
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 1–24. DOI:10.46586/tches.v2024.i2.1-24

Revisiting Keccak and Dilithium
Implementations on ARMv7-M

Junhao Huang1,2, Alexandre Adomnicăi3, Jipeng Zhang4, Wangchen Dai5,
Yao Liu6, Ray C. C. Cheung7, Çetin Kaya Koç4,8,9, Donglong Chen1∗

1 Guangdong Provincial Key Laboratory IRADS, BNU-HKBU United International College,
Zhuhai, China huangjunhao@uic.edu.cn,donglongchen@uic.edu.cn

2 Hong Kong Baptist University, Hong Kong, China
3 Independent researcher, Paris, France alexandre@adomnicai.me

4 Nanjing University of Aeronautics and Astronautics, Nanjing, China jp-zhang@outlook.com
5 Zhejiang Lab, Hangzhou, China w.dai@my.cityu.edu.hk

6 Sun Yat-sen University, Zhuhai, China liuyao25@mail.sysu.edu.cn
7 City University of Hong Kong, Hong Kong, China r.cheung@cityu.edu.hk

8 Iǧdır University, Merkez, Turkey
9 University of California Santa Barbara, Santa Barbara, USA cetinkoc@ucsb.edu

∗ Corresponding Author.

Abstract. Keccak is widely used in lattice-based cryptography (LBC) and its impact
to the overall running time in LBC scheme can be predominant on platforms lacking
dedicated SHA-3 instructions. This holds true on embedded devices for Kyber and
Dilithium, two LBC schemes selected by NIST to be standardized as quantum-
safe cryptographic algorithms. While extensive work has been done to optimize
the polynomial arithmetic in these schemes, it was generally assumed that Keccak
implementations were already optimal and left little room for enhancement.
In this paper, we revisit various optimization techniques for both Keccak and Dilithium
on two ARMv7-M processors, i.e., Cortex-M3 and M4. For Keccak, we improve its
efficiency using two architecture-specific optimizations, namely lazy rotation and
memory access pipelining, on ARMv7-M processors. These optimizations yield
performance gains of up to 24.78% and 21.4% for the largest Keccak permutation
instance on Cortex-M3 and M4, respectively. As for Dilithium, we first apply the
multi-moduli NTT for the small polynomial multiplication cti on Cortex-M3. Then,
we thoroughly integrate the efficient Plantard arithmetic to the 16-bit NTTs for
computing the small polynomial multiplications csi and cti on Cortex-M3 and M4.
We show that the multi-moduli NTT combined with the efficient Plantard arithmetic
could obtain significant speed-ups for the small polynomial multiplications of Dilithium
on Cortex-M3. Combining all the aforementioned optimizations for both Keccak and
Dilithium, we obtain 15.44% ∼ 23.75% and 13.94% ∼ 15.52% speed-ups for Dilithium
on Cortex-M3 and M4, respectively. Furthermore, we also demonstrate that the
Keccak optimizations yield 13.35% to 15.00% speed-ups for Kyber, and our Keccak
optimizations decrease the proportion of time spent on hashing in Dilithium and Kyber
by 2.46% ∼ 5.03% on Cortex-M4.
Keywords: Keccak, Dilithium, ARMv7-M, Plantard arithmetic, lattice-based cryp-
tography

1 Introduction
Shor’s algorithm on quantum computers will pose serious threats to the traditional public
key cryptographic (PKC) standards, including RSA, ElGamal, and ECC that are based

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.1-24
mailto:huangjunhao@uic.edu.cn,donglongchen@uic.edu.cn
mailto:alexandre@adomnicai.me
mailto:jp-zhang@outlook.com
mailto:w.dai@my.cityu.edu.hk
mailto:liuyao25@mail.sysu.edu.cn
mailto:r.cheung@cityu.edu.hk
mailto:cetinkoc@ucsb.edu
http://creativecommons.org/licenses/by/4.0/

2 Revisiting Keccak and Dilithium Implementations on ARMv7-M

on the big integer factorization, discrete logarithm, and elliptic curve discrete logarithm
problems. Faced with this challenge, many countries have been putting significant efforts
for establishing future PKC standards, named as the post-quantum cryptography (PQC),
i.e., cryptographic algorithms that are safe against quantum attacks. The NIST PQC
standardization competition initiated in 2016 has received many submissions, in which
five categories of mathematical hard problems were used to construct 82 PQC candidates.
In 2022, four PQC finalists were announced by the NIST, in which Dilithium [DKL+18],
a lattice-based cryptographic (LBC) digital signature scheme, has been selected to be
standardized as ML-DSA [NIS23b]. Therefore, efficient implementations of the finalist
Dilithium on various platforms will be a concentrated research area.

Dilithium is built upon the hardness of module learning-with-errors (MLWE) and
module short-integer-solution (MSIS) problems. Similar to the other LBC schemes such as
NewHope, Saber and Kyber, the time-consuming operations of Dilithium are the Keccak
computations and polynomial multiplications, which are two key components in improving
its efficiency. The polynomial multiplication in Dilithium is performed over the polynomial
ring Zq[X]/

(
X256 + 1

)
and can be efficiently implemented with the number-theoretic

transform (NTT), which has been thoroughly studied to improve the efficiency of LBC
schemes in the past few years [Sei18, CHK+21, GKS20, ACC+22, ZHLR22, ZZH+21,
HZZ+22, BHK+22, HZZ+23].

The modulus of Dilithium is a 23-bit prime number q = 8380417, which normally
requires the use of the 32-bit NTT for polynomial multiplication. However, recent work
shows that some polynomial multiplications of Dilithium involving the small polynomial c,
whose coefficients are either 0 or ±1, can be accelerated with 16-bit NTT on Cortex-M4
[AHKS22] or parallel small polynomial multiplication (PSPM) on NEON / AVX2 / AVX-
512 ISAs [ZHS+22, ZZS+23]. The PSPM proposed in [ZHS+22] is mainly suitable for ISA
with a large register width so that it can compute several operations simultaneously. As
for 32-bit processors like ARMv7-M, the PSPM is rather limited due to the small register
width. As for using the 16-bit NTT in Dilithium, previous work [AHKS22] did not utilize
the efficient Plantard arithmetic presented in [Pla21, HZZ+22]. Besides, their small 16-bit
NTT only applies to cs1 and cs2 (abbr. as csi for i = 1, 2). The ct0 and ct1 (abbr. as
cti for i = 0, 1) that share the similar property as csi have not been considered in their
work [AHKS22]. Furthermore, we notice that previous works [ACC+22, CHK+21] have
suggested that the multi-moduli NTT could be beneficial to Saber, NTRU, and LAC on
some platforms like AVX2 or Cortex-M3. However, this technique has not been applied to
Dilithium yet. Therefore, there are still various optimization strategies worth revisiting to
further improve the performance of Dilithium.

The extensive research on polynomial arithmetic has already achieved excellent results.
Recent research [GKS20] shows that the polynomial multiplication of Dilithium accounts
for mainly less than 10% of the running time on Cortex-M4. On this platform, the most
time-consuming operation in LBC schemes is actually Keccak, which is a multipurpose
cryptographic primitive notably known for being the core of the SHA-3 and SHAKE
standards [Dwo15]. Keccak is extensively used by many PQC schemes for various purposes,
from seed expansion to CPA-to-CCA transforms. For example, Dilithium and Kyber, another
LBC scheme to be standardized as ML-KEM [NIS23a], rely on Keccak to such an extent that
hashing accounts for 85% of the running time on Cortex-M4 [GKS20]. While Keccak runs
fast on high-end processors thanks to vectorization or dedicated instructions (e.g. ARMv8
SHA-3 extension) [BK22], its largest version does not show outstanding performance
on constrained platforms (e.g. ARMv7-M microcontrollers) when fully implemented in
software. This is mainly due to the lack of general-purpose registers to hold the entire
1600-bit internal state, leading to high register pressure and therefore register spilling
(i.e. saving and restoring some intermediate variables to and from memory). By way of
illustration, on ARM Cortex-M4 processors, the current fastest Keccak implementation

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 3

spends around half of the running time in memory accesses. To reduce this overload,
the Keccak designers suggested using a 12-round variant named TurboSHAKE [BDH+23]
instead of the 24-round variant, but NIST was not in favour of such a decision1. This
highlights the need for improvement on architectures such as ARMv7-M where Keccak
does not show outstanding performance.

Our contributions. This paper revisits various optimization techniques for both Keccak
and Dilithium on two ARMv7-M processors: Cortex-M3 and Cortex-M4. The contributions
are summarized as follows.

• We improve Keccak’s performance on Cortex-M3 and M4 by up to 24.78% and
21.4% utilizing two architecture-specific optimizations. The first one, denoted as
lazy rotations, consists of taking advantage of the inline barrel shifter to eliminate
explicit rotations in the linear layer. Note that this technique has been reported
in the literature by Becker and Kannwischer in order to boost Keccak on ARMv8
architectures [BK22] but has not been ported to ARMv7-M so far. The second
optimization consists of a more efficient memory access scheduling to avoid pipeline
hazards, which results in over 12.84% performance improvements on ARMv7-M.

• We revisit the small NTT for csi and multi-moduli NTT for cti on ARMv7-M.
While the potential benefits of integrating the multi-moduli NTT into Dilithium
have been briefly discussed in [GKS20], they claimed that the multi-moduli NTT
implementation using Montgomery arithmetic cannot outperform their constant-time
32-bit NTT implementation on Cortex-M3. This paper illustrates that leveraging
the efficient Plantard arithmetic, the proposed multi-moduli NTT implementation
on Cortex-M3 is totally constant-time and can indeed yield over 19.07% or 52.76%
speed-ups when compared with the variable-time or constant-time 32-bit NTT in
[GKS20], respectively.

• We then integrate the efficient Plantard arithmetic proposed in [Pla21, HZZ+22,
HZZ+23] into the aforementioned 16-bit NTTs on Cortex-M3 and M4. Specifically,
we focus on the NTTs performed over moduli 769 and 3329, and by leveraging the
excellent properties of Plantard arithmetic, we eliminate all modular reductions in
NTT and INTT over 769 and 3329. Moreover, we also demonstrate that the efficient
Plantard arithmetic can be utilized to speed up the explicit Chinese remainder
theorem (CRT) by 19.45% in the multi-moduli NTT implementation, which further
improves the feasibility and efficiency of the multi-moduli NTT on Cortex-M3.

