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Abstract. With the standardization of NIST post-quantum cryptographic (PQC)
schemes, optimizing these PQC schemes across various platforms presents significant
research value. While most existing software implementation efforts have concentrated
on ARM platforms, research on PQC implementations utilizing various RISC-V
instruction set architectures (ISAs) remains limited. In light of this gap, this paper
proposes comprehensive and efficient optimizations of Keccak, Kyber, and Dilithium on
RV{32,64}IM{B}{V}. We thoroughly optimize these implementations for dual-issue
CPUs, believing that our work on various RISC-V ISAs will provide valuable insights
for future PQC deployments.
Specifically, for Keccak, we revisit a range of optimization techniques, including
bit interleaving, lane complementing, in-place processing, and hybrid vector/scalar
implementations. We construct an optimal combination of methods aimed at achiev-
ing peak performance on dual-issue CPUs for various RISC-V ISAs. For the NTT
implementations of Kyber and Dilithium, we deliver optimized solutions based on Plan-
tard and Montgomery arithmetic for diverse RISC-V ISAs, incorporating extensive
dual-issue enhancements. Additionally, we improve the signed Plantard multiplication
algorithm proposed by Akoi et al. Ultimately, our testing demonstrates that our
implementations of Keccak and NTT across various ISAs achieve new performance
records. More importantly, they significantly enrich the PQC software ecosystem for
RISC-V.
Keywords: SHA-3 · Keccak · Kyber · Dilithium · RISC-V · RISC-V Vector ·
Plantard Arithmetic · NTT

1 Introduction
In August 2024, NIST released three PQC standards: FIPS 203 [NIS24a], FIPS 204 [NIS24b],
and FIPS 205 [NIS24c]. These standards respectively standardize ML-KEM, ML-DSA, and
SLH-DSA, which are based on Kyber [ABD+21], Dilithium [DKL+21], and SPHINCS+

[ABB+22]. The deployment of these PQC schemes across various platforms holds significant
research value.

Kyber and Dilithium are two popular Lattice-based Cryptographic (LBC) schemes
mainly because of their modular design, high security, and excellent performance. The
time-consuming operations of Kyber and Dilithium are SHA-3 [NIS15] and polynomial multi-
plication. Because both of them are operated on the polynomial ring Rq = Zq[X]/(Xn+1),
in which their moduli q and the degree n are carefully designed so that they can
leverage the efficient Number Theoretic Transform (NTT) with O(n logn) time com-
plexity to speed up the polynomial multiplication. After years of research by the
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cryptographic community, polynomial multiplication has been throughout optimized
across various platforms and architectures, especially AVX2 [Sei18], ARM Cortex-M
[ABCG20, CHK+21, GKS20, ACC+22, AHKS22, HZZ+22, HZZ+24, HAZ+24], and ARM
Cortex-A platforms [BHK+22, KSYS22, NG23]. Despite these optimizations focusing on
the polynomial multiplication, another core operation, SHA-3, in LBC schemes can account
for over 70% of the running time for an optimized implementation on ARM Cortex-M4,
according to PQM4 [KRSS19]. Therefore, any speed-ups in SHA-3 would bring signifi-
cant performance improvements to the entire LBC scheme. Recently, several works have
optimized SHA-3 on ARMv8-A [BK22] and ARMv7-M [HAZ+24] architectures, signifi-
cantly improving the efficiency of hash-based SPHINCS+ and LBC schemes like Kyber and
Dilithium.

1.1 Motivations and Contributions

The motivations of the paper can be summarized as follows.
Limited Software Implementations on RISC-V. Despite the numerous PQC

implementations available on various platforms, software implementations of Keccak and
other PQC schemes on RISC-V have not received as much attention as those on ARM
platforms. To our knowledge, there are only two publicly available Keccak implementations
for RISC-V: one by [Sto19] for RV32I and another open-source implementation for RV64IB1.
Regarding PQC implementations on RISC-V, previous works [ZHLR22, HZZ+24] primarily
focus on low-end 32-bit RISC-V platforms with RV32IMAC ISAs.

Hardware Implementations Lack Efficient Baseline. The flexibility and cus-
tomization of RISC-V instruction extensions have spurred research on PQC accelerators
[AEL+20, FSS20, YSZ+24, WJW+19, FSMG+19, BUC19, WTJ+20, KSFS24] from a
hardware perspective. However, the absence of optimized PQC software implementations
on RISC-V means that many existing hardware designs primarily rely on the C reference
implementation as their evaluation baseline. We believe that providing optimized PQC
software implementations for a wide range of RISC-V ISAs will effectively fill this gap and
offer a more reliable baseline for evaluating hardware implementations.

Challenges of Optimizing PQC for Different RISC-V ISAs. Achieving this
goal, however, is non-trivial. The RISC-V ISA is modular, with each instruction set
supporting specific operations. Consequently, different ISA combinations lead to significant
variations in optimization strategies for cryptographic primitives. For example, the Keccak
implementation on RV{32,64}I{B}{V} presents eight distinct ISA combinations, each
potentially requiring a unique optimization strategy.

Contributions. Facing these challenges, we propose efficient software implementa-
tions of Keccak, Kyber, and Dilithium on RV{32,64}IM{B}{V}. By proposing different
optimization strategies for various ISA combinations, our implementations cater to a range
of devices from low-end IoT to high-end mobile devices.

• Optimized Keccak implementations. We thoroughly revisit various optimiza-
tion techniques for Keccak and construct an optimal combination of methods aimed
at achieving peak performance on the dual-issue XuanTie C908 core. Our implemen-
tations cover four scalar instruction sets, specifically RV{32,64}I{B}. Additionally,
we explore the use of vector extension (RVV) to optimize Keccak and successfully
apply hybrid vector/scalar techniques to C908 RV32I{B}V. Our implementations
set new performance records for Keccak across various ISAs. More importantly, our
comprehensive support for different ISAs enhances the software ecosystem of Keccak
on the RISC-V architecture.

1https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_rv64/Keccak.c

https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_rv64/Keccak.c
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• Optimized NTT implementations for Kyber and Dilithium. Different ISAs
require distinct optimization techniques for NTT implementations, especially for the
time-consuming modular multiplication algorithms within NTT. Our target ISAs
include RV{32,64}IM and RVV. We explore how to achieve optimal performance for
Kyber’s and Dilithium’s NTT on the dual-issue XuanTie C908 core across these ISAs.
Our implementations not only benefit the PQC software ecosystem but also serve as
benchmarks for RISC-V-based hardware implementations.

• We integrate optimized Keccak and NTT implementations into Kyber and Dilithium,
setting new performance records. The contributions of this paper extend beyond
LBC schemes, providing value for hash-based signature schemes that rely on Keccak.

• As a secondary outcome, we also improve the signed Plantard multiplication algorithm
proposed by Akoi et al. [AMOT22]. Although its practicality in LBC schemes is less
than the variant proposed by Huang et al. [HZZ+22], we present it here for potential
future research or applications.

Our implementations are publicly available at https://github.com/Ji-Peng/PQRV/tree/
ches2025 under the MIT license.

2 Preliminaries
In this section, we give a brief introduction of Kyber, Dilithium, Keccak, and the target
platform used in this paper.

2.1 Kyber
Kyber is an IND-CCA2-secure KEM scheme constructed from the IND-CPA-secure public
key encryption (PKE) using the Fujisaki-Okamoto (FO) transformation [FO99]. The
security of Kyber is based on the Module-LWE (MLWE) problem, which suggests that it
is hard to distinguish between (A, t = As + e) and the uniform random sampling (A,u).
Kyber features a modular design that uses a k-dimensional matrix A, where k = 2, 3, 4
corresponds to Kyber512, Kyber768, and Kyber1024, respectively. This design provides
flexibility in adjusting security levels and allows for the reuse of core implementations.
Kyber employs SHA-3 primitives to generate the polynomial matrices and vectors. Due to
the page limit, we refer to [ABD+21] for detailed specifications of Kyber PKE and KEM.

2.2 Dilithium
The security of Dilithium relies on two hard lattice problems: MLWE and SelfTargetMSIS.
Like Kyber, Dilithium also adopts a modular design, providing flexibility in adjusting
security levels. The SelfTargetMSIS problem [KLS18] involves finding a vector [z, c,v]T
with small coefficients and a message µ such that H

(
µ‖[A|t|I] · [z, c,v, ]T

)
= c. Here, A

and t are uniformly random polynomial matrices and vectors, respectively, and I is the
identity matrix. It is suggested that one can get a non-tight security reduction from the
standard MSIS problem to the SelfTargetMSIS problem in the Random Oracle Model
(ROM) [DKL+21]. Similar to Kyber, Dilithium requires extensive SHA-3 computations to
generate polynomial matrices and vectors. Matrix-vector and polynomial multiplications
are among its core operations.

