Worcester, MA, USA, August 17–18, 2000 Proceedings 2. Springer, 277–292.

[28] Tobias Schneider, Amir Moradi, and Tim Güneysu. 2016. ParTI–towards combined hardware countermeasures against

side-channel and fault-injection attacks. In Advances in Cryptology–CRYPTO 2016: 36th Annual International Cryptol-

ogy Conference, Santa Barbara, CA, August 14-18, 2016, Proceedings, Part II 36. Springer, 302–332.

[29] Nicolas Sendrier. 2017. Code-based cryptography: State of the art and perspectives. IEEE Security & Privacy 15, 4 (2017),

44–50. DOI:https://doi.org/10.1109/MSP.2017.3151345

[30] Peter W Shor. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th

Annual Symposium on Foundations of Computer Science. Ieee, 124–134.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.

https://doi.org/10.1109/TCSI.2022.3169471
https://doi.org/10.1109/LCA.2022.3160394
https://pqc-hqc.org/index.html
https://doi.org/10.46586/tches.v2022.i1.557-588
https://doi.org/10.1109/TC.2021.3078294
https://eprint.iacr.org/2020/897
https://doi.org/10.1109/MSP.2017.3151345


16:24 P. He et al.

[31] Weihang Tan, Antian Wang, Xinmiao Zhang, Yingjie Lao, and Keshab K. Parhi. 2023. High-speed VLSI architectures

for modular polynomial multiplication via fast filtering and applications to lattice-based cryptography. IEEE Trans.

Comput. 72, 9 (2023), 2454–2466. DOI:https://doi.org/10.1109/TC.2023.3251847

[32] Yazheng Tu, Pengzhou He, Çetin Kaya Koç, and J. Xie. 2023. LEAP: Lightweight and efficient accelerator for sparse

polynomial multiplication of HQC. IEEE Trans. VLSI Systems 31, 6 (2023), 892–896. DOI:https://doi.org/10.1109/TVLSI.

2023.3246923

[33] Yazheng Tu, Pengzhou He, Chiou-Yng Lee, Danai Chasaki, and J. Xie. 2022. Hardware implementation of high-

performance polynomial multiplication for KEM saber. In 2022 IEEE International Symposium on Circuits and Systems

(ISCAS). 1160–1164. DOI:https://doi.org/10.1109/ISCAS48785.2022.9937606

[34] Huapeng Wu, M. Anwarul Hasan, Ian F. Blake, and Shuhong Gao. 2002. Finite field multiplier using redundant repre-

sentation. IEEE Trans. Comput. 51, 11 (2002), 1306–1316.

[35] J. Xie, K. Basu, K. Gaj, and U. Guin. 2020. Special session: The recent advance in hardware implementation of post-

quantum cryptography. In IEEE VTS. 1–10.

[36] J. Xie, Chiou-Yng Lee, Pramod Kumar Meher, and Zhi-Hong Mao. 2019. Novel bit-parallel and digit-serial systolic finite

field multipliers over GF (2m ) based on reordered normal basis. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 27, 9 (2019), 2119–2130.

Received 11 May 2023; revised 4 May 2024; accepted 17 October 2024

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 16. Publication date: December 2024.

https://doi.org/10.1109/TC.2023.3251847
https://doi.org/10.1109/TVLSI.2023.3246923
https://doi.org/10.1109/ISCAS48785.2022.9937606