Combining all the aforementioned optimizations for both Keccak and Dilithium, we
obtain 15.44% ∼ 23.75% and 13.94% ∼ 15.52% speed-ups for Dilithium on Cortex-M3 and
Cortex-M4, respectively. Furthermore, we also demonstrate that the Keccak optimizations
yield 13.35% ∼ 15.00% speed-ups for Kyber, and our Keccak optimizations decrease the
proportion of time spent on hashing in Dilithium and Kyber by 2.46% ∼ 5.03% on Cortex-
M4. Our implementations are publicly available at https://github.com/UIC-ESLAS/
Dilithium-Multi-Moduli.

2 Preliminaries
This section first gives a brief introduction of the Dilithium digital signature scheme. Then,
the time-consuming components of Dilithium, including polynomial multiplication and
Keccak, are reviewed.

1https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5HveEPBsbxY

https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5HveEPBsbxY

4 Revisiting Keccak and Dilithium Implementations on ARMv7-M

Algorithm 1 Dilithium key generation (keygen) [DKL+18]
Output: pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

1: ζ ← {0, 1}256

2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)
3: A ∈ Rk×`q := ExpandA(ρ) . A is generated and stored in NTT representation as Â
4: (s1, s2) ∈ S`η × Skη := ExpandS (ρ′)
5: t := As1 + s2 . Compute As1 as INTT(Â ·NTT (s1))
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H (ρ‖t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 2 Dilithium signature generation (sign) [DKL+18]
Input: Secret key sk and message M
Output: σ = (c̃, z,h)

1: A ∈ Rk×`q := ExpandA(ρ) . A is generated and stored in NTT representation as Â
2: µ ∈ {0, 1}512 := H(tr‖M)
3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K‖µ) (or ρ′ ← {0, 1}512 for randomized signing)
5: while (z,h) =⊥ do . Pre-compute ŝ1 := NTT (s1) , ŝ2 := NTT (s2), and

t̂0 := NTT (t0)
6: y ∈ S̃`γ1

:= ExpandMask (ρ′, κ)
7: w := Ay . w := INTT(Â ·NTT(y))
8: w1 := HighBitsq (w, 2γ2)
9: c̃ ∈ {0, 1}256 := H (µ‖w1)

10: c ∈ Bτ := SamplelnBall (c̃) . Store c in NTT representation as ĉ = NTT(c)
11: z := y + cs1 . Compute cs1 as INTT(ĉ · ŝ1)
12: r0 := LowBitsq (w− cs2, 2γ2) . Compute cs2 as INTT(ĉ · ŝ2)
13: if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β, then (z,h) :=⊥
14: else
15: h := MakeHintq (−ct0,w− cs2 + ct0, 2γ2) . Compute ct0 as INTT

(
ĉ · t̂0

)
16: if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω, then (z,h) :=⊥
17: κ := κ+ `
18: return σ = (c̃, z,h)

2.1 Dilithium
Dilithium belongs to the LBC category, and its hardness is based on the MLWE and
MSIS problems. Dilithium follows the “Fiat-Shamir with Aborts” approach proposed in
[Lyu09, Lyu12] to construct the digital signature scheme. The key generation (keygen),
signature generation (sign), and signature verification (verify) of Dilithium are shown in
Algorithm 1, Algorithm 2, and Algorithm 3, respectively. Due to the introduction of the
module structure, Dilithium needs to handle a large k× l-dimensional matrix A, where each
entry is a degree-(n− 1) polynomial over the polynomial ring Rq = Zq[X]/(Xn + 1) with
modulus q = 223 − 213 + 1 = 8380417. The module structure brings excellent flexibility to
the implementation of Dilithium, which allows us to reuse the fundamental component for
different parameter sets of Dilithium.

As shown in Algorithm 1∼3, Dilithium extensively uses SHA-3 or SHAKE primitives
for expanding the matrix A (ExpandA), secret vector s1 and s2 (ExpandS), vector y
(ExpandMask), small polynomial c with τ non-zero coefficients ±1’s (SampleInBall) and
other hashing (H). The MakeHint, UseHint, Power2Round functions are used to drop the

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 5

Algorithm 3 Dilithium signature verification (verify) [DKL+18]
Input: Public key pk, message M , and signature σ = (c̃, z,h)
Output: Accept or reject

1: A ∈ Rk×`q := ExpandA(ρ) . A is generated and stored in NTT representation as Â
2: µ ∈ {0, 1}512 := H (H (ρ‖t1) ‖M)
3: c := SamplelnBall(c̃)
4: w′1 := UseHintq

(
h,Az− ct1 · 2d, 2γ2

)
.

Compute INTT(Â ·NTT(z)−NTT(c) ·NTT(t1 · 2d))
5: return J‖z‖∞ < γ1 − βK and Jc̃ = H (µ‖w′1)K and J# of 1 ’s in h is ≤ ωK

Table 1: Dilithium parameters [DKL+18]
NIST security level 2 3 5

q [modulus] 8380417 8380417 8380417
n [the order of polynomial] 256 256 256

d [drop bits from t] 13 13 13
τ [# of ±1’s in c] 39 49 60

γ1 [y coefficient range] 217 219 219

γ2 [low-order rounding range] (q − 1)/88 (q − 1)/32 (q − 1)/32
(k, l) [dimensions of A] (4,4) (6,5) (8,7)
η [secret key range] 2 4 2

β = τ · η [csi coefficient range] 78 196 120
t0 coefficient range 212 212 212

t1 coefficient range 210 210 210

lower d bits of t and reduce the public key size. The parameters used in these algorithms
are shown in Table 1. For details of these functions and parameters, we refer interested
readers to the specification of Dilithium [DKL+18].

2.2 Polynomial multiplication
2.2.1 Number-Theoretic Transform

The polynomial multiplication of Dilithium is performed over the polynomial ring Rq =
Zq[X]/(Xn + 1) with q = 8380417 and n = 256. The modulus q satisfies q ≡ 1 mod 2n
so that a 2n-th root of unity (ζ = 1753) exists. Since ζ256 = −1 mod q, one can then
split the cyclotomic polynomial as X256 + 1 = X256 − ζ256 = (X128 − ζ128)(X128 + ζ128)
using the NTT, which is a variant of the fast Fourier transform (FFT) over a finite field.
This factorization process can be iteratively continued for the two degree-128 polynomials
separately. Note thatX128+ζ128 is equivalent toX128−ζ384 and it can be further factorized
as X128 − ζ384 = (X64 − ζ192)(X64 + ζ192). The parameters of Dilithium (q ≡ 1 mod 2n)
enable us to perform a complete 8-layer NTT (complete NTT) and factorize the cyclotomic
polynomial Xn + 1 into linear factors X − ζi with i = 1, 3, 5, . . . , 511. (Note that there
are also incomplete NTTs where we can only factorize the cyclotomic polynomial into
factors X2 − ζi; see Kyber [BDK+18] for example.) The cyclotomic polynomial ring Rq is
isomorphic to the product of the rings Zq[X]/(X − ζi) according to the Chinese remainder
theorem (CRT):

a 7→
(
a(ζ), a

(
ζ3) , . . . , a (ζ511)) : Rq →

∏
i

Zq[X]/
(
X − ζi

)
.

6 Revisiting Keccak and Dilithium Implementations on ARMv7-M

After the NTT transform, the degree-(n − 1) polynomial multiplication of a and b is
transformed into n computationally inexpensive pointwise multiplications over NTT-
domain â and b̂. After the pointwise multiplications, the inverse NTT transform (INTT)
would convert the NTT-domain elements back to the normal domain. Overall, the time
complexity of the polynomial multiplication is reduced down to O(n log(n)), and the
polynomial multiplication ab using NTT can be described as INTT(NTT(a)◦ NTT(b)).

2.2.2 Small polynomial multiplications in Dilithium

Because the modulus of Dilithium q is a 23-bit prime number, most of the polynomial
multiplications over the polynomial ring Rq are implemented with 32-bit NTT. However,
there is a special small polynomial c which has exactly τ ±1’s and 256− τ 0’s. There are
four small polynomial multiplications involving c in Algorithm 2 and Algorithm 3, namely
cs1, cs2, ct0, and ct1. For simplicity, we denote cs1 and cs2 as csi for i = 1, 2, and ct0 and
ct1 as cti for i = 0, 1. Due to the special structure of c, these polynomial multiplications
would normally generate a polynomial product with a relatively small coefficient range.
For example, the coefficient range of si is [−η, η], then the coefficients of the product csi
are smaller than τ · η, denoted as β = τ · η. As for cti, since the coefficients of t0 and t1
are smaller than 210 and 212, the coefficients of the products ct0 and ct1 are smaller than
τ · 210 and τ · 212 (denoted as β′ = τ · 210 or β′ = τ · 212), respectively.

According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can
be treated as multiplications over Zq′/[X](Xn + 1) with a prime modulus q′ > 2β or
q′ > 2β′. Therefore, instead of using 32-bit NTT over Rq for computing csi and cti
as in the previous implementation [GKS20], recent research [AHKS22] shows that the
polynomial multiplications of csi can be implemented with smaller and faster 16-bit NTT
by taking advantage of the fact that 2β is smaller than 216. More precisely, it suggests to
use Fermat number transform (FNT) with Fermat number q′ = 257 or 16-bit NTT with
q′ = 769 for computing csi in different parameter sets. As for cti, since the modulus q′
that satisfies q′ > 2β′ is larger than 216, it cannot be accelerated with the faster 16-bit
NTT. However, as we will show later, one can still choose a modulus smaller than the q of
Dilithium to further speed up cti using the multi-moduli NTT technique on Cortex-M3.

2.2.3 Modular arithmetic

The fundamental operation of 16-bit or 32-bit NTT is the modular multiplication by a
twiddle factor modulo a 16-bit or 32-bit modulus. There are different optimal algorithms
dealing with the 16-bit and 32-bit modular arithmetic. For 16-bit modular arithmetic,
recent work [Pla21, HZZ+22, HZZ+23] shows that one can efficiently compute the modular
multiplication by the twiddle factor modulo a 16-bit modulus with the Plantard arithmetic.
Plantard arithmetic has a special 16×32 multiplication. If the target platform can efficiently
compute the 16× 32 multiplication, then the Plantard multiplication by a constant is one
multiplication faster than the widely-used Montgomery [Mon85] and Barrett multiplication
[Bar86]. This could further speed up the butterfly unit in the NTT implementation.