2.3 Number Theoretic Transform
Matrix-vector multiplication, a computationally intensive operation in both Kyber and
Dilithium, is primarily composed of numerous polynomial multiplications. In both Kyber

https://github.com/Ji-Peng/PQRV/tree/ches2025
https://github.com/Ji-Peng/PQRV/tree/ches2025
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and Dilithium, polynomial multiplications are performed on the ring Rq = Zq[X]/(Xn + 1),
with the polynomial order fixed at n = 256. The moduli used in Kyber and Dilithium are
q = 3329 and q = 8380417, respectively. In Kyber, the modulus satisfies q ≡ 1 mod n,
rather than q ≡ 1 mod 2n, which allows only primitive 256th roots of unity. Conversely, in
Dilithium, the modulus satisfies q ≡ 1 mod 2n, resulting in primitive 512th roots of unity.
As a result, polynomial multiplication in Kyber can be accelerated using an incomplete
7-layer NTT, while Dilithium employs a fully-splitting 8-layer NTT.

In both Kyber and Dilithium, the 7-layer and 8-layer NTTs decompose the polynomial
Xn + 1. For Kyber, it is factored into 128 degree-1 polynomials modulo X2 − ζ2i+1 for
i ∈ [0, 127]. In Dilithium, it is factored into 256 degree-0 polynomials modulo X − ζ2i+1

for i ∈ [0, 255], where ζ represents the corresponding primitive root. This factorization is
expressed as

X256 + 1 =
127∏
i=0

(
X2 − ζ2i+1) and X256 + 1 =

255∏
i=0

(
X − ζ2i+1)

for Kyber and Dilithium, respectively. Following the degree-1 and degree-0 pointwise
multiplications in Kyber and Dilithium, respectively, the inverse NTT (INTT) is applied to
transform the NTT-domain values back to the standard domain. Additionally, the 12-bit
and 23-bit moduli used in Kyber and Dilithium result in their respective NTT operations
typically employing 16-bit and 32-bit implementations. The butterfly unit forms the
core component of both NTT and INTT. Two distinct butterfly algorithms are used: the
Cooley-Tukey (CT) algorithm [CT65] and the Gentleman-Sande (GS) algorithm [GS66].

2.4 Keccak
Apart from the polynomial multiplication, both Kyber and Dilithium require extensive
SHA-3 computations to generate polynomial matrices and vectors. The SHA-3 family,
based on the sponge construction, includes four hash functions: SHA3-{224,256,384,512},
where the number indicates the output digest length, and two extendable-output functions
(XOFs): SHAKE{128,256}, where the number indicates the security strength. All SHA-3
functions are constructed using the Keccak-f1600 permutation. Keccak-f1600 consists of 24
rounds, each composed of five transformations: θ, ρ, π, χ, and ι. Algorithm 1 provides
an overview of a round of the Keccak-f1600, where r[x, y] and RC are fixed constants, ⊕
denotes the XOR operation, and ROT refers to a 64-bit left rotation operation.

The state of Keccak-f1600 comprises 1600 bits, organized in three dimensions, with
bits identified by coordinates x, y ∈ Z5 and z ∈ Z64. The bit index i = z + 64(5y + x)
corresponds to coordinates (x, y, z). This 1600-bit state can also be viewed as a 5 × 5
matrix A[x, y], with 64-bit values.

Several optimization techniques for implementing Keccak are discussed in [BDH+12]; a
brief overview follows.

Bit interleaving, primarily used on 32-bit CPUs, maps 64-bit rotations to 32-bit
rotations by adjusting the state’s encoding. For instance, L[z] = A[x, y, z] is mapped to
U0 and U1 with U0[j] = L[2j] and U1[j] = L[2j + 1] for j ∈ [0, 31], which divides each
64-bit lane by odd and even positions. Rotating L by 2τ bits corresponds to separately
rotating the two 32-bit words by τ bits. Rotating L by 2τ + 1 bits corresponds to
U0 ← ROT32(U1, τ + 1) and U1 ← ROT32(U0, τ). Notably, when the rotation offset is 1,
only one 32-bit rotation is required, which applies to 6 out of the 29 64-bit rotations in
Keccak-f1600.

We refer to the encoding and decoding methods from XKCP1 to analyze the overhead
introduced by this technique. Encoding two 32-bit values to be absorbed and XORing

1toBitInterleavingAndAND and fromBitInterleaving macros at https://github.com/XKCP/XKCP/
blob/master/lib/low/KeccakP-1600/plain-32bits-inplace/KeccakP-1600-inplace32BI.c

https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/plain-32bits-inplace/KeccakP-1600-inplace32BI.c
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/plain-32bits-inplace/KeccakP-1600-inplace32BI.c
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Algorithm 1 A round of Keccak-f1600
Input: The 1600-bit state A; A constant RC
Output: A
1: θ step:
2: C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4], ∀x in 0 . . . 4
3: D[x] = C[x− 1]⊕ ROT(C[x+ 1], 1), ∀x in 0 . . . 4
4: A[x, y] = A[x, y]⊕D[x], ∀(x, y) in (0 . . . 4, 0 . . . 4)
5: ρ and π steps:
6: B[y, 2x+ 3y] = ROT(A[x, y], r[x, y]), ∀(x, y) in (0 . . . 4, 0 . . . 4)
7: χ step:
8: A[x, y] = B[x, y]⊕ ((NOT B[x+ 1, y]) AND B[x+ 2, y]), ∀(x, y) in (0 . . . 4, 0 . . . 4)
9: ι step:
10: A[0, 0] = A[0, 0]⊕ RC
11: return A

them with the corresponding Keccak state consumes 56 logical instructions. For Kyber and
Dilithium, this process typically requires fewer than 56× 5 = 280 instructions. During the
squeezing phase, decoding two 32-bit states consumes 48 logical instructions. For SHA3-
{256,512} and SHAKE{128,256}, the decoding overhead amounts to {17, 9, 21, 17} × 48 =
{816, 432, 1008, 816} instructions, respectively. Usually, encoding and decoding happen at
the API level (like in SHA3 or SHAKE) and not inside the Keccak process itself.

Lane complementing technique reduces the number of NOT operations in the χ
mapping by representing some states as their complements, converting some AND operations
into OR operations. For more details, we refer to [BDH+12, Sec 2.2]. This technique benefits
architectures that lack a single instruction to perform both AND and NOT operations. For
our Keccak-f1600 implementation on RV64IM, we use this technique by performing NOT
operations on 6 states before storing and after loading states, reducing the number of NOT
operations in the χ mapping of a Keccak-f1600 round from 25 to 8.

In-place implementation. As shown in Algorithm 1, the ρ and π steps rotate 25
states and store the results into the temporary B[]. Then, the χ step uses B[] as input and
stores the results into A[]. The in-place technique aims to align the positions (register or
memory resources) of B[] and A[], ensuring that the positions of A[x, y] remain the same
before and after n rounds of computation. Bertoni et al. [BDH+12, Sec 2.5] describes an
in-place method for n = 4, which requires unrolling four rounds with different position
orders for each. In contrast, [BK22, Sec 3.1] describes an in-place method for n = 1, which
is adopted in this paper. More details will be discussed in Section 4.

Lazy rotations. Becker et al. [BK22] introduced the lazy rotation technique for the
ARMv8-A architecture, leveraging the Barrel shifter feature to eliminate explicit rotations.
Later, Huang et al. [HAZ+24] applied this technique to the ARMv7-M architecture.
However, this approach is not applicable to RISC-V due to the absence of the Barrel shifter
feature.

The canonical implementation of Keccak-f1600 incurs 76 XORs, 25 ANDs, 25 NOTs, and
29 64-bit rotations per round. The number of instructions required for specific architectures
using various optimization techniques will be discussed in Section 4.

2.5 Target platform: CanMV-K230 with C908 core
We use the CanMV-K230 development board [Can24], equipped with a XuanTie C908
core [TH23] operating at 1.6 GHz. The CPU features 32KB each of L1 instruction
and data cache, and 256KB L2 cache. The C908 supports the RISC-V {32,64}GCBV
instruction set, where the vector extension version is 1.0 [RIS21b] with VLEN=128 (Vector
register bit length), and the B extension version is 1.0.0 [RIS21a]. It does not implement
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Table 1: Latency and (cycles per instruction) CPI of commonly-used instructions on
Canaan K230 C908 core. SEW: selected element width.