As for 32-bit modular arithmetic, it is difficult to apply the Plantard arithmetic
to 32-bit modulus on 32-bit ARMv7-M processors like Cortex-M3 and M4 because the
Plantard arithmetic requires to handle the 32 × 64 multiplication in this case, which
would bring an extra multiplication on 32-bit processors and eliminate the gain of the
Plantard arithmetic. On the contrary, the most efficient 32-bit modular arithmetic on
32-bit ARMv7-M processors would still be the Montgomery arithmetic [GKS20].

2.2.4 The 16-bit NTT and 32-bit NTT

It should be noted that the constant-time 32-bit NTT is at least 2× slower than the
constant-time 16-bit NTT on platforms like Cortex-M3 and AVX2. This is mainly due to

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 7

the inherent architectural design of these platforms. More specifically, since Cortex-M3
does not have constant-time full multiplications like UMULL, SMULL, UMLAL, and SMLAL,
the constant-time 32-bit modular multiplication proposed in [GKS20] is implemented
using the schoolbook multiplication over two 16-bit limbs and is more expensive than
16-bit modular multiplication on Cortex-M3. As a result, the constant-time 32-bit NTT
is about 3 times slower than the constant-time 16-bit NTT, and the variable-time 32-bit
NTT is also 1.78× slower than the constant-time 16-bit NTT on Cortex-M3 according
to [GKS20, Table 2]. This suggests that 16-bit NTT is a more favorable choice over
32-bit NTT on Cortex-M3. Apart from M3, AVX2 is another platform where 16-bit
NTT is preferable to 32-bit NTT. The AVX2 instructions have the capability to process
operations simultaneously over sixteen 16-bit coefficients or eight 32-bit coefficients when
handling 16-bit NTT or 32-bit NTT. Employing the 32-bit NTT inherently diminishes
the parallelism utilization of AVX2, resulting in decreased performance compared to the
16-bit NTT. According to the AVX2 reference implementations of Kyber2 and Dilithium3,
the 16-bit NTT implementation of Kyber outperforms the 32-bit NTT implementation of
Dilithium on AVX2 by a factor of 4.11×. To summarize, the architectural characteristics
of Cortex-M3 and AVX2 lead to the constant-time 32-bit NTT being at least 2× slower
than the constant-time 16-bit NTT.

2.2.5 Multi-moduli NTT and the explicit CRT

The slower 32-bit NTT on AVX2 motivates Chung et al. [CHK+21] to replace the 32-
bit NTT with multiple efficient 16-bit NTTs (multi-moduli NTT) with the help of the
explicit CRT. Similar to [CHK+21], Abdulrahman et al. [ACC+22] further demonstrate
the feasibility of using multi-moduli NTT for Saber on Cortex-M3 due to the much slower
32-bit NTT than 16-bit NTT. Nevertheless, the multi-moduli NTT technique has not
been applied to Dilithium yet. It should be noted that Greconici et al. [GKS20] also
briefly discussed the potential to use the multi-moduli NTT and CRT to replace the
32-bit NTT in Dilithium. However, they [GKS20] claimed that the multi-moduli NTT
implementation with Montgomery arithmetic was slower than re-implementing the 32-bit
multiplication with constant-time 16-bit schoolbook multiplication [GKS20, Section 4.1].
In this paper, we will revisit this idea and demonstrate that by leveraging the efficient
Plantard arithmetic for 16-bit NTTs, the multi-moduli NTT remains a viable option for
Dilithium on Cortex-M3.

The so-called multi-moduli NTT method [CHK+21, ACC+22] chooses s coprime NTT-
friendly primes qi(i = 0, 1, . . . , s− 1) whose product q′ =

∏s−1
i−0 qi is larger than 2β′. The

polynomial multiplication over the composite modulus q′ can be carried out by computing
NTTs modulo each prime qi. Recall that the polynomial multiplication of cti would produce
a polynomial with coefficients smaller than a maximum value β′ = τ210 or β′ = τ212.
According to [CHK+21, Section 2.4.6], we can choose an NTT-friendly prime q′ > 2β′ such
that the polynomial multiplication of cti can be implemented with the NTT over q′. Since
2β′ > 216, the polynomial multiplication of cti cannot be accelerated with the 16-bit NTT.
Therefore, instead of using the extremely slow 32-bit NTT for cti on Cortex-M3, we can
also choose a composite modulus q′ = q0q1 and utilize the multi-moduli NTT to speed
up cti. By leveraging the efficient Plantard arithmetic for 16-bit NTTs, we can further
optimize the multi-moduli NTT and make it practical for Dilithium on Cortex-M3.

After performing NTTs, pointwise multiplications and INTTs modulo each prime
qi, we can then reconstruct the final results using the explicit CRT. One can either
use the Lagrangian interpolation CRT algorithm proposed in [MS90, Section 4] or the
divided-difference interpolation CRT algorithm presented in [CHK+21, Theorem 1]. It
is suggested that the latter one is better when s is smaller. Because the coefficients

2https://github.com/pq-crystals/kyber
3https://github.com/pq-crystals/dilithium

https://github.com/pq-crystals/kyber
https://github.com/pq-crystals/dilithium

8 Revisiting Keccak and Dilithium Implementations on ARMv7-M

produced in cti are quite small, we only need two primes (s = 2) for the multi-moduli
NTT implementation; so the latter one is best suited for our case. Let q0, q1 be co-
prime (gcd(q0, q1)=1), q be the modulus of Dilithium, and m1 = q−1

0 mod± q1. Let
u ≡ ui mod qi, i = 0, 1, where |ui| < qi/2, |u| < q0q1/2, then the explicit solution
for u and umod± q is given by u = u0 +

(
(u1 − u0)m1 mod± q1

)
q0 and umod± q =(

u0 +
((

(u1 − u0)m1 mod± q1
)

mod± q
)
· q0
)

mod± q, respectively.

2.3 Keccak
Keccak is built upon the sponge construction together with a cryptographic permutation
Keccak-p[b, nr] where b and nr refer to the bit-width of the permutation and the number of
rounds, respectively. In this paper, we focus exclusively on instances where b = 1600, such
as the variant Keccak-p[1600,24] used in the NIST standards. The state A is represented
as an array of 5 × 5 lanes, each composed of w = b/25 bits. A[x, y] refers to the lane
at position (x, y) and A[x, y, z] refers to the z-th bit of the lane. Keccak-p is an iterated
permutation where each round consists of five consecutive operations θ, ρ, π, χ and ι,
where χ is the only non-linear operation. See Listing 1 for a brief description of Keccak-p
using pseudo-code.

1 # b refers to the permutation width while nr refers to the number of rounds
2 keccak -p[b,nr](A):
3 A = roundperm (A,RC[i]) for i in 0..nr -1
4 return A
5
6 # r[x,y] refer to rotation offsets while RC refers to the round constant
7 roundperm (A,RC):
8 # theta step
9 C[x] = A[x ,0] xor A[x ,1] xor A[x ,2] xor A[x ,3] xor A[x ,4] for x in 0..4

10 D[x] = C[x -1] xor rot(C[x+1] ,1) for x in 0..4
11 A[x,y] = A[x,y] xor D[x] for (x,y) in (0..4 ,0..4)
12 # rho and pi step
13 B[y ,2*x+3*y] = rot(A[x,y], r[x,y]) for (x,y) in (0..4 ,0..4)
14 # chi step
15 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]) for (x,y) in (0..4 ,0..4)
16 # iota step
17 A[0 ,0] = A[0 ,0] xor RC
18 return A

Listing 1: Pseudo-code of the Keccak-p cryptographic permutation.

2.4 Target platforms: ARMv7-M processors
ARMv7-M refers to the microcontroller profile of the ARMv7 architecture. It comes with
sixteen 32-bit registers (r0-r15), out of which one is used as stack pointer (r13), one
is used as link register (r14), and one for the program counter (r15). It supports the
Thumb-2 technology, which means that 16-bit and 32-bit encoding of instructions can be
freely mixed. In this paper, we consider the ARM Cortex-M3 and M4 processors.

The Cortex-M3 and M4 processors have a 3-stage pipeline. Most instructions take a
single cycle, except branches, multiplication, and memory accesses which may take more
cycles. While load (ldr) and store (str) instructions typically require 2 and 1 cycles,
respectively, ldr instructions can take up to 3 cycles to complete in case of dependency
with the previous instruction. In the absence of such dependency, n ldr can be pipelined
together to be executed in n+ 1 cycles, and str following ldr takes 0 cycle. Both of them
are equipped with a barrel shifter, allowing the flexible second operands to be shifted or
rotated as part of an instruction without affecting performance. However, when the amount
to be shifted or rotated is specified by a register, the instruction will take an extra cycle to
complete. Since Cortex-M4 is equipped with a digital signal processing (DSP) extension,
it supports additional SIMD instructions that can simultaneously handle two 16-bit data
in one instruction. While most of the multiplication instructions on Cortex-M4 are 1-cycle,

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 9

the multiplication instructions on Cortex-M3 would take more cycles. For example, the
multiply-and-add instruction (mla) takes two cycles. Furthermore, a critical consideration
in cryptographic implementations is that the 32-bit full multiplication instructions on
Cortex-M3 (UMULL, SMULL, UMLAL, and SMLAL) do not run in constant-time due to the
early-termination mechanism [dG15]. The UMULL and SMULL would take 3-5 cycles, while
UMLAL and SMLAL may take 4-7 cycles. Therefore, we should avoid using these variable-time
instructions directly when dealing with secret inputs.

3 Keccak Optimizations on ARMv7-M
This section first reviews the existing optimization techniques and analyses the factors that
affect the overall Keccak performance on ARMv7-M. Subsequently, two architecture-specific
optimization techniques for enhancing Keccak on ARMv7-M are introduced.

3.1 Existing optimization techniques on ARMv7-M
The designers of Keccak have summarized many possible optimizations for software and
hardware implementations in a dedicated document [BDH+12]. The two most useful ones
on ARMv7-M are described below.

Bit-interleaving. The intuitive way to implement Keccak-p in software is to follow a lane-
wise architecture (i.e. a register contains one or multiple lanes), as described in Listing 1.
On platforms where registers are not large enough to handle an entire lane, the designers
recommend using the bit-interleaving technique. For b = 1600 on 32-bit architectures,
it consists of storing bits at odd positions in one register, and bits at even positions in
another register. In this way, 64-bit rotations can be easily handled by separate 32-bit
rotations without additional operations. Note that this requires some extra calculations
for rearranging the lanes at the beginning and at the end of the permutation. However it
is calculated at a higher level (i.e. when adding and extracting data to and from the state),
and therefore it is not taken into account when benchmarking the permutation itself.

Efficient in-place processing. When updating the internal state during the round func-
tion, it is possible to store all processed data back into the same memory location it was
loaded from. In this way, only a single instance of the state (instead of two) must be
preserved. Because the π operation moves lanes within the state, it requires defining a
mapping between the lane coordinates and the memory location depending on the round
number. The Keccak designers propose a linear map using a matrix of order 4, which
means the state will return to its initial memory location after 4 rounds.

Performance analysis. On 32-bit architectures, each round of Keccak-p[1600, ·] consists
of 152 XORs, 50 ANDs, 50 NOTs and 58 rotations thanks to the bit-interleaving technique.
On ARM, it is possible to merge 1 AND and 1 NOT into a single bic instruction and
the rotations during the θ step can be easily combined with an XOR thanks to the inline
barrel shifter. This leads to 250 instructions per round overall: 152 eor, 50 bic and 48
ror. Assuming logical instructions take 1 cycle, the raw cost of Keccak-p[1600, 24] on this
platform should theoretically be 250× 24 = 6 000 clock cycles. However, given the fact
that the state is 1600-bit long and that ARMv7-M only offers 14 32-bit general-purpose
registers to work with, it implies that performance will inevitably bear the cost of many
loads and stores on the stack. As reference, we consider the ARMv7-M implementation
from the extended Keccak Code Package (XKCP) [BDH+]. Because it contains optimized,
free and open-source implementations for various platforms and architectures, it is often
used as a third-party software component. According to previous research, the assembly

10 Revisiting Keccak and Dilithium Implementations on ARMv7-M

implementation of Keccak-p[1600, 24] from XKCP requires 12 969 clock cycles on the
Cortex-M4 [Sto19], meaning that around 54% of the cycles are spent in memory accesses.
However, there is still room for improvement as explained hereafter.

3.2 Pipelining memory accesses
The ARMv7-M assembly implementation provided by XKCP at the time of writing4 works
as follows. At the beginning of each round, all the parity lanes (namely D[x] on line 10 of
Listing 1) are precomputed. To compute half a parity lane, the code relies on a macro xor5
which consists of 5 ldr and 4 exclusive-OR (eor) instructions, as detailed in Listing 2.
Once this precomputing phase is complete, it executes the θ, ρ, π, χ and ι steps by a group
of 5 half lanes at a time.
On the Cortex-M3 and M4, it is clear that the xor5 macro suffers pipeline stalls since only
2 out of the 5 ldr instructions are consecutive. While grouping all these loads together
would allow saving 3 cycles per macro call, this requires to change the way variables are
assigned to registers since r1 is used as the only destination of ldr instructions in order
to preserve the other registers for subsequent calculations. Nevertheless, we managed to
relax the register pressure thanks to another register allocation, allowing us to pipeline
all the 5 ldr together within the xor5 macro as detailed in Listing 3. To further improve
memory access pipelining, we also reordered some other instructions throughout the code.
Notably, we moved str instructions after multiple ldr as much as possible. While these
pipelining optimizations have been carried out manually, tools are being developed to
achieve optimal assembly implementations in an automated manner as recently illustrated
by the SLOTHY optimizer based on constraint solving [ABKK24].

1 . macro xor5 result ,b,g,k,m,s
2 ldr \result , [r0 , #\b]
3 ldr r1 , [r0 , #\g]
4 eors \result , \result , r1
5 ldr r1 , [r0 , #\k]
6 eors \result , \result , r1
7 ldr r1 , [r0 , #\m]
8 eors \result , \result , r1
9 ldr r1 , [r0 , #\s]

10 eors \result , \result , r1
11 .endm

Listing 2: Original ARMv7-
M assembly code from [BDH+] to
compute half a parity lane. Loads from
memory are not fully grouped and thus
not optimally pipelined on M3 and M4
processors.

1 . macro xor5 result ,b,g,k,m,s
2 ldr \result , [r0 , #\b]
3 ldr r1 , [r0 , #\g]
4 ldr r5 , [r0 , #\k]
5 ldr r11 , [r0 , #\m]
6 ldr r12 , [r0 , #\s]
7 eors \result , \result , r1
8 eors \result , \result , r5
9 eors \result , \result , r11

10 eors \result , \result , r12
11 .endm

Listing 3: ARMv7-M assembly code
after optimization to compute half a
parity lane. Loads from memory are
now fully grouped and thus optimally
pipelined on M3 and M4 processors.

3.3 Lazy rotations
The XKCP implementation makes use of explicit rotations for the ρ step through ror
instructions. While it makes the code easy to follow, it requires 47 such instructions per
round. As recently proposed by Becker and Kannwischer on AArch64 [BK22], one can
omit those explicit rotations by means of lazy rotations (i.e. rotating the second operands
thanks to the inline barrel shifter) during subsequent operations. They recommend to
defer the explicit rotations until the θ step in the next round: once all the (unrotated)
parity lanes have been calculated, then they are rotated explicitly. By proceeding this way,
the (unrotated) state lanes are lazily rotated when treated as second operands during the
XOR with the (rotated) parity lanes, so that the internal state is back to the classical

4https://github.com/XKCP/XKCP/commit/7fa59c0ec4b5802b7c269ddd9ef0ef35999b4f0f

https://github.com/XKCP/XKCP/commit/7fa59c0ec4b5802b7c269ddd9ef0ef35999b4f0f

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 11

representation and the process can be reiterated thereafter. While it would be also possible
to keep deferring rotations, it would require to fully unroll the permutation code, resulting
in substantial impacts on code size.

On AArch64, it leads to 3 explicit rotations instead of 5 since 2 deferred rotation values
are in fact 0. While it should theoretically result in 6 explicit rotations on ARMv7-M
because of its 32-bit architecture, it is possible to stick to 3 rotations overall as described
below. Thanks to the bit-interleaving technique, computing a 1-bit rotation on a 64-bit
word can be achieved using a single 32-bit rotation only. Therefore, when computing the
parity lanes, only 5 eor instructions need to rotate their second operand, leaving the barrel
shifter available for deferred rotations during the remaining 5 eor. In the end, only 3
explicit rotations remain per round instead of 47.

We implemented this technique on ARMv7-M along with the in-place processing
optimization in two different ways. While the most efficient approach is to use lazy
rotations for all rounds, it requires to have specific routines for the first and last rounds
to deal with input and output misalignments since the internal state is expected to be
properly aligned at function entry and exit. When considering in-place processing, and
therefore a quadruple round routine, it results in a code size increase by half since the first
and last rounds should both come in two variants. In order to boost the performance while
limiting the impact on code size, we also propose a variant where lazy rotations are applied
for three-quarters of the rounds only. This way, explicit rotations are used every 4 rounds
to ensure the internal state is correctly aligned when entering the quadruple round. Still, a
potential drawback of deferring rotations is that it affects the code readability, which may
make the integration of side-channel countermeasures (e.g. masking) more cumbersome.

4 Dilithium Optimizations on ARMv7-M
This section presents the small NTT for csi in Dilithium on Cortex-M3 and M4, as well as
the multi-moduli NTT for ct0 in Dilithium on Cortex-M3. Then, the efficient 16-bit NTT
and explicit CRT implementations with the Plantard arithmetic are introduced. Finally,
the security and extensibility of this work will be briefly discussed.

4.1 Small NTTs for csi on Cortex-M3 and M4
The polynomial multiplication of csi produces a polynomial with a coefficient range smaller
than β = τη. Hence, the polynomial multiplication of csi can be treated as polynomial
multiplication over the NTT-friendly polynomial ring Zq′ [X]/(Xn + 1) with q′ > 2β
[CHK+21, Section 2.4.6]. The coefficient range β equals 78, 196 and 120 for all three
Dilithium parameter sets (see Table 1), respectively. Based on this observation, previous
work [AHKS22] implemented csi with the small NTT over 769 (769 > 2×196) in Dilithium3
and FNT over 257 (257 > 2 × 120) in Dilithium2 and Dilithium5 on Cortex-M4. Since
the pointwise multiplication and INTT are the core computations during the rejection
sampling in sign, the FNT over 257 implementation in [AHKS22] provides faster pointwise
multiplication, which enables better Dilithium2 and Dilithium5 than the NTT over 769.
Therefore, we also reuse the FNT over 257 for Dilithium2 and Dilithium5 on Cortex-M4.
The NTT over 769 with Plantard arithmetic is adopted for Dilithium3 on Cortex-M4.

On Cortex-M3, we decide to reuse the NTT over 769 to compute csi for all three
Dilithium parameter sets for the following reasons. (1) The 16-bit NTT over 769 can be
speeded up with the efficient Plantard arithmetic while the FNT over 257 is already very
efficient, and there is not much space for further optimization. (2) We will later show
that the NTT over 769 together with NTT over 3329 can enable an efficient multi-moduli
NTT implementation on Cortex-M3 (see Subsection 4.2). Therefore, the NTT over 769
can be reused for computing both csi and cti. Although the FNT over 257 can also

12 Revisiting Keccak and Dilithium Implementations on ARMv7-M

enable the multi-moduli NTT together with the NTT over 7681, the FNT over 257 is only
applicable for Dilithium2 and Dilithium5 and we would need two different multi-moduli
NTT implementations for all variants of Dilithium. On the other hand, the NTT over 769
can be reused for all three Dilithium variants, and using the NTT over 769 allows us to
reuse one multi-moduli NTT implementation for all three variants of Dilithium.