Instruction Latency CPI
RV{32,64}I

arith/logic/compare 1 0.5
lh/lw/ld 3 1
sh/sw/sd 1 1

RV{32,64}M
mulw on RV64M 3 1

mul{h} on RV64M 4 2
mul{h} on RV32M 3 1

RV{32,64}B
rori/andn 1 0.5

RV{32,64}V
vadd/vsub 4 1

vmul{h} with SEW≤16 4 1
vmul{h} with SEW>16 5 1

logic/vmerge 4 2
vrgather 5 4

vle ≥ 3 2
vse 1 2.3

the vector cryptography bit-manipulation extension (Zvkb [RIS21c]). It supports both
RV64 and RV32 execution modes. The C908 has several notable features: a 9-stage
pipelining architecture; in-order dual-issue for scalar instructions and single-issue for vector
instructions; in-order fetch, dispatch, execute, and retire; supporting for write combining;
concurrent bus access for memory read/write operations up to 8-way/12-way.

This paper primarily focuses on the RV{32,64}IM{B}{V} instruction sets. The C908
user manual [TH23] provides latencies for integer and multiplication instructions but does
not reveal any microarchitectural details. Additionally, the latencies for B extension and V
extension instructions are undocumented. Therefore, we conducted a series of microbench-
marks on the C908 core inspired by [Fog23, AR19]. There are minor discrepancies between
our microbenchmark results and the latencies provided in the documentation. For detailed
discrepancies, we refer to our artifact. For the purpose of this paper, we will refer to our
microbenchmark results as shown in Table 1.

We highlight several noteworthy features. The load-use latency from the data of a
lh/{lw,ld} instruction to the ALU of a dependent datapath instruction is three/two
cycles. This means that in a back-to-back lh/{lw,ld}-add sequence the add instruction
would stall for two/one cycle. We attribute the additional latency of the lh instruction to
zero or sign extension. The latencies for the vle and vse instructions are relatively low,
benefiting from multi-way concurrent bus access. The CPI for vse instruction is slightly
higher than for vle, which we attribute to the additional overhead introduced by the write
combining feature.

3 Modular Arithmetic
During the NTT computation over Rq, coefficient operations are performed modulo q.
There are two widely used algorithms for modular reduction: Montgomery [Mon85] and
Barrett reduction [Bar86]. Barrett reduction relies on integer approximation. The idea of
Barrett reduction is to first precompute an integer approximate reciprocal bβ/qc, where
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Algorithm 2 Signed Montgomery multiplication [Sei18]

Input: Two signed integers a, b satisfying −β2 q ≤ ab <
β
2 q, where q ∈ (0, β2 ) and β = 2l

Output: r = abβ−1 mod± q, r ∈ (−q, q)
1: c = c1β + c0 = a · b
2: m = c0 · q−1 mod± β
3: t1 = bm · q/βc
4: r = c1 − t1
5: return r

β = 2l > q and l is the machine word size (e.g., 16, 32, 64). Then, it approximately
computes cmod q = c− q · bc/qc ≈ c− q · bcbβ/qc/βc. Recently, Becker et al. [BHK+22]
proposed an efficient Barrett multiplication for the one-known-factor multiplication using
the single-width multiply-high-with-rounding instruction. Because NEON does not support
the normal single-width multiply-high instruction, they tailored the Barrett multiplication
to use the b·e function and proposed an efficient Barrett multiplication implementation
using the single-width NEON instructions. More discussion can be found in [BHK+22].
This work will focus on Montgomery and Plantard arithmetic.

3.1 Signed Montgomery and Plantard Arithmetic
Montgomery arithmetic [Mon85] aims to replace the expensive division by modular or
division by β = 2l. Note that the result produced by Montgomery arithmetic is not the exact
product ab; instead it is given in Hensel remainder form as abβ−1 mod q. Nevertheless, this
would not be an issue because we can precompute the constant β mod q with the twiddle
factors as in [ADPS16]; then Montgomery multiplication with these twiddle factors produces
results in the normal domain. The state-of-the-art signed Montgomery multiplication
is proposed by Seiler in [Sei18]. This algorithm is designed to utilize only single-width
operations. As shown in Algorithm 2, this algorithm only needs to compute one high-half
multiplication, one low-half multiplication, and one single-width subtraction. This is useful
for vectorized implementation because handling the double-width intermediate values
would sacrifice half of the parallelism.

In 2021, a novel modular arithmetic called Plantard arithmetic was proposed by Plantard
[Pla21]. Since then, two versions of Plantard arithmetic have been developed [HZZ+22,
AMOT22] to effectively handle signed integers in LBC schemes. Compared to Montgomery
multiplication, Plantard multiplication by a constant can save one multiplication by
pre-computation, making it advantageous for the multiplication by twiddle factors in
NTT/INTT. As shown in Algorithm 3 and Algorithm 4, when b is a constant, such as a
twiddle factor in LBC schemes, we can pre-multiply bq′mod± 22l to save one multiplication.
Note that Algorithm 3 proposed in [HZZ+24] further extended the input range of Plantard
arithmetic in [HZZ+22]. However, this algorithm requires l × 2l-bit multiplication, which
may not be suitable for platforms lacking efficient support for this operation, such as
AVX2, NEON, and RISC-V vector extension. Therefore, Montgomery arithmetic remains
the prefered choice for these architectures.

The main difference between Algorithm 3 and Algorithm 4 lies in their rounding
functions: Algorithm 3 uses rounding toward negative infinity (b·c), while Algorithm 4
rounds to the nearest integer (b·e). Division by β is typically implemented using the right
shift instruction on modern CPUs. Furthermore, since most modern CPUs, such as ARM
Cortex-M and RISC-V, do not support right shifts with b·e rounding, Algorithm 4 is
inefficient on platforms lacking this feature. The original paper implemented Algorithm 4
with two additional additions with 2l−1 to simulate these rounding operations (see Source
code 1 in [AMOT22]). In this case, their Plantard arithmetic implementation consumes
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Algorithm 3 Signed Plantard multiplica-
tion [HZZ+24]
Input: Two signed integers a, b such that

ab ∈ [q2l − q2l+α, 22l − q2l+α), q <
2l−α−1, α > 0, q′ = q−1 mod± 22l

Output: r = ab(−2−2l) mod± q, r ∈
[− q+1

2 , q−1
2 ]

1: r = abq′mod± 22l

2: r = br/βc+ 2α
3: r = brq/βc
4: return r

Algorithm 4 Signed Plantard multiplica-
tion [AMOT22]
Input: Two signed integers a, b with
|a|, |b| ≤ 2l−1, the odd modulus q <
2l−1 and q′ = q−1 mod± 22l

Output: r = ab(−2−2l) mod± q, r ∈
[− q−1

2 , q−1
2 ]

1: r = abq′mod± 22l

2: r = br/βe
3: r = brq/βe
4: return r

one more addition than Algorithm 3.

3.2 An update on rounding-based Plantard arithmetic
As a secondary outcome of this work, we propose an improvement to the signed Plan-
tard multiplication presented in [AMOT22]. We show that the b·e function in line 2 of
Algorithm 4 can be replaced with b·c by slightly restricting the modulus q.

Let p = abq−1 mod± 22l. The original correctness proof ensures p0 = pmod± 2l and
p1 = bp/2le = (p − p0)/2l. Instead of using b·e, we adopt the relationship between
p, p0 and p1 in [HZZ+22], namely p0 = p mod 2l and p1 = bp/2lc = (p − p0)/2l. The
correctness of signed Plantard multiplication in [AMOT22] relies on the inequality |ab−
p0q| < 22l−1. After this modification, since the maximum value of p0 increases from 2l−1 to
2l, we need to reduce the range of q from 2l−1 to 2l−2 to maintain the inequality. Notably,
both Kyber and Dilithium have q < 2l−2; thus this stricter constraint on the modulus
does not impact practicability in these LBC schemes. Consequently, the remainder of the
correctness proofs remains unchanged. Overall, we have

pq − ab
22l =

⌊
pq − ab

22l + ab− p0q

22l

⌉
=
⌊p1q

2l
⌉

=


⌊
abq−1 mod± 22l

2l

⌋
q

2l

 . (1)

In sum, we replace the b·e function in line 2 of Algorithm 4 with the b·c function, which is
commonly supported by modern CPUs. This improvement eliminates one addition needed
to simulate the b·e function while maintaining the same instruction count as Algorithm 3.
Nevertheless, we will use the signed Plantard arithmetic presented in [HZZ+22, HZZ+24]
for the remainder of this paper.