4.2 Multi-moduli NTT for cti on Cortex-M3

4.2.1 Parameters choice

As for cti, the coefficient range of the product is smaller than τ210 or τ212, and the
maximum value of τ is 60 according to Table 1. Therefore, the coefficient range of cti
is β′ = τ212 = 60 × 212 = 245760. These polynomial multiplications can be treated as
the polynomial multiplication over Zq′/[X](Xn + 1) with a 32-bit NTT-friendly modulus
q′ > 2β′ = 491520 [CHK+21, Section 2.4.6]. As mentioned in Subsection 2.2, either the
variable-time or constant-time 32-bit NTT is much slower than 16-bit NTT on Cortex-M3.
Recent research [HZZ+23] shows that the 16-bit NTT can be further optimized using the
efficient Plantard arithmetic on Cortex-M3. The 16-bit NTT with Plantard arithmetic in
[HZZ+23] is 2.41× faster than the variable-time 32-bit NTT and 4.11× faster than the
constant-time 32-bit NTT on Cortex-M3.

Based on this observation, instead of choosing a 32-bit NTT-friendly prime and
directly using the slow 32-bit NTT for computing cti, we choose a composite modulus
q′ = 769 × 3329 = 2560001 defined by the product of two 16-bit NTT-friendly primes
769 and 3329. It is easy to see that the selected modulus q′ is larger than 2β′; so the
polynomial multiplication of cti can be treated as a multiplication over Zq′ [X]/(Xn + 1)
with q′ = q0 × q1, q0 = 769 and q1 = 3329. Using this composite modulus, we could
utilize the multi-moduli NTT technique to speed up cti in Dilithium. It should be noted
that this technique has been adopted for Saber, NTRU and LAC [CHK+21, ACC+22] but
has not been applied to Dilithium yet. Previous work [GKS20] also briefly discussed the
potential to replace the slow 32-bit NTT with multi-moduli NTT, but they claimed that
the multi-moduli NTT implementation with Montgomery arithmetic was slower than their
schoolbook-based 32-bit NTT [GKS20, Section 4.1]. This paper revisits this idea and
shows that together with the efficient Plantard arithmetic for 16-bit modulus, we are able
to speed up the multi-moduli NTT and utilize it to compute ct0 on Cortex-M3.

4.2.2 Incomplete NTTs over 769 and 3329

Unlike Dilithium where the parameters q and n satisfy 2n|(q − 1), the moduli q0 = 769
and q1 = 3329 only satisfy n|(qi − 1) for i = 0, 1. That means there exists an n-th root
of unity ζi for the corresponding qi such that the cyclotomic polynomial Xn + 1 can be
factorized to degree-1 factors X2 − ζji with j = 1, 3, 5, . . . , 255. According to CRT, the
polynomial ring Rqi is isomorphic to the product of the degree-1 polynomial rings, namely
Rqi
∼=
∏

Zqi [X]/(X2 − ζji). Using the incomplete NTTs, the performance of NTT and
INTT can be improved because they only need to compute 7 layers of NTT or INTT. On
the other hand, the pointwise multiplications for these incomplete NTTs are performed
modulo X2−ζji which is a little more complicated than pointwise multiplication modulo the
degree-0 X−ζ in Dilithium. Nevertheless, these pointwise multiplications have been greatly
improved by using lazy reduction [ABCG20] and asymmetric multiplication strategies
[ACC+22, AHKS22]. Overall, using the incomplete NTTs could still obtain performance
improvement, which can be demonstrated by the parameters choice of Kyber [BDK+18].

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 13

Algorithm 4 Multi-moduli NTT for computing 32-bit NTT on Cortex-M3
Input: Declare arrays: int32_t c_32[256],t_32[256],tmp_32[256],res_32[256]

Input: Declare pointers:

int16_t *cl_16=(int16_t*)c_32;
int16_t *ch_16=(int16_t*)&c_32[128];
int16_t *tl_16=(int16_t*)t_32;
int16_t *th_16=(int16_t*)&t_32[128];
int16_t *tmpl_16=(int16_t*)tmp_32;
int16_t *tmph_16=(int16_t*)&tmp_32[128];

1: cl_16[256]← c, ch_16[256]← c . Pre-store c in the bottom and top halves of
c_32 as 16-bit arrays

2: tl_16[256]← t, th_16[256]← t . Pre-store t in the bottom and top halves of
t_32 as 16-bit arrays

3: cl_16[256] = NTTq0(cl_16) . ĉ0 = NTTq0(c)
4: ch_16[256] = NTTq1(ch_16) . ĉ1 = NTTq1(c)
5: tl_16[256] = NTTq0(tl_16) . t̂0 = NTTq0(t)
6: th_16[256] = NTTq1(th_16) . t̂1 = NTTq1(t)
7: tmpl_16[256] = basemulq0(cl_16, tl_16) . ĉ0 · t̂0 = basemulq0(ĉ0, t̂0)
8: tmph_16[256] = basemulq1(ch_16, th_16) . ĉ1 · t̂1 = basemulq1(ĉ1, t̂1)
9: tmpl_16[256] = INTTq0(tmpl_16) . INTTq0(ĉ0 · t̂0)

10: tmph_16[256] = INTTq1(tmph_16) . INTTq1(ĉ1 · t̂1)
11: res_32[256] = CRT(tmpl_16, tmph_16) . CRT(INTTq0(ĉ0 · t̂0), INTTq1(ĉ1 · t̂1))
12: return res_32

4.2.3 NTT with composite modulus

In this paper, we are dealing with NTT over the composite modulus q′ = q0q1 with q0 =
769 and q1 = 3329. Let ζ0 and ζ1 be the 256-th roots of unity in Zq0 and Zq1 , respectively.
According to the CRT and incomplete NTTs, we have the following isomorphism (the
proof is similar to [ACC+22, Appendix E]):

Zq0q1
∼= Zq0 × Zq1 ;

Zq0 [X]/(X256 + 1) ∼= Zq0 [X]/(X2 − ζj0), j = 1, 3, 5, . . . , 255;
Zq1 [X]/(X256 + 1) ∼= Zq1 [X]/(X2 − ζj1), j = 1, 3, 5, . . . , 255;

(1)

Overall, the polynomial multiplication over Zq′ [X]/(Xn + 1) can be separately computed
using the faster 16-bit NTTs over Rqi = Zqi [X]/(Xn + 1) [ACC+22, Section 4.2.1]. After
the 16-bit NTTs, pointwise multiplications and INTTs, one then uses the explicit CRT
described in Subsubsection 2.2.5 to reconstruct the 32-bit results.

Memory layout. The workload of the multi-moduli NTT is illustrated in Algorithm 4.
To clearly understand the workload, we need to describe the memory layout for the
multi-moduli NTT. Let t be a polynomial in ti with i = 0, 1. To compute the poly-
nomial multiplication ct, previous implementation using 32-bit NTT [GKS20] stores c
and t in 32-bit arrays, i.e., int32_t c_32[256], t_32[256]. However, according to the
coefficient range of c and t (see Table 1), they can actually be stored in 16-bit arrays.
In order to utilize the multi-moduli NTT to compute ct, we modify the unpack_sk or
poly_challenge functions to generate two copies of c and t and pre-store them as 16-bit
arrays in the bottom and top halves of c_32 and t_32. We use 16-bit pointers (int16_t
*cl_16,*ch_16,*tl_16,*th_16) to access the bottom and top halves of these 32-bit arrays
as 16-bit arrays. Overall, as shown in Algorithm 4, the multi-moduli NTT for ct needs to

14 Revisiting Keccak and Dilithium Implementations on ARMv7-M

compute four NTTs, two pointwise multiplications, two INTTs, and one CRT. Compared
to the 32-bit NTT implementation, our multi-moduli NTT implementation requires 1024
bytes of memory (tmp_32) for the pointwise multiplication and CRT computation. How-
ever, when compared to a very similar implementation for Saber in [ACC+22, Algorithm
5], our implementation only needs one-third of their memory. The main difference is that
we can reuse the memory of c and t for in-place NTT/INTT implementation using the
new unpack_sk and poly_challenge functions; thus achieve significant memory savings.

4.2.4 Multi-moduli NTT in sign and verify

sign. The proposed multi-moduli NTT is applicable to ct0 in sign (Algorithm 2) and ct1
in verify (Algorithm 3) on Cortex-M3. The present multi-moduli NTT incorporates two
NTTs over 769 and 3329. Notably, the NTT over 769 is also utilized for the computation
of csi in sign. Previous work [AHKS22] utilized the FNT over 257 or NTT over 769 for
csi on Cortex-M4. However, their ct0 in sign was implemented with the 32-bit NTT of
Dilithium. Consequently, they needed to perform both a 32-bit NTT and a 16-bit NTT on
c for the subsequent computations. In contrast, by employing multi-moduli NTT over the
chosen modulus q′ = q0q1, we only require one multi-moduli NTT operation on c. The
computation of csi can leverage the NTT-domain ĉ over q0 generated in the multi-moduli
NTT, thereby eliminating an extra NTT computation on c.

verify. Although the multi-moduli NTT is beneficial in sign, it is somewhat impractical
in verify. One of the main step in verify is Step 4 in Algorithm 3, i.e. Az− ct1 × 2d.
It is recommended to perform the INTT after the subtraction. When using the 32-bit
NTT for ct1 × 2d, the subtraction can be carried out after the pointwise multiplication,
as both operations utilize the same NTT over the modulus q. However, when employing
a multi-moduli NTT over q′ = q0q1 for ct1 and a 32-bit NTT over q for Az, they are in
different NTT domains and can not be directly subtracted. Consequently, using the multi-
moduli NTT in verify necessitates an additional INTT computation for a polynomial
vector. Furthermore, since c and t1 are public, previous implementation on Cortex-M3
[GKS20] chooses to utilize variable-time 32-bit NTT, which is faster than constant-time
one. Although our multi-moduli NTT is faster than the variable-time 32-bit NTT (see
Section 5), the extra INTT computation for a polynomial vector outweighs the benefits of
using the multi-moduli NTT. Therefore, the proposed multi-moduli NTT implementation
offers advantages solely in accelerating the signature generation process of Dilithium on
Cortex-M3.

4.3 Efficient 16-bit NTTs with Plantard arithmetic
We now present the efficient 16-bit NTT implementations using the Plantard arithmetic on
Cortex-M3 and M4. The 16-bit NTTs we used in this paper include NTTs over q0 = 769
and q1 = 3329. Note that NTT over 769 is used on both platforms while NTT over 3329 is
only deployed on Cortex-M3.

4.3.1 Plantard arithmetic for 16-bit modulus

The efficient implementation of Plantard multiplication by a constant for 16-bit modulus
qi on Cortex-M3 is shown in Algorithm 5 [HZZ+23]. For its efficient implementation on
Cortex-M4, we refer to [HZZ+22, Algorithm 11]. In order to utilize the efficient Plantard
arithmetic in our 16-bit NTT implementation, an important parameter αi that satisfies
qi < 216−αi−1 is required. For the moduli q0 = 769 and q1 = 3329 that we used in this
paper, we set α0 = 5 for q0 = 769 and α1 = 3 for q1 = 3329. Besides, we also need to
precompute q′0 = q−1

0 mod 232 and q′1 = q−1
1 mod 232 to carry out the Plantard arithmetic.

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 15

Algorithm 5 Efficient Plantard multiplication by a constant for 16-bit modulus qi on
Cortex-M3 [HZZ+23]
Input: Two signed integers a, b such that a ∈ (−qi216+αi , 232 − qi216+αi), a precomputed

32-bit integer bq′i where b is a constant and q′i = q−1
i mod± 232

Output: r = ab(−2−32) mod± qi, r ∈ (− qi

2 ,
qi

2)
1: bq′i ← bq−1

i mod 232 . precomputed
2: mul r, a, bq′i
3: add r, 2αi , r, asr#16
4: mul r, r, qi
5: asr r, r,#16
6: return r

In 2023, Huang et al. [HZZ+23] showed that the input range of the Plantard multipli-
cation can be enlarged to ab ∈ (−qi216+αi , 232 − qi216+αi). When b is a constant, we can
always reduce it down to [0, qi); so when replacing the specific qi and bmax = qi − 1 into
the input range ab ∈ (−qi216+αi , 232− qi216+αi), we have a ∈ [−9090389q0, 3492522q0] and
a ∈ [−157q1, 230q1] for q0 = 769 and q1 = 3329, respectively. When performing NTT on
Cortex-M3, each coefficient loaded into the register could be bigger than a 16-bit signed
integer but we need to ensure that it is reduced down to a 16-bit signed integer when we
need to store it back to the 16-bit memory [HZZ+23]. However, the NTT on Cortex-M4
utilizes the SIMD instruction and the coefficients must fit in 16-bit signed integers. Hence,
the safe coefficient range for a 16-bit signed integer is in [−42q0, 42q0] and [−9q1, 9q1] for
q0 and q1, respectively.

4.3.2 NTTs over 769 and 3329

Butterfly units. As the core operation of NTT, the efficiency of butterfly units is essential
in NTT/INTT implementation. We adopt the state-of-the-art butterfly combination
presented in [ACC+22, AHKS22] for NTTs over 769 and 3329 on Cortex-M3 and M4,
namely using Cooley-Turkey (CT) butterfly for both NTT and INTT. We follow the
twiddle factor precomputation in [HZZ+22, Section 4.2.1] in order to utilize the efficient
Plantard multiplication by a constant for the modular multiplication by twiddle factor,
namely ζ ′i = ζi · (−232 mod qi) · (q−1

i mod 232) mod 232.

Layer merging. We follow the state-of-the-art 4+3 and 3+4 layer merging strategies in
previous work [AHKS22, HZZ+22] for NTT and INTT on Cortex-M4. As for Cortex-M3,
the 3+3+1 and 3+1+3 layer merging strategies for NTT and INTT on Cortex-M3 are
adopted as in [HZZ+23].

Range analysis. The input range of the 16-bit NTT must be smaller than the coefficient
range of t0, i.e., 212. When using CT butterfly and Plantard arithmetic for NTT, each
layer of NTT would increase the coefficient size by qi/2; so seven layers of NTT would
increase the coefficient size by 3.5qi. For both moduli 769 and 3329, NTT would generate
coefficients smaller than 212 +3.5qi < 215, which can fit in 16-bit signed integers. Therefore,
the NTT with Plantard arithmetic does not need any modular reduction. We will see that
after the pointwise multiplication described in Subsubsection 4.3.4, the input range of
INTT is in (−qi/2, qi/2).

On Cortex-M4, we are using INTT over 769 for csi and we need to ensure that every
coefficient must not overflow a 16-bit signed integer. Since the INTT is implemented
with CT butterfly similar to the implementation in [ACC+22, AHKS22], it would bring
additional twisting in the last layer of INTT. To minimize the side-effect of the additional
twisting, they [ACC+22, AHKS22] introduced the light butterfly which could omit the

16 Revisiting Keccak and Dilithium Implementations on ARMv7-M

Algorithm 6 The explicit CRT with Plantard arithmetic on Cortex-M3
Input: u0 = u mod q0, u1 = u mod q1,m1 = q−1

0 mod± q1,m
′
1 = m1 · (−232 mod q1) ·

(q−1
1 mod 232) mod 232, q12α1 < 215

Output: u = u0 + ((u1 − u0)m1 mod± q1)q0
1: sub t, u1, u0
2: mul t, t,m′1
3: add t, 2α1 , t, asr#16
4: mul t, t, q1
5: asr t, t,#16 . t← (u1 − u0)m1 mod± q1
6: mla u, t, q0, u0 . u← u0 + tq0
7: return u

same amount of modular multiplication. The first three layers and the first iteration of
the last three layers of INTT are implemented with light butterflies. Since the input range
of INTT is smaller q0/2, the first 3-layer INTT with light butterfly increase some of the
coefficients up to 4.5q0. The fourth layer of INTT with CT butterfly further increases
these coefficients up to 5q0. Then, in the final three layers of INTT with light butterfly,
these coefficients would be increased to 40.5q0, which can still fit in a 16-bit signed integer
for q0 (see Subsubsection 4.3.1). Therefore, the INTT over 769 can totally eliminate the
modular reduction of coefficients. If we use NTT over 3329 for csi, the INTT over 3329
needs modular reduction for 16 coefficients before the final three layers of INTT [HZZ+22].

As for Cortex-M3, since the 16-bit coefficients are loaded into 32-bit registers, they can
temporarily surpass 16-bit signed integers but need to be reduced down to 16-bit when
they are stored back to 16-bit memory. Because we are using the 3+1+3 layer merging
strategy, we just need to ensure that the coefficients can fit in 16-bit signed integers after
the third and fourth layers of INTT. As mentioned above, the first four layers of INTT
with CT butterfly produce coefficients smaller than 5qi, which can fit in 16-bit signed
integers for both q0 and q1. And the final three layers of INTT with light butterfly would
increase the coefficients up to 40.5qi. For q1 = 3329, 40.5q1 surpass the 16-bit signed
integer but fit in 32-bit signed integer, which is allowed on Cortex-M3. These coefficients
will be reduced in the modular multiplication with the twiddle factor and 128−1 in the
final layer of INTT. Therefore, we do not need any modular reduction in INTTs over 769
and 3329 on Cortex-M3.

4.3.3 The explicit CRT implementation with Plantard arithmetic on Cortex-M3

As shown in Algorithm 4, the explicit CRT is used to reconstruct the 32-bit results after
INTT. The computation u = u0 +

(
(u1 − u0)m1 mod± q1

)
q0 is performed for 256 pairs of

coefficients (u0 and u1). During the computation, we can see that m1 = q−1
0 mod± q1 is a

constant. Therefore, the modular multiplication with m1 modulo q1 could be optimized
with the Plantard multiplication by a constant. The instruction sequence of the explicit
CRT with Plantard arithmetic on Cortex-M3 is shown in Algorithm 6. To use the Plantard
multiplication by a constant, we need to precompute the term m′1 = m1 · (−232 mod q1) ·
(q−1

1 mod 232) mod 232 so that the Plantard arithmetic could produce result in normal
domain. After Step 5 in Algorithm 6, the modular result t using the Plantard arithmetic
is in range (−q1/2, q1/2). The rest of the computation u = u0 + t · q0 would be much
smaller than the modulus q of Dilithium; so no further modular reductions are required.
Overall, using the Plantard arithmetic in the explicit CRT computation could save one
multiplication for each coefficient compared to the Montgomery-based implementation.

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 17

4.3.4 Asymmetric multiplication for pointwise multiplication

The pointwise multiplication of incomplete NTTs over 769 and 3329 requires computing 128
degree-1 polynomial multiplications over X2 − ζ2br7(i)+1

0 and X2 − ζ2br7(i)+1
1 for q0 = 769

and q1 = 3329, respectively, with i = 0, 1, . . . , 127 and br7(i) denotes the bit reversal of
the 7-bit integer i. For simplicity, we denote the corresponding ζ2br7(i)+1

0 and ζ2br7(i)+1
1

as ζ below. We adopt the asymmetric multiplication proposed in [ACC+22, AHKS22]
to speed up the degree-1 pointwise multiplication. For the polynomial multiplication ct,
after the NTT transform, both c and t are transformed into NTT-domain in the form
of ĉ2i + ĉ2i+1X and t̂2i + t̂2i+1X. Then, the pointwise multiplication over X2 − ζ is
computed as (ĉ2i+ ĉ2i+1X)◦ (t̂2i+ t̂2i+1X) = (ĉ2it̂2i+ ĉ2i+1t̂2i+1ζ)+(ĉ2it̂2i+1 + ĉ2i+1t̂2i)X.
Note that c is reused for cs1, cs2, ct0, and ct1, we can precompute the term ĉ2i+1ζ
with Plantard multiplication by a constant in advance to reduce repeated computations.
Then, two Plantard reductions are used to perform ĉ2i · t̂2i + ĉ2i+1 · t̂2i+1ζ mod qi and
ĉ2i · t̂2i+1 + ĉ2i+1 · t̂2i mod qi, and all coefficients are reduced down to (−qi/2, qi/2).

4.4 Security and extensibility discussions
We ensure that all the secret key related operations in sign, i.e., csi and ct0, are constant-
time. Therefore, our implementation is secure against simple power analysis (SPA) side-
channel attacks and timing attacks. In terms of extensibility, the proposed multi-moduli
NTT and small 16-bit NTTs for Dilithium can be adapted to other platforms like AVX2,
given that the 16-bit NTT5 on AVX2 is 4.11× faster than the 32-bit NTT6. However,
since the Plantard arithmetic introduces the 16× 32-bit multiplication, which can not be
efficiently implemented on AVX2. Consequently, employing the Plantard arithmetic in the
16-bit NTTs might not be the optimal choice on AVX2. Reusing the state-of-the-art 16-bit
NTT with Montgomery arithmetic from Kyber’s AVX2 reference implementation would
still yield performance improvements for the small polynomial multiplications in Dilithium.
Regarding the optimization techniques for Keccak, although they are tightly linked to the
ARMv7-M architecture, they can be of significant interest for all PQC schemes whose
performances are dominated by hashing calculations.