4 Optimized Keccak Implementations
4.1 Keccak on RV64I and RV64IB
The 64-bit left rotation on RV64I. The θ and ρπ steps require 64-bit left rotation
operations. Due to the absence of a dedicated rotation instruction, we use the instruc-
tion sequence slli t,a,n; srli b,a,64-n; xor b,b,t to implement b ← ROT(a,n).
Given that most intermediate values during a Keccak-f1600 round cannot be overwritten
directly, this sequence commonly requires two temporary registers—one for holding the
intermediate value and one for the result.

Lane complementing on RV64I. Given that the RV64I instruction set lacks a
direct a AND NOT(b) instruction, the lane complementing technique proves beneficial. By
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employing this technique, we perform NOT operations on 6 out of 25 64-bit state lanes after
loading and before saving them. This reduces the number of NOT operations required in
the χ step of a Keccak-f1600 round from 25 to 8. Additionally, some of the AND operations
in the χ step are transformed into OR operations, resulting in new computation patterns.

The rori and andn instructions on RV64IB. The B extension provides the 64-bit
rotation instruction rori for directly computing the ROT operation in Algorithm 1 and the
andn instruction for computing (NOT B[x+ 1, y]) AND B[x+ 2, y] in the χ step.

Firstly, compared to the 3-instruction rotation sequence on RV64I, using the rori
instruction significantly reduces register allocation pressure and minimizes Read After
Write (RAW) hazards. Secondly, the technique of lane complementing, used to reduce the
number of NOT operations, is no longer necessary.

Register allocation and in-place implementation. We use 25 registers to main-
tain the 1600-bit state, leaving five registers for other purposes. We adopt Becker et al.’s
in-place method, which will be described briefly, with further details in [BK22, Sec 3.1]. Re-
call that the ρπ steps of Algorithm 1 store their results in B[]. The goal is to slightly offset
loc B[] from loc A[] for the computation of ρπ and to move entries back to their original
places in χ. The loc X denotes the register used by X. We set loc B[x, y] = loc A[x, y]
for x /∈ {0, 1} and loc B[x, y] = loc A[x, (y + 1)%5] for x ∈ {0, 1} and y ∈ {1, 2, 3, 4},
while using fresh registers for B[0, 0] and B[1, 0]. This in-place method eliminates the need
for mov instructions and stack spilling in a round of Keccak-f1600.

Optimizations for dual issue on RV64I. Compared to the implementation by
Becker et al. on ARMv8-A [BK22], our dual-issue optimization is more complex. ARMv8-
A has 31 programmable registers, whereas we have only 30. Additionally, ARMv8-A
supports the bic instruction for computing c ← a AND NOT(b), and Becker et al. utilized
the Barrel shifter to eliminate explicit rotations. This provided them with sufficient
registers to alternate instructions and avoid pipeline stalls.

In contrast, our three-instruction rotation operation requires an additional temporary
register to store intermediate values, increasing register allocation pressure. This instruction
sequences also have RAW hazards, which, if not properly interleaved, can lead to pipeline
stalls.

To highlight the importance of carefully designing the register allocation scheme,
consider this example: If one adopts Becker et al.’s allocation scheme, which consumes five
registers to hold C[] during the computation of the θ step (as shown in [BK22, Fig 4]),
there will be no available registers to compute D[], leading to multiple instances of stack
spilling.

Considering that the θ step is the most register-intensive part of a round computation,
we focus on optimizing this step. Our calculation sequence is as follows: (1) C[0], C[2]→
D[1]. This sequence uses three temporary registers and can be interleaved to execute
without stalls; (2) C[1] → A[1, ∗] ⊕ D[1] → C[4]. Similarly, this sequence can also
be interleaved to stall-free execution. After this sequence, D[1] can be released. At
this point, four out of five temporary registers are occupied by C[0], C[1], C[2], and
C[4]. (3) D[3] → C[3] → A[3, ∗] ⊕ D[3]. During the calculation of D[3], one register
freed from the previous steps is used, but subsequent calculations await the release of
the register occupied by C[2]. As a result, the two shifts and two XOR operations
required for computing D[3] cannot be fully interleaved to eliminate RAW hazards. We
thus use stack spilling to obtain an additional temporary register, avoiding stalls. (4)
D[4]→ A[4, ∗]⊕D[4]→ D[2]→ A[2, ∗]⊕D[2]→ D[0]→ A[0, ∗]⊕D[0]. By utilizing the
additional temporary register obtained through the above-mentioned stack spilling, this
sequence can also execute without stalls.

To illustrate the impact of the aforementioned stack spilling on performance, we report
the performance of two versions of Keccak-f1600. We use the triplet (cycle, instruction,
CPI) to measure performance, representing the CPU cycles consumed, the number of
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retired instructions, and cycles per instruction (CPI), respectively. When transitioning
from a version without stack spilling but with minor RAW hazards to a version using stack
spilling to eliminate these hazards and enable stall-free execution, the metrics improved
from (2662, 5000, 0.53) to (2591, 5048, 0.51) on C908. The second version requires one ld
and one sd instruction per round, resulting in 48 additional instructions.

Optimizations for dual issue on RV64IB. We employ a similar dual-issue opti-
mization method and computation sequence as on RV64I. The only difference is that the
implementation on RV64IB does not require stack spilling, allowing instructions to be
alternated effectively for stall-free execution.

Statistics. Our Keccak-f1600 implementation on RV64I uses 202 instructions per
round, including 196 logical instructions, 2 ld/sd instructions for stack spilling, and 4
instructions for loading constants needed by the ι step and maintaining related addresses.
The implementation on RV64IB uses 76 xor, 25 andn, and 29 rori instructions per round,
totaling 130 logical instructions, plus 4 instructions for constants needed by the ι step.

4.2 Keccak on RV32I and RV32IB
Compared to the RV64 implementation, the RV32 implementation is more complex due to
the insufficient number of registers to maintain the 1600-bit state. Therefore, we designed
a register allocation scheme aimed at pipeline friendliness for the RV32I and RV32IB
implementations. Both RV32I and RV32IB implementations use the in-place method by
Becker et al. Similar to the RV64 implementation, the RV32I employs lane complementing,
while the RV32IB does not; the relevant analysis for RV64 also applies to RV32, and will
not be repeated here. The RV32I does not use bit interleaving, while the RV32IB does, as
explained below.

Stoffelen [Sto19] utilized a combination of plane-by-plane processing [BDH+12, Sec
2.4] and 4-round unrolling [BDH+12, Sec 2.5] to reduce memory access. We did not adopt
these methods in our implementation for several reasons: (1) Our goal is to reuse the RV32
implementation to create hybrid vector/scalar implementations, which will be discussed
later. This requires the vector and scalar implementations to have similar execution flows,
prompting us to use Becker et al.’s 1-round in-place method. (2) Our design prioritizes
pipeline efficiency. Stoffelen’s implementation suffers from numerous load-use hazards, as
reflected by its CPI of 0.69, indicating performance degradation. (3) The code size of the
4-round unrolling in-place method is nearly four times that of the 1-round implementation.
As noted in [ZHLR22, Sec 5.1], a larger code size can lead to performance degradation on
the 32-bit E31 RISC-V core.

Register allocation and optimizations for dual issue. The in-place method
used here is similar to that in Subsection 4.1, with the only difference being that loc X
indicates the register or memory location occupied by X. Considering that RV32 has only
30× 32 = 960 bits of register resources, it cannot fully accommodate the entire 1600-bit
Keccak-f1600 state. Consequently, frequent memory access is unavoidable, leading to
load-use hazards and potential performance degradation. Our primary goal is to improve
pipeline friendliness.

Our basic strategy is to keep some states permanently resident in registers, so they can
directly participate in computations and these computations are alternated with memory
access instructions to mitigate load-use hazards. In the implementation on RV64, the a0
register is used for computation because accessing memory to retrieve the Keccak-f1600
state is not required during each round. However, on RV32, due to frequent a0-related
memory accesses, a0 is not used for the round computations.

We first determine the number of registers needed to store temporary values. By
examining the first six lines of Listing 2, we can see our basic pipeline optimization strategy.
This sequence can execute without stalling and requires six temporary registers. Considering
that 64-bit rotation operations also require two additional registers, the minimum number
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1 . macro xor5 dst ,b,g,k,m,s,tmp
2 lw \dst , \b(a0)
3 lw \tmp , \g(a0)
4 xor \dst , \dst , \tmp
5 lw \tmp , \k(a0)
6 xor \dst , \dst , \tmp
7 lw \tmp , \m(a0)
8 xor \dst , \dst , \tmp
9 lw \tmp , \s(a0)

10 xor \dst , \dst , \tmp
11 .endm

Listing 1: RV32I assembly code
from [Sto19] to compute half a
parity lane. Load-use hazards
prevent optimal pipelining. The xor
instruction of the 4th line incurs at
least a 1-cycle stall.