5 Results and Comparisons
5.1 Benchmark settings
For our benchmarks, we used the development boards described below. All implementations
were compiled using arm-none-eabi-gcc 10.2.1 along with the -O3 optimization flag.
We adopted the same configuration as the pqm37 and pqm4 [KRSS19], and the clock cycles
were measured using the pqm3 and pqm4 frameworks on Cortex-M3 and M4, respectively.

ATSAM3X8E. It features a Cortex-M3 running at 84MHz, 512KB of flash memory and
96KB of SRAM. The core was clocked at 16MHz to execute code from flash with zero-wait
state.

STM32F407VG. It features a Cortex-M4 running up to 168MHz, 1024KB of flash
memory and 192KB of RAM divided into three blocks: two contiguous blocks of SRAM
connected to the bus matrix with different interconnects, and a core coupled memory
(CCM) block which is connected directly to the core. We exclusively used the 64KB CCM

5https://github.com/pq-crystals/kyber
6https://github.com/pq-crystals/dilithium
7https://github.com/mupq/pqm3

https://github.com/pq-crystals/kyber
https://github.com/pq-crystals/dilithium
https://github.com/mupq/pqm3

18 Revisiting Keccak and Dilithium Implementations on ARMv7-M

Table 2: Keccak-p[1600, 24] benchmark on Cortex-M3 and M4.

Ref.
Implementation characteristics* Speed (clock cycles) Code size RAM

ldr/str lazy ror M3 M4 (bytes) (bytes)

XKCP mostly grouped 7 13 015 11 725 5 576 264

grouped 7 10 785 10 219 5 772 264
grouped 3 (3/4) 9 981 9 415 6 556 264This work
grouped 3 (4/4) 9 789 9 218 9 536 264

*All listed implementations take advantage of the in-place processing and bit-interleaving techniques.

to achieve the best performance with a clock core speed of 24MHz to execute code from
flash with zero-wait state.

5.2 Performance of Keccak and polynomial-related operations
Keccak permutation. Table 2 provides the benchmark of Keccak-p[1600, 24] for different
implementation characteristics. The first one, denoted by ldr/str, refers to the memory
access pipelining strategy. In this context, the term “mostly grouped” signifies that while
the majority of memory accesses are packed together; this is not the case during the
parity lanes precomputation. Another characteristic indicates the utilization and degree of
lazy rotations. The pipeline optimizations achieved by our new register allocation result
in significant performance improvements of 17.13 % and 12.84 % on Cortex-M3 and M4,
respectively. Note that it comes at the cost of a slight code size increase due to the fact
that some ldr instructions are now using the higher-half registers (i.e. r8 to r14) as the
destination, leading to a 32-bit encoding (versus 16-bit when using lower-half registers).
When combined with the use of lazy rotations, we achieve up to 24.78% and 21.4%
performance boosts on Cortex-M3 and M4, respectively. Nevertheless, the majority of
the remaining instructions that were initially encoded on 16 bits have now been 32-bit
encoded. This is because the second operands undergo systematic rotation using the inline
barrel shifter. As discussed in Section 3.3, the variant that utilizes lazy rotations for all
rounds incurs a 50% increase in code size for a minor performance gain of aroung 2%.
While we could have potentially made it more compact, we believe that doing so would
have compromised the performance advantage, resulting in no overall benefits compared
to the other variant. Therefore, when code size is a critical factor, we suggest to favour
the implementation that uses lazy rotations for three-quarters of the rounds only in order
to minimize the memory footprint, which is also adopted in the following benchmark.

NTT-related functions. Table 3 presents results for NTT-related functions on Cortex-M3
and M4. Due to the instruction limits of Cortex-M3, the 16-bit NTT on Cortex-M3 is
significantly faster than both constant-time and variable-time 32-bit NTT. To be more
specific, the 16-bit NTT, INTT, and pointwise multiplication are 4.22×, 4.29×, and 2.14×
faster than the constant-time 32-bit NTT, INTT, and pointwise multiplication, respectively.
Compared to the 32-bit variable-time NTT, INTT, and pointwise multiplication, the speed-
ups are 2.48×, 2.46×, and 1.24×, respectively.

The highly efficient 16-bit NTT implementations makes the proposed multi-moduli NTT
practical on Cortex-M3. Compared to the constant-time 32-bit NTT, the proposed multi-
moduli NTT, INTT and pointwise multiplication implementations yield 52.76% ∼ 54.76%
performance improvements. Besides, the multi-moduli NTT and INTT also obtain 19.47%
and 19.07% speed-ups compared with the variable-time 32-bit NTT and INTT. The
pointwise multiplication is 63.05% slower than theirs but we will later show that our

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 19

Table 3: Performance of NTT-related functions on Cortex-M3 and M4. Averaged over
1000 executions.

Platform Prime Ref. NTT INTT Pointwise CRT

M3

8380417 [GKS20] constant-time 33 077 36 661 8 528 7

8380417 [GKS20] variable-time 19 405 21 051 4 944 7

3329× 7681 [ACC+22] (Saber) 16 770 19 056 11 927 4 637
769 This work 7 830 8 543 3 989 7

769× 3329 This work 15 626 17 037 8 061 3 735

M4

8380417 [AHKS22] 8 066 8 388 1 931 7

257 [AHKS22] 5 497 5 540 1 201 7

769 [AHKS22] 5 180 5 512 1 715 7

769 This work 4 456 4 593 1 717 7

Table 4: Performance of small polynomial multiplications on Cortex-M3 and M4. The
secret vector s1 is l-dimensional vector while the other three vectors (s2, t0, and t1) are
all k-dimensional vectors. Averaged over 1000 executions.

Platform Operation
Dilithium2 Dilithium3 Dilithium5

[GKS20] This work [GKS20] This work [GKS20] This work

M3

cs1 346k 106k 424k 128k 580k 172k
cs2 346k 106k 502k 150k 658k 194k
ct0 269k 195k 328k 284k 446k 372k
ct1 213k 195k 311k 284k 409k 372k

[AHKS22] This work [AHKS22] This work [AHKS22] This work

M4
cs1 56k − 79k 70k 92k −
cs2 56k − 89k 78k 110k −

multi-moduli NTT implementation for small polynomial multiplications is still better than
the one that uses variable-time 32-bit NTT. We also compare our multi-moduli NTT
implementation with a similar implementation for Saber in [ACC+22]. Although [ACC+22]
adopted a faster 6-layer NTT/INTT, our 7-layer NTT/INTT implementation using the
efficient Plantard arithmetic is still slightly faster, obtaining 6.82%, 10.60%, and 32.41%
speed-ups for NTT, INTT, and pointwise multiplication, respectively. Moreover, since the
explicit CRT can also be optimized with the efficient Plantard multiplication by a constant,
our CRT implementation is also 19.45% faster. In summary, using Plantard arithmetic in
NTT, INTT and CRT makes the multi-moduli NTT more efficient on Cortex-M3.

As for Cortex-M4, we integrate the efficient Plantard arithmetic for the NTT over 769.
As shown in Table 3, our NTT and INTT implementations achieves 13.98% ∼ 18.94%
speed-ups compare with FNT over 257 and NTT over 769 in [AHKS22], respectively. The
speed-ups of 16-bit NTT and INTT versus 32-bit NTT and INTT are 44.76% and 45.24%,
respectively. Because the proposed multi-moduli NTT implementation requires to perform
double 16-bit NTTs, INTTs, and pointwise multiplications, the 16-bit NTT/INTT needs
to be at least 50% faster than the 32-bit NTT/INTT in order to make it faster than the
32-bit NTT. Therefore, the multi-moduli NTT is not applicable on Cortex-M4.

Small polynomial multiplications. Table 4 compares the performance of small polynomial
multiplications csi and cti on Cortex-M3 and M4. On Cortex-M3, there are three different

20 Revisiting Keccak and Dilithium Implementations on ARMv7-M

Table 5: Performance of Dilithium on Cortex-M3. Averaged over 1000 executions.

Operation
Dilithium2 Dilithium3 Dilithium5

[GKS20] This work [GKS20] This work [GKS20] This work
keygen 2 059k 1 739k 3 594k 3 011k 7 5 034k
sign 7 139k 5 582k 11 916k 9 087k 7 20 193k

verify 1 949k 1 648k 3 283k 2 755k 7 4 694k

implementation strategies based on whether the operations are secret-related operations.
The csi is secret-related and previous work [GKS20] implements it with constant-time
32-bit NTT on Cortex-M3. Compared to their implementation with constant-time 32-
bit NTT, our csi implementation with 16-bit NTT is not only constant-time but also
3.26× ∼ 3.39× faster. Since Dilithium’s security does not rely on ti being secret, the
ct0 implementation in [GKS20] is not totally constant-time. They implement both c
and t0 with 32-bit constant-time NTT, while the pointwise multiplication and INTT are
implemented in variable-time. Compared to their ct0 implementation, our multi-moduli
NTT implementation is constant-time and shows 27.51%, 13.41%, and 16.59% speed-ups
for three variants of Dilithium, respectively. Besides, despite the ct1 implementation in
verify in [GKS20] is totally variable-time, our multi-moduli NTT implementation still
obtains 8.45%, 8.68%, and 9.05% speed-ups for three variants of Dilithium, respectively.
However, because using multi-moduli NTT in verify would introduce an extra INTT for
a k-dimensional polynomial vector, we did not apply it to verify. As for Cortex-M4, by
utilizing the efficient Plantard arithmetic on the NTT over 769 for Dilithium3, we yield
11.39% and 12.36% speed-ups for cs1 and cs2 on Cortex-M4. Since we reuse the FNT over
257 for Dilithium2 and Dilithium5, we do not provide comparison of csi for them.