1 lw tmp0l , 0*8+0( a0) # A[0 ,0]l
2 lw tmp0h , 0*8+4( a0) # A[0 ,0]h
3 xor tmp1l , A[0 ,1]l, A[0 ,2]l
4 xor tmp1h , A[0 ,1]h, A[0 ,2]h
5 lw tmp2l , 15*8+0( a0) # A[0 ,3]l
6 lw tmp2h , 15*8+4( a0) # A[0 ,3]h
7 xor tmp1l , \tmp1l , \ tmp0l
8 xor tmp1h , \tmp1h , \ tmp0h
9 lw tmp0l , 20*8+0( a0) # A[0 ,4]l

10 lw tmp0h , 20*8+4( a0) # A[0 ,4]h
11 xor tmp1l , \tmp1l , \ tmp2l
12 xor tmp1h , \tmp1h , \ tmp2h
13 xor tmp1l , \tmp1l , \ tmp0l
14 xor tmp1h , \tmp1h , \ tmp0h

Listing 2: Our optimized RV32I
assembly code to compute a parity lane.
Part of the state resides permanently
in register. Load-use hazards are
eliminated by alternating lw and xor
instruction.

of temporary registers needed is eight. Additionally, we allocate one more temporary
register for flexible purposes, such as the vector/scalar hybrid implementation.

We have 20 remaining registers available for storing the 640-bit state. The chosen
state lanes are A[0, 1], A[0, 2], A[1, 3], A[1, 4], A[2, 0], A[2, 3], A[3, 1], A[3, 4], A[4, 0], A[4, 2].
Notably, in line 2 of Algorithm 1, each C[x] relies on five lanes, specifically A[x, ∗]. Our
selection ensures that each C[x] computation can directly access two of the required 64-bit
lanes from the registers, allowing the computation instructions to alternate with memory
accesses. This approach helps mitigate load-use hazards; see Listing 1 and Listing 2.

The 64-bit rotation and bit interleaving on RV32I.We use four shift instructions
and two xor instructions to achieve a 64-bit rotation operation. Alternating these six
instructions allows for stall-free execution. A 32-bit rotation requires two shift and one
xor instruction. Referencing the data mentioned in Subsection 2.4, the bit interleaving
technique indicates that six out of 29 64-bit rotations have an offset of one, reducing the
instruction count by 24× 6× 3 = 432. In the context of Kyber and Dilithium, SHAKE128 is
used to generate polynomial matrices. Using SHAKE128 as an example, even when ignoring
the encoding overhead of the absorbing phase, a single squeeze operation requires 1008
instructions for decoding. Therefore, from an instruction count perspective, this technique
does not provide direct benefits for Keccak-f1600 on RV32I.

Bit interleaving on RV32IB. A 64-bit rotation still requires four shift instructions
and two xor instructions. With bit interleaving, six of the 29 rotations only consume
one rori instruction, while the remaining 23 consume two rori instructions each. The
saved instruction count is 24 × (29 × 6 − 6 − 23 × 2) = 2928. Therefore, this technique
is advantageous for implementations on RV32IB. Additionally, using rori instructions
slightly alleviates register allocation pressure.

Statistics. In the RV32I implementation, each round consumes 344 logical instructions,
115 lw instructions, and 101 sw instructions. The implementation on RV32IB uses 258
logical instructions, 115 lw instructions, and 101 sw instructions per round. Most of the
memory access instructions are used for loading and storing the Keccak-f1600 state, with a
smaller portion allocated for stack spilling.

4.3 Keccak on RVV
The implementation strategy for Keccak-f1600 using the vector extension is nearly identical
to the implementation on RV64I. All logical instructions used in the RV64I implementation
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have vector equivalents. Considering our target platform has a VLEN of 128, the vector
implementation can execute two Keccak-f1600 instances in parallel.

There are a few minor differences between the implementations on RVV and RV64I: (1)
RVV has 32 vector registers, which allows for simpler instruction scheduling to optimize
pipelining without causing stack spilling. (2) The vi version of shift instructions, such
as vsll.vi vd,vs2,uimm, use a 5-bit immediate value to specify the shift amount. Since
the shift amounts in Keccak-f1600 may exceed what a 5-bit immediate can represent, we
have to use the vx versions of these instructions, where a scalar register specifies the
shift amount. As a result, the RVV implementation includes a few li instructions and
occasionally occupies one scalar register.

Statistics. Each round uses 196 vector logical instructions, one vle64 for loading
constants used in the ι step, and 26 scalar instructions.

4.4 Hybrid Implementations on C908 RV{32,64}I{B}{V}
The hybrid vector/scalar implementation approach has been used to accelerate Salsa20 on
ARMv7-A [BS12], X25519 on ARMv8-A [Len19], and more recently, Keccak on ARMv8-
A and ARMv8.4-A [BK22]. As discussed in [BK22, Sec 4.4], the hybrid idea involves
interleaving code paths A and B, which use different execution units, to promote parallel
execution. One reason the hybrid idea is effective is that these cores often have independent
scalar and SIMD execution units. Our target platform shares this characteristic.

Next, we analyze the performance of Keccak-f1600 on RVV, which is key to understand-
ing our hybrid implementation. We will then explain why the hybrid idea is not suitable
for C908 RV64I{B}V and demonstrate its successful application on C908 RV32I{B}V.

Performance of RVV implementation. Recall that all vector instructions of C908
are single-issue, with logical vector instructions having a CPI of 2. Ideally, the CPI of
Keccak-f1600 on RVV should be 2. Table 2 reports the performance, showing a CPI slightly
below 2 due to the inclusion of some scalar instructions. The average cost of one-way
Keccak-f1600 on RVV is 4827 cycles, which is significantly higher than the counts on C908
RV64I{B}. This performance discrepancy is primarily due to the limited capability of the
vector backend in handling logical instructions.

Hybrid implementation on C908 RV64I{B}V. The hybrid approach does not
yield benefits for C908 RV64I{B}V. Our implementation on C908 RV64I{B} already
achieves near-ideal CPI, meaning our programs fully utilize the CPU’s front and back end.
When combining RVV with RV64I{B} for a hybrid implementation, vector instructions
compete with scalar instructions for the front-end capacity. Despite a vector instruction
can execute two 64-bit logical operations in parallel, its computational power is still inferior
to that of scalar implementation. We included various RV64I{B}V hybrid implementations
in our artifact as they may be suitable for future hardware.

Hybrid implementation on C908 RV32I{B}V. Our RVV implementation com-
putes one-way Keccak-f1600 faster than RV32I{B} on C908, which is a premise for the
hybrid approach’s applicability here. Consider the execution of three consecutive 4-cycle
vector logical instructions on C908. Even with two execution units available, the third
instruction would stall for 2 cycles, waiting for available units. Thus, for Keccak-f1600
implementation on C908 RVV, even if the front end can issue only one instruction per
cycle, the backend logical units remain a bottleneck, causing pipeline stalls. Our mi-
crobenchmarks corroborate this, showing that sequences of vand;vand and vandx2;andx4
both take 4 cycles. For an ideal hybrid implementation on C908, the ratio of vector to
scalar instructions should be 1:2. Our RVV implementation uses 197 vector and 26 scalar
instructions per round, while RV32I and RV32IB implementations use 560 and 474 scalar
instructions per round, respectively. When constructing a hybrid implementation with one
RVV and one RV32I{B}, the ratios are 1:3 and 1:2.5, respectively. To achieve the ideal
ratio, one could use three RVV implementations with two RV32I implementations, closely
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Algorithm 5 Plantard multiplication by a
constant for Kyber on RV32IM [HZZ+24]
Input: 32-bit signed integer a ∈

[−137q, 230q]; α = 3; precomputed
2l-bit integer bq′ where b is a constant
and q′ = q−1 mod 22l; q2l = q × 2l; l = 16

Output: r = ab(−2−2l) mod± q, r ∈
(− q2 ,

q
2 )

1: bq′ ← bq−1 mod± 22l . precomputed
2: mul r, a, bq′ . r ← [abq′]2l
3: srai r, r,#16
4: addi r, r, 2α . r ← ([r]l + 2α)
5: mulh r, r, q2l . r ← [rq2l]2l
6: return r

Algorithm 6 Montgomery multiplica-
tion for Dilithium on RV32IM
Input: Two signed integers a, b satisfy-

ing −β2 q ≤ ab < β
2 q, where q ∈

(0, β2 ) and β = 232; precomputed in-
teger bq′ where b is a constant and
b ∈ (0, q); q′ = q−1 modβ

Output: r = abβ−1 mod± q, r ∈ (−q, q)
1: bq′ ← bq−1 mod± β . precomputed
2: mul r, a, bq′
3: mulh t, a, b
4: mulh r, r, q
5: sub r, t, r
6: return r

1 . macro ct_bfu_x2 a0_0 ,a0_1 ,a1_0 ,a1_1 ,zeta0 ,zeta1 ,q16 ,t0 ,t1
2 mul \t0 , \a0_1 , \ zeta0 ; mul \t1 , \a1_1 , \ zeta1
3 srai \t0 , \t0 , 16; srai \t1 , \t1 , 16
4 addi \t0 , \t0 , 8; addi \t1 , \t1 , 8
5 mulh \t0 , \t0 , \q16; mulh \t1 , \t1 , \q16
6 sub \a0_1 , \a0_0 , \t0; sub \a1_1 , \a1_0 , \t1
7 add \a0_0 , \a0_0 , \t0; add \a1_0 , \a1_0 , \t1
8 .endm

Listing 3: 2-way alternation of Plantard-based CT butterfly unit.

approximating 1:2. This would result in an 8-way parallel Keccak-f1600 implementation,
significantly increasing programming complexity and making it difficult to construct a
unified loop execution flow. Therefore, we decided to start with one RVV and one RV32I{B}
to construct the hybrid implementation. We also experimented with combining one RVV
and two or three scalar implementations, resulting in 3-way, 4-way, and 5-way parallel
Keccak-f1600. Among these, the 3-way version performed best on C908, as shown in
Table 2.

5 NTT Optimizations for Kyber and Dilithium
Dual-issue optimization and CPI of NTT. Given that our various NTT implemen-
tations rely on dual-issue optimization, we illustrate the basic principles using Huang
et al.’s Plantard multiplication on RV32 [HZZ+24] as an example. In Algorithm 5, each
instruction depends on the result of the previous one, which is manageable for single-issue
CPUs but introduces RAW hazards on dual-issue CPUs. The optimization strategy in-
volves alternating multiple instances to mitigate these hazards. Listing 3 demonstrates
the alternating execution of two Plantard-based CT butterfly units. Considering the 3
or 4-cycle delay of multiplication instructions on C908, six-way or eight-way alternation
yields optimal performance. However, in NTT implementations, we can achieve at most
four-way alternation due to register constraints. Each Plantard-based CT unit consumes
two multiplication instructions and four logical/arithmetic instructions, ideally achieving a
CPI of (1× 2 + 0.5× 4)/6 = 0.67 on C908 RV32IM. Our microbenchmarks indicate that
four-way CT alternation achieves CPIs of 0.88 and 1.08 on C908 RV32IM and RV64IM,
respectively. The pipeline optimization for the RVV implementation is similar. By utilizing
scalar registers to load certain constants and employing the vmul{h}.vx instruction, we
can achieve up to 8-way interleaving. This results in an ideal CPI close to 1.
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Asymmetric multiplication [AHKS22, BHK+22] optimizes the computation of Kyber’s
matrix-vector multiplication As. During this process, the NTT-domain secret vector
ŝ is used k times, and the term ŝ2i+1ζ

2br7(i)+1 is repeatedly computed. To reduce the
computational load, these terms are cached. For Kyber NTT implementation, better
accumulation [AHKS22, ACC+22, BHK+22] involves accumulating results into 32-bit
values during vector inner product calculations, followed by reduction. For Kyber NTT on
RV32IM and RV64IM, we employed both techniques. However, our experiments on RVV
showed negligible benefits from them, so we did not adopt these two techniques on RVV.

All our implementations use CT units for NTT and GS units for INTT. Utilizing CT
units for INTT does not provide performance benefits, as detailed in [HZZ+24, Sec 5].

Kyber NTT on RV32IM. Our implementation is based on the speed-version pre-
sented in [HZZ+24], which uses a 4+3 layer merging strategy. Thanks to Plantard
arithmetic, no modular reductions are needed during the NTT and INTT computations.
The Plantard multiplication employed is described in Algorithm 5. While they also pro-
posed several memory optimization strategies, we did not adopt these as our focus was not
on memory optimization. As will be discussed below, by precomputing bq′, Montgomery
multiplication requires only four instructions: three multiplications and one subtraction.
However, this method has the drawback of increased register consumption due to loading
bq′. Consequently, we cannot implement a 4+3 layer merging strategy and must instead
use a 3+3+1 layer merging strategy. In addition, when using Montgomery arithmetic, the
INTT computation process requires extra modular reduction.

Kyber NTT on RV64IM. For the RV64IM implementation, only minor modifications
to Algorithm 5 are required. Specifically, in line 2, the mulw instruction should be used
instead of mul, as mulw is faster on C908 RV64IM. Additionally, the constant q216 in line
5 should be changed to q248. The rest of the implementation remains consistent with the
RV32IM version.

Dilithium NTT on RV32IM. Using Plantard arithmetic requires the 32 × 64-bit
multiplier, which is why we use Montgomery arithmetic instead, as described in Algorithm 6.
We precompute bq′ ← bq−1 mod 2l, thus Algorithm 6 uses three mul{h} instructions and
one sub instruction. This technique is also employed in the Kyber AVX2 implementation2

and the NTT implementations on RVV discussed below utilize this technique. Loading bq′
increases register usage, which limits us to merging a maximum of three layers at a time,
resulting in a 3+3+2 layer merging strategy. Both NTT and INTT calculations do not
require modular reduction. For example, in INTT, the input range is (−q, q), and after 8
layers of INTT, the range becomes (−28q, 28q), which avoids overflow.

Dilithium NTT on RV64IM. The 64-bit multiplier on RV64IM makes Plantard
arithmetic feasible. By making simple modifications to Algorithm 5, Plantard arithmetic
can be applied. Specifically, l is set to 32, so in line 5, q2l becomes q232; α is set to 8; and
the shift offset in line 3 changes from 16 to 32. According to [HZZ+24, Sec 3], the maximum
and minimum allowable values of a are amax < (264 − 8380417× 240)/8380417 ≈ 131457q
and amin > (8380417 × 232 − 8380417 × 240)/8380417 ≈ −130686q, respectively. The
layer merging strategy is 4+4. Both NTT and INTT calculations do not require modular
reduction.

Kyber NTT on RVV. Due to the absence of 16× 32-bit multiplication instructions
on RVV, using 32× 32-bit multiplications for Plantard arithmetic would reduce parallelism
by half. Consequently, we adopt Montgomery arithmetic, adjusting β in Algorithm 6 to
216. The instructions used in Algorithm 6 have corresponding counterparts in the vector
extension. A key trick is to use the vmul{h}.vx instruction whenever possible, where one
operand is specified by a scalar register. This approach reduces the allocation pressure
on vector registers and takes advantage of the faster scalar load instructions compared to

2https://github.com/pq-crystals/kyber/blob/8e390f7152cf66f27cb39f164a3b2a8256bf863c/
avx2/ntt.S

https://github.com/pq-crystals/kyber/blob/8e390f7152cf66f27cb39f164a3b2a8256bf863c/avx2/ntt.S
https://github.com/pq-crystals/kyber/blob/8e390f7152cf66f27cb39f164a3b2a8256bf863c/avx2/ntt.S
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vector loads. Similar to the Kyber NTT AVX2 implementation, our layer merging strategy
is 1+6. No additional modular reduction is required during the NTT computation. In the
INTT process, before computing the 0th layer, each coefficient is first modularly multiplied
by the constant mont2/128 to normalize the coefficient range to (−q, q). The mont2 term is
involved in the Montgomery domain conversion. After the first three levels, coefficients in
16 vector registers approach overflow boundaries, necessitating modular reduction. After
two more levels, two additional registers require reduction. In total, the INTT process
requires 18 extra modular reductions. Additionally, the vrgather.vv and vmerge.vvm
instructions are used to rearrange polynomial coefficients within the registers to construct
the desired execution flow.

Dilithium NTT on RVV. Similar to the Kyber NTT on RVV, we utilize Montgomery
arithmetic, specifically the vectorized version of Algorithm 6. The layer merging strategy is
4+4, and both NTT and INTT computations do not require additional modular reduction.

LMUL settings on RVV. We experimented with LMUL > 1 and found that the
ntt and intt subroutines did not benefit from these setting. However, the poly_reduce,
poly_tomont, and some subroutines related to poly_basemul showed improvements.