5.3 Performance of schemes
Performance on Cortex-M3. Combining the optimizations of Keccak and polynomial
multiplication, our Dilithium implementation shows significant improvements compared
with the state-of-the-art implementation on Cortex-M3. As shown in Table 5, we yield
15.54% and 16.22% speed-ups for the keygen of Dilithium2 and Dilithium3, respectively. The
speed-ups for the verify of Dilithium2 and Dilithium3 are 15.44% and 16.08%, respectively.
The speed-ups for sign are larger than keygen and verify thanks to our polynomial
multiplication optimizations, ranging from 21.81% and 23.74% for Dilithium2 and Dilithium3,
respectively. Since Dilithium5 consumes a large stack usage and it cannot be directly
deployed in Cortex-M3, we adopt a basic on-the-fly matrix generation strategy, which
is similar to streaming A in [GKS20, Section 5.3], to avoid storing the whole matrix;
thus making Dilithium5 deployable on Cortex-M3. Since both pqm3 and [GKS20] did not
provide Dilithium5 implementation on Cortex-M3, we could not conduct any comparison.

Performance and hash profiling on Cortex-M4. Because Keccak is extensively used by
the PQC algorithms selected by NIST for standardization, our Keccak optimizations can
also improve their performance on ARMv7-M. To highlight the improvements brought
by our Keccak optimizations, we provide benchmarks and hash profiling based on the
pqm4[KRSS19] for both Dilithium and Kyber on Cortex-M4. As shown in Table 6, for
most of the Dilithium variants, the Keccak optimizations yield speed-ups ranging from
13.94% to 15.52%. However, because the Keccak permutation is not the primary operation
in the rejection sampling process, the speed-up on the sign algorithm of Dilithium5 is
relatively small, around 9.42%. Similarly, the speed-version Kyber KEM protocols in

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 21

Table 6: Performance and hash profiling of Kyber and Dilithium on the Cortex-M4 using
the pqm4 framework. Averaged over 1000 executions.

Scheme Keccak Impl.
keygen sign/encaps verify/decaps

speed hashing speed hashing speed hashing
Dilithium2 XKCP 1 595k 83.47% 4 052k 64.53% 1 576k 80.47%

This work 1 357k 80.57% 3 487k 60.02% 1 350k 77.2%
Dilithium3 XKCP 2 828k 85.54% 6 523k 62.95% 2 702k 82.62%

This work 2 394k 82.92% 5 574k 58.97% 2 302k 79.61%
Dilithium5 XKCP 4 817k 86.6% 8 534k 68.08% 4 714k 84.69%

This work 4 069k 84.14% 7 730k 63.05% 3 998k 81.95%
Kyber512 XKCP 432k 80.12% 527k 82.86% 472k 73.76%

This work 369k 76.75% 448k 79.85% 409k 69.74%
Kyber768 XKCP 704k 79.04% 860k 82.38% 778k 74.75%

This work 604k 75.59% 732k 79.32% 674k 70.84%
Kyber1024 XKCP 1 122k 79.58% 1 314k 82.46% 1 208k 76.07%

This work 962k 76.18% 1 119k 79.41% 1 043k 72.29%

[KRSS19, HZZ+22] also experience speed-ups of 13.35% to 15.00% due to our Keccak
optimizations. Additionally, we present the hash profiling results for these two schemes
to showcase the efficiency of our Keccak optimizations. As can be seen from Table 6, our
Keccak optimizations decrease the proportion of time spent on hashing by 2.46% ∼ 5.03%.

Acknowledgments
This work is partially supported by the National Natural Science Foundation of China
(62002023, 62002239, 62372417, and 62132008), Guangdong Provincial Key Laboratory
IRADS (2022B1212010006, R0400001-22), Guangdong Province General Universities Key
Special Fund (New Generation Information Technology) (2023ZDZX1033), Natural Science
Foundation of Jiangsu Province (BK20220075), Fok Ying-Tong Education Foundation
for Young Teachers in the Higher Education Institutions of China (No.20193218210004),
Jiangsu Province 100 Foreign Experts Introduction Plan (BX2022012), TÜBİTAK Projects
(2232-118C332 and 1001-121F348), ITF project ITS/098/22, and the InnoHK Project
CIMDA.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R, M} LWE schemes. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(3):336–357, 2020.

[ABKK24] Amin Abdulrahman, Hanno Becker, Matthias J. Kannwischer, and Fabien
Klein. Fast and clean: Auditable high-performance assembly via constraint
solving. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(1):87–132, 2024.

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias J.
Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for Saber on Cortex-M3

22 Revisiting Keccak and Dilithium Implementations on ARMv7-M

and Cortex-M4. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):127–151,
2022.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe Ateniese
and Daniele Venturi, editors, Applied Cryptography and Network Security -
20th International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022,
Proceedings, volume 13269 of Lecture Notes in Computer Science, pages 853–871.
Springer, 2022.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara, Cal-
ifornia, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 311–323. Springer, 1986.

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. XKCP: eXtended Keccak Code Package. https://
github.com/XKCP/XKCP. commit 7fa59c0.

[BDH+12] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keccak implementation overview. https://keccak.
team/files/Keccak-implementation-3.2.pdf, 2012. Accessed: 2023-05-26.

[BDH+23] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
Ronny Van Keer, and Benoît Viguier. TurboSHAKE. IACR Cryptol. ePrint
Arch., Paper 2023/342, 2023. https://eprint.iacr.org/2023/342.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYS-
TALS - Kyber: A CCA-Secure Module-Lattice-Based KEM. In 2018 IEEE
European Symposium on Security and Privacy, EuroS&P 2018, London, United
Kingdom, April 24-26, 2018, pages 353–367. IEEE, 2018.

[BHK+22] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72
and Apple M1. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):221–244,
2022.

[BK22] Hanno Becker and Matthias J. Kannwischer. Hybrid Scalar/Vector Im-
plementations of Keccak and SPHINCS+ on AArch64. In Takanori Isobe
and Santanu Sarkar, editors, Progress in Cryptology – INDOCRYPT 2022,
pages 272–293, Cham, 2022. Springer International Publishing. https:
//eprint.iacr.org/2022/1243.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-
unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4 and
AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[dG15] Wouter de Groot. A Performance Study of X25519 on Cortex-M3 and M4.
PhD thesis, Eindhoven University of Technology Eindhoven, The Netherlands,
2015.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A Lattice-Based Digi-
tal Signature Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–
268, Feb. 2018.

https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://eprint.iacr.org/2023/342
https://eprint.iacr.org/2022/1243
https://eprint.iacr.org/2022/1243

J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. Cheung, Ç. K. Koç, D. Chen 23

[Dwo15] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, 2015-08-04 2015.

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.
Compact Dilithium Implementations on Cortex-M3 and Cortex-M4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):1–24, Dec. 2020.

[HZZ+22] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung,
Çetin Kaya Koç, and Donglong Chen. Improved Plantard Arithmetic for
Lattice-based Cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(4):614–636, 2022.

[HZZ+23] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray
C. C. Cheung, Çetin Kaya Koç, and Donglong Chen. Yet another Improvement
of Plantard Arithmetic for Faster Kyber on Low-end 32-bit IoT Devices. CoRR,
abs/2309.00440, 2023.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. IACR
Cryptol. ePrint Arch., Paper 2019/844, 2019. https://eprint.iacr.org/
2019/844.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. In Mitsuru Matsui, editor, Advances in Cryptol-
ogy - ASIACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science,
pages 598–616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky. Lattice Signatures without Trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EU-
ROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, volume 7237 of Lecture Notes in Computer Science, pages 738–755.
Springer, 2012.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[MS90] Peter L Montgomery and Robert D Silverman. An FFT extension to the P-1
factoring algorithm. Mathematics of Computation, 54(190):839–854, 1990.

[NIS23a] NIST. FIPS 203 (Initial Public Draft): Module-Lattice-Based Key-
Encapsulation Mechanism Standard. https://csrc.nist.gov/pubs/fips/
203/ipd, 2023.

[NIS23b] NIST. FIPS 204 (Initial Public Draft): Module-Lattice-Based Digital Signature
Standard. https://csrc.nist.gov/pubs/fips/204/ipd, 2023.

[Pla21] Thomas Plantard. Efficient Word Size Modular Arithmetic. IEEE Trans.
Emerg. Top. Comput., 9(3):1506–1518, 2021.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. IACR Cryptol. ePrint Arch., Paper 2018/039, 2018.
http://eprint.iacr.org/2018/039.

https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/204/ipd
http://eprint.iacr.org/2018/039

24 Revisiting Keccak and Dilithium Implementations on ARMv7-M

[Sto19] Ko Stoffelen. Efficient Cryptography on the RISC-V Architecture. In Progress in
Cryptology - LATINCRYPT 2019: 6th International Conference on Cryptology
and Information Security in Latin America, Santiago de Chile, Chile, October 2-
4, 2019, Proceedings, pages 323–340, Berlin, Heidelberg, 2019. Springer-Verlag.

[ZHLR22] Jipeng Zhang, Junhao Huang, Zhe Liu, and Sujoy Sinha Roy. Time-memory
trade-offs for Saber+ on memory-constrained RISC-V platform. IEEE Trans.
Computers, 71(11):2996–3007, 2022.

[ZHS+22] Jieyu Zheng, Feng He, Shiyu Shen, Chenxi Xue, and Yunlei Zhao. Parallel Small
Polynomial Multiplication for Dilithium: A Faster Design and Implementation.
In Annual Computer Security Applications Conference, ACSAC 2022, Austin,
TX, USA, December 5-9, 2022, pages 304–317. ACM, 2022.

[ZZH+21] Lirui Zhao, Jipeng Zhang, Junhao Huang, Zhe Liu, and Gerhard Hancke.
Efficient implementation of kyber on mobile devices. In 2021 IEEE 27th
International Conference on Parallel and Distributed Systems (ICPADS), pages
506–513. IEEE, 2021.

[ZZS+23] Jieyu Zheng, Haoliang Zhu, Zhenyu Song, Zheng Wang, and Yunlei Zhao.
Optimized Vectorization Implementation of CRYSTALS-Dilithium. CoRR,
abs/2306.01989, 2023.

	Introduction
	Preliminaries
	Dilithium
	Polynomial multiplication
	Keccak
	Target platforms: ARMv7-M processors

	Keccak Optimizations on ARMv7-M
	Existing optimization techniques on ARMv7-M
	Pipelining memory accesses
	Lazy rotations

	Dilithium Optimizations on ARMv7-M
	Small NTTs for csi on Cortex-M3 and M4
	Multi-moduli NTT for cti on Cortex-M3
	Efficient 16-bit NTTs with Plantard arithmetic
	Security and extensibility discussions

	Results and Comparisons
	Benchmark settings
	Performance of Keccak and polynomial-related operations
	Performance of schemes