Hybrid implementation on C908. Our experiments show that hybrid idea do not
improve NTT performance on C908. For C908, vmul;vmul;vmul;mul and vmul;vmul;vmul
consume the same cycles, indicating that a 4:1 vector-to-scalar instruction ratio is ideal.
Multi-way implementations should be considered, meaning we would need to construct
{33,17,9}-way hybrid NTT implementations for {16,32,64}-bit NTTs. The Raccoon sig-
nature scheme [dPKPR24], which relies on 64-bit NTT, is a potential application. For
a core with a smaller vector unit, a 2:1 vector-to-scalar instruction ratio might suffice,
making 9-way 32-bit and 5-way 64-bit hybrid NTTs applicable to Dilithium and Raccoon,
respectively.

6 Results and Comparisons
We obtain the experimental results using the CanMV-K230 development board [Can24],
equipped with a XuanTie C908 core [TH23], as introduced in Subsection 2.5. We use the
Xuantie-900 linux-5.10.4 glibc gcc toolchain v2.8.0, with all programs compiled
using the -O3 optimization level. All instructions utilized in this work have constant
execution time, and we avoid any branches and memory accesses related to secret keys.

6.1 Keccak
Table 2 presents the performance and comparisons of our various implementations. The C
reference implementation was obtained from the PQClean library3.

Given the limited research on the implementation of Keccak across various RISC-V
instruction sets, we not only compare our work with the C reference implementation and
available RISC-V implementations but also provide performance comparisons between
our RV64 and RVV implementations and the ARM Cortex-A55, as well as our RV32
implementations against the ARM Cortex-M4. These comparisons are clearly unfair and
are provided for reference only.

The Cortex-A55 is an in-order dual-issue CPU. The optimal CPI for the scalar and
NEON instructions used to implement Keccak are 0.5 and 1, respectively. The Cortex-
M4 is a single-issue CPU with a CPI of 1 for both logical and arithmetic instructions.
Both the A55 scalar and the Cortex-M4 support rotate and bic instructions. The A55
NEON supports bic instructions but does not support rotate instructions, requiring two
instructions to achieve rotation. Additionally, the A55 scalar and the Cortex-M4 support
barrel shifter features, enabling the use of lazy rotation techniques.

3https://github.com/PQClean/PQClean/blob/master/common/fips202.c at commit 05df469.

https://github.com/PQClean/PQClean/blob/master/common/fips202.c
05df469


Jipeng Zhang, Yuxing Yan, Junhao Huang, Çetin Kaya Koç 647

Table 2: Performance comparison of Keccak-f1600 on C908 RV{32,64}I{B}{V}. For
our implementation, the number of cycles and retired instructions are directly obtained
by reading the corresponding performance counters, with cycle counts determined as
the median over 10000 iterations. CPI means cycles per instruction. The numbers in
parentheses are normalized based on the degree of parallelism. The notation ‘x2’ indicates
a 2-way implementation.

Implementation Method Cycles Instructions CPI
C on RV32I ref. 15779 24487 0.64

[Sto19] on
RV32I

lane compl. &
bit interl. &

4-round in-place &
plane-by-plane

8734 12740 0.69

Our RV32I
lane compl. &

1-round in-place &
dual-issue opt.

7808 14890 0.52

C on RV32IB ref. 12341 20460 0.6

[HAZ+24] on
Cortex-M4

lazy rotation &
bit interl. &

4-round in-place &
plane-by-plane

9218 ∼91562 1.01

Our RV32IB
bit interl. &

1-round in-place &
dual-issue opt.

6222 11554 0.54

C on RV64I ref. 4926 8585 0.57

Our RV64I
lane compl. &

1-round in-place &
dual-issue opt.

2591 5049 0.51

C on RV64IB ref. 2412 4296 0.56
RISCV-Crypto1

on RV64IB
inline asm for

rori/andn 2563 4649 0.55

[BK22] on
A55-Scalar

lazy rotation &
1-round in-place &
multi-issue opt.

1418 2747 0.52

Our RV64IB 1-round in-place &
dual-issue opt. 1770 3405 0.52

Our RVVx2
lane compl. &

1-round in-place &
dual-issue opt.

9655 (4827) 5462 1.77

[BK22] on
A55-NEON 1-round in-place 4560 (2280) 3840 1.19

NEON/Scalar x5
[BK22]

A55-Scalar &
A55-NEON 8960 (1792) - -

Our RV32IVx3
RV32I & RVVx2

11850 (3950) 20273 0.58
Our RV32IVx4 20374 (5093) 35190 0.58
Our RV32IVx5 30544 (6108) 50285 0.61
Our RV32IBVx3

RV32IB & RVVx2
10527 (3509) 17012 0.62

Our RV32IBVx4 16670 (4167) 28472 0.59
Our RV32IBVx5 24299 (4859) 39991 0.61
1 https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_

rv64/Keccak.c at commit efb77a9.
2 Huang et al. did not report the number of instructions directly. Therefore, we disassembled
their executable file, identified the main loop of Keccak, and multiplied the number of
instructions in the main loop by six to estimate this data.

https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_rv64/Keccak.c
https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_rv64/Keccak.c
efb77a9
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Our RV64I implementation is 90% faster than the C reference implementation. The C
implementation also performs well on RV64IB because the compiler successfully utilizes the
B extension’s rotate and andn instructions. These instructions reduce register allocation
pressure and, consequently, stack spilling. Our RV64IB implementation is 36% faster
than the C implementation. When compared to the A55-scalar implementation from
[BK22], our disadvantage mainly stems from a higher instruction count. The A55-scalar
implementation uses lazy rotation techniques to reduce the number of instructions.

Stoffelen’s implementation on RV32I [Sto19] is based on the Keccak implementation for
ARMv7-M from XKCP4. This approach incorporates techniques such as bit interleaving,
lane complementing, and the 4-round unrolling in-place method. Additionally, the plane-
per-plane processing combined with 4-round unrolling reduces memory accesses. Stoffelen
did not explain the use of bit interleaving, which we speculate is due to his direct adaptation
from ARMv7-M (which supports rotation instructions) implementation without thorough
discussion. The main advantage of his implementation lies in the plane-per-plane processing
method, which significantly reduces memory accesses but at the cost of 4-round unrolling.

Our RV32I implementation is twice as fast as the C reference implementation and
12% faster than Stoffelen’s implementation. It is important to note that Stoffelen’s
implementation employs bit interleaving, which, for example, adds 1008 extra instructions
for each squeeze operation in SHAKE128. Our RV32IB implementation is 98% faster than
the C implementation, although this comparison is slightly unfair due to the use of bit
interleaving in our implementation. When compared to [HAZ+24] on Cortex-M4, their
implementation benefits from fewer instructions due to plane-by-plane processing and lazy
rotation. Nevertheless, our implementation still consumes fewer cycles than theirs.

As mentioned in Subsection 4.4, our target platform’s vector units are relatively weak
at handling logical instructions, resulting in a higher CPI for the RVV implementation.
When comparing our RVV implementation to Becker et al.’s A55-NEON implementation
[BK22], we note that NEON benefits from a richer instruction set, which reduces the
number of instructions.

The hybrid implementation by Becker et al. [BK22] differs slightly from ours, making
a direct comparison challenging. The main advantage of our hybrid approach is that
the insertion of scalar instructions alleviates pipeline stalls. We combine vector and
RV32 implementations for the hybrid, while they combine NEON and 64-bit scalar
implementations.

Our RV32IVx3 implementation shows a 22% performance improvement over the RVVx2
implementation. Our RV32IBVx3 and RV32IBVx4 implementations achieve 38% and 16%
performance improvements over the RVVx2 implementation, respectively.

6.2 NTT
Table 3 presents the performance comparison of the NTT-related subroutines.

Kyber NTT. Comparing our RV32IM implementation with [HZZ+24] reveals that
our dual-issue optimizations accelerate performance by a factor of 1.8 to 2.3. Our RV32IM
implementation consumes more cycles than the Cortex-M4 implementation in [HZZ+22].
This difference arises because the M4’s SIMD capabilities allow it to complete two 16-bit
CT butterflies in just 7 1-cycle instructions. Our implementation requires 12 instructions,
with 4 3-cycle multiplication instructions and facing unavoidable RAW hazards.

The RV64IM implementation is slower than RV32IM, which is expected; the mul
instruction consumes one additional cycle on C908 RV64IM. Furthermore, our RVV
implementation consumes more cycles than the A72-NEON implementation from [BHK+22].
This comparison is challenging to assess fairly due to differing implementation strategies

4https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/
KeccakP-1600-inplace-32bi-armv7m-le-gcc.s

https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s
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Table 3: Performance and comparison of NTT, INTT, and base multiplication on C908
RV{32,64}IM{V}, with cycle counts determined as the median over 10000 iterations.
Each set of three lines represents the metrics for NTT, INTT, and base multiplication,
respectively. For [HZZ+24] on RV32IM, we derived a version based on their implementation,
preserving the core code and aligning the interfaces, and tested it on our platform. There
are two metrics for the base multiplication due to the use of asymmetric multiplication
techniques, which have led to multiple versions. In our implementation, there are actually
more versions, but we will only report two here. The first metric involves retrieving
the cached value ŝ2i+1ζ

2br7(i)+1 and accumulating the multiplication result into 32-bit
intermediate values. The second metric, in addition to performing the operation described
in the first, also includes modular reduction.

Impl. Method Cycles Inst. CPI

Kyber

[HZZ+24]
on RV32IM

Plant & 4+3 &
single-issue opt.&

CT+GS

13218 6774 1.95
11427 7317 1.56

2891/5900 2572/3663 1.12/1.61

Our on
RV32IM

Plant & 4+3 &
dual-issue opt.&

CT+GS

5714 6870 0.83
6005 7398 0.81

1673/2668 2412/3536 0.69/0.75

[HZZ+22] on
Cortex-M4

Plant & 4+3&
CT+GS

4474 - -
4684 - -
2422 - -

Our on
RV64IM

Plant & 4+3 &
dual-issue opt.&

CT+GS

6609 6871 0.96
6996 7399 0.95

2122/3245 2413/3537 0.88/0.92

Our on
RVV

Mont & 1+6 &
dual-issue opt&

CT+GS

1575 1347 1.17
1840 1592 1.16
753 738 1.02

[BHK+22] on
A72-NEON

Barrett & 4+3&
CT+GS

1200 - -
1338 - -
952 - -

Dilithium

Our on
RV32IM

Mont & 3+3+2 &
dual-issue opt.&

CT+GS

7054 8692 0.81
7561 9206 0.82
2026 2349 0.86

Our on
RV64IM

Plant & 4+4&
CT+GS

8258 7765 1.06
8484 8293 1.02
2320 2227 1.04

[AHKS22] on
Cortex-M4

Mont & 3+3+2&
CT+CT

8066 - -
8388 - -
1931 - -

Our on
RVV

Mont & 4+4 &
dual-issue opt.&

CT+GS

3395 2899 1.17
3540 3106 1.14
668 118 5.66

[BHK+22] on
A72-NEON

Barrett & 4+4&
CT+GS

2241 - -
2821 - -
1378 - -
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Table 4: Performance of Kyber768 and Dilithium3 on C908 RV{32,64}IM{B}{V}. Most of
the cycle counts (k = 1000) are determined as the median over 10000 iterations, except
that Dilithium Sign is obtained as the average over 10000 iterations.

Impl. Kyber768 Dilithium3
KeyGen Encaps Decaps KeyGen Sign Verify

[HZZ+24] RV32IM 1052k 1261k 1179k - - -
[HAZ+24] Cortex-M4 604k 732k 674k 2394k 5575k 2302k

Ref RV32IM1 1222k 1602k 1691k 4123k 13671k 4145k
Ref RV32IMB1 1048k 1377k 1481k 3422k 12635k 3504k
Our RV32IM 496k 606k 578k 1934k 5069k 1889k
Our RV32IMB 447k 550k 532k 1752k 4746k 1720k
Our RV32IMV 312k 419k 371k 1165k 3193k 1165k
Our RV32IMBV 284k 382k 346k 1087k 3054k 1091k
Ref RV64IM2 742k 986k 1185k 1841k 8232k 1958k
Ref RV64IMB2 603k 803k 1011k 1328k 7217k 1474k
Our RV64IM 278k 326k 357k 920k 3333k 939k
Our RV64IMB 237k 275k 316k 753k 3085k 791k
Our RV64IMV 204k 243k 248k 810k 2406k 800k
Our RV64IMBV 165k 197k 207k 645k 2139k 646k
[BHK+22] A72 99k 127k 120k 515k 1089k 447k

1 https://github.com/pq-crystals/kyber/tree/main/ref at commit 441c051.
2 https://github.com/pq-crystals/dilithium/tree/master/ref at commit f1f8085.

and the A72 is an out-of-order CPU. In simple terms, one CT butterfly on NEON requires
only five instructions, while we require six.

Dilithium NTT. Our RV32IM implementation consumes slightly fewer cycles com-
pared to the Cortex-M4 implementation from [AHKS22]. They use CT butterflies to
construct both NTT and INTT; however, their implementation requires five 1-cycle in-
structions for a CT butterfly, compared to our six instructions, which include three
3-cycle multiplication instructions. Examining the instruction count for the RV64IM and
RV32IM implementations highlights the advantages of Plantard arithmetic, where the
slower performance of RV64IM is still attributed to the additional cycle consumed by
the mul instruction. Similarly, our RVV implementation consumes more cycles than the
A72-NEON implementation, for the same reasons noted in the Kyber NTT comparison.

6.3 Kyber and Dilithium
To facilitate comparison with related work, our development is based on the Kyber5

and Dilithium6 codebases. For the V extension, we integrated multiple-way Keccak
implementations, such as RV32IVx3, RV32IBVx3, and RV32IBVx4, as much as possible
into Kyber and Dilithium for accelerating the generation of polynomial matrices and
vectors. Where parallelization is not possible, we directly use the scalar implementation.
Additionally, we also vectorized the rej_uniform, cbd2, and cbd3 subroutines in Kyber,
as well as the rej_uniform and rej_eta subroutines in Dilithium. The vectorization of
packing/unpacking-related subroutines for public and secret keys can further enhance
performance; we consider this as part of our future work. We only present results for
Kyber768 and Dilithium3 on C908 RV{32,64}IM{B}{V}, as shown in Table 4, due to the
page limit.

When compared to the reference C implementation on the same architecture, our
5https://github.com/pq-crystals/kyber/tree/main/ref at commit 441c051.
6https://github.com/pq-crystals/dilithium/tree/master/ref at commit f1f8085.

https://github.com/pq-crystals/kyber/tree/main/ref
441c051
https://github.com/pq-crystals/dilithium/tree/master/ref
f1f8085
https://github.com/pq-crystals/kyber/tree/main/ref
441c051
https://github.com/pq-crystals/dilithium/tree/master/ref
f1f8085
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optimized implementations often achieve speedups of nearly 2× or more. Our Kyber768
implementations on RV32IM and RV32IMB show 14% ∼ 18% and 18% ∼ 26% cycles
reduction, respectively, than the state-of-the-art implementations on Cortex-M4 [HAZ+24].
Our Dilithium3 implementations on RV32IM and RV32IMB show 9% ∼ 19% and 15% ∼ 27%
cycles reduction, respectively, than the state-of-the-art implementations on Cortex-M4
[HAZ+24]. This mainly comes from the fact that our platform is dual-issued and our
optimizations are dual-issue friendly. While our implementations of Kyber and Dilithium
consume more cycles than A72-NEON implementations in [BHK+22], we consider this
expected given that the A72 is an out-of-order CPU with a more powerful instruction set.

6.4 Future work
Our work extends beyond Kyber and Dilithium; our Keccak implementations can be
integrated into hash-based signatures such as XMSS [HBG+18], LMS [MCF19], and
SPHINCS+. SLOTHY [ABKK24] is an advanced framework that automates instruc-
tion scheduling, register allocation, and loop optimization for ARMv8.1-M and AArch64
architectures, and future efforts should focus on extending SLOTHY to RISC-V. Addition-
ally, it would be valuable to formally verify our NTT implementations using CryptoLine
[PTWY18] on RISC-V.

For cores with VLEN 6=128. The implementations presented in this work are primarily
designed for RVV cores with VLEN=128. We encourage future research to develop Kyber
and Dilithium implementations compatible with various VLEN configurations, following
the RISC-V Vector programming model. These implementations should aim to ensure
compatibility while also optimizing performance for specific microarchitectures. Notably,
the hybrid SHA-3 implementations introduced in this work are highly dependent on the
underlying microarchitecture, making the development of compatible versions a significant
challenge.

Using VLEN=256 as an example, we describe the necessary changes and the expected
performance impact: (1) For the subroutines related to rej_uniform, rej_eta, and
cbd: The index arrays used for the vrgather instruction need to be redesigned, and the
number of iterations should be halved. (2) For the NTT-related subroutines: The layer
merging strategy can remain unchanged, but the rearrangement of polynomial coefficients
needs to be redesigned, which is used to construct the required execution flow. The
precomputed table of twiddle factors also needs to be redesigned to accommodate longer
vectors. (3) For the Keccak implementation: A 256-bit vector width enables a 4-way Keccak
implementation. The hybrid implementation needs to be carefully re-analyzed based on
the specific microarchitecture. If the CPI of the relevant instructions is the same as that
of the C908 core, then the cycles consumed by these subroutines should theoretically be
halved, as the parallelism is doubled.
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