IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020
Algorithms for Inversion Mod p*

Cetin Kaya Ko¢, Fellow, IEEE

Abstract—This article describes and analyzes all existing algorithms for computing
x = a~' (mod p¥) for a prime p, and also introduces a new algorithm based on the
exact solution of linear equations using p-adic expansions. The algorithm starts with
the initial value ¢ = a~! (mod p) and iteratively computes the digits of the inverse

x = a~' (mod p") in base p. The mod 2 version of the algorithm is more efficient than
all existing algorithms for small values of k. Moreover, it stands out as being the only
one that works for any p, any & and digit-by-digit. While the new algorithm is
asymptotically worse off, it requires the minimal number of arithmetic operations
(just a single addition) per step, as compared to all existing algorithms.

Index Terms—Number-theoretic algorithms, computer arithmetic, multiplicative
inverse

<+

1 INTRODUCTION

HARDWARE and software realizations of public-key cryptographic
algorithms require implementations the multiplicative inverse mod p
(prime) or n (composite). When the modulus is prime, we can
compute the multiplicative inverse using Fermat's method as
a~t = "% (mod p). When it is composite, we can use Euler’s method
to compute the multiplicative inverse as o~ = ™~ (mod n), pro-
vided that we know or can compute ¢(n).

On the other hand, the extended euclidean algorithm (EEA)
works for both prime and composite modulus, and does not
require the knowledge of ¢. The classical EEA requires division
operations at each step, which is costly. On the other hand, varia-
tions of the binary extended euclidean algorithms use shift, addi-
tion and subtraction operations [9], [14], [15]. We must note
however that most inversion algorithms are variants of the classical
euclidean algorithm for computing the greatest common divisor of
two integers g = ged(a, n).

2 INVERSION Mob 2F

The Montgomery multiplication algorithm is introduced by Peter
Montgomery [13] in 1985. It computes the product c=a-b- 7!
(mod n) for an arbitrary modulus n, without actually performing
any mod n reductions. Interestingly, the algorithm does not directly
need r~! (mod n), but it requires another quantity n’ which is one of
the numbers produced by the extended euclidean algorithm with
inputs 2% and n:

(u,n’) — EEA(2*,n)
w-28—n'n=1
n' = —n~! (mod 2%).
In other words, the Montgomery multiplication algorithm requires

the computation of n~! (mod 2¥) rather than r~! (mod n). We may
expect that inversion with respect to a special modulus such as 2"

e The author is with Istinye University, 34010 Istanbul, Turkey, and the Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China, and also
with the University of California Santa Barbara, Santa Barbara, CA 93106.

E-mail: cetinkoc@ucsb.edu.

Manuscript received 28 June 2017; revised 20 Apr. 2018; accepted 24 Apr. 2018. Date of
publication 30 Jan. 2020; date of current version 8 May 2020.

(Corresponding author: Cetin Kaya Kog.)

Recommended for acceptance by W. Liu.

Digital Object Identifier no. 10.1109/TC.2020.2970411

907

might be easier than inversion with respect to an arbitrary modu-
lus. Indeed this is the case. Several algorithms for computing multi-
plicative inverse mod 2* appeared in the literature some of which
are significantly simpler than the classical EEA algorithm.

3 SUFFIX PROPERTY OF INVERSE MoD 2* AND p*

Given z =a"!(mod 2¥), we can compute y=a"'(mod 27) for
1 <j < kby reduction: y = z (mod 27). We can easily prove that y
is the inverse of a mod 2’ for some j € [1,k), by noting that
a-z=1(mod 2*) implies a-x =1+ N-2* for some integer N;
when we reduce both sides mod 27, we obtain:

e

—1
a-y X;-2' =1+ N-2"(mod 2%)

ol
—_ O

a- Yy X;-2"=1(mod 29).

Il
o

Therefore, we conclude that y = a™! (mod 27). Moreover if z =
a~t (mod 2%) is expressed as a k-bit binary number z = (X;_1 -
X1 X)), then the suffixes (the least significant bits) of z are actually
the inverses mod 2/ for j=1,2,...,k—2. That is, (Xj) is the
inverse of a mod 2, and (X;X,) is the inverse of a mod 22, and so
on,uptok — 1.

For the case of p*, we note that a - © = 1 (mod p*) implies a - = =
14 N - p" for some integer N, and therefore, when we reduce both
sides mod p/, we obtain:

el

-1
a- X;-p' =14 N-p*(mod p)

Il
- o

a-y X;-p'=1(mod p’).
0

If the inverse x is expressed in base p, we have X; € [0,p — 1] and
z=(Xp_1---X1Xy), and thus, the inverse mod p’ is equal to
(Xj-1--- X1Xo). In other words, the suffix property also holds for
the inverse mod p*, provided that the inverse z mod p" is expressed
in base p.

To summarize: if + = a~! (mod 2¥) is available, we can reduce it
mod 27 to obtain ™' (mod 27) for any j € [1,k — 1]. If z is expressed
in binary as = (X1 - - - X1 Xp), then the inverse mod 27 is simply
the j-bit suffix of z as (X;_1 - - - X1 Xo). Similarly, if z = a~! (mod p)
is available, we can reduce it mod p’ to obtain ! (mod p’) for any
j€[1,k—1].If x is expressed in base p as x = (Xj_; - - - X1 X(), then
the inverse mod p’ is simply the j-digit suffix of z as (X;_1 - - X1 Xy).

4 EXISTING INVERSION ALGORITHMS

There are several algorithms in the literature. Dussé and Kaliski [5]
gave an efficient algorithm for computing the inverse z =a"'
(mod 2¥) for an odd a, therefore, ged(a,2%) = 1. Arazi and Qi [1]
review 3 known algorithms (as of 2008), and introduce a new algo-
rithm (Algorithm 4) for computing a ! (mod 2*), where k = 2°. Fur-
thermore, Dumas proved [3], [4] that Algorithm 4 in [1] is a specific
case of Hensel lifting [12], and introduced an iterative formula
for computing = = a~! (mod p*), where k = 2°. In this section, we
describe these algorithms.

4.1 Dussé and Kaliski Algorithm

Dussé and Kaliski algorithm [5] is based on a specialized version of
the extended euclidean algorithm for computing the inverse. The
pseudocode is given below [5], [10].

0018-9340 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2572-9565
https://orcid.org/0000-0002-2572-9565
https://orcid.org/0000-0002-2572-9565
https://orcid.org/0000-0002-2572-9565
https://orcid.org/0000-0002-2572-9565
mailto:cetinkoc@ucsb.edu

908

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

TABLE 1 TABLE 2
Dussé and Kaliski Algorithm for Computing 23! (mod 2) Algorithm 2 for Computing 237! (mod 2°)

i 2 20 g a -z (mod 27) 9i-1 Loy z i y Y; y=y+2-a X;
2 2 4 1 (23-1modd)—3 2 <3 1+2= 0 23 = (000000 010111) 1 y=23 1
3 4 8 3 (23 3mod8)—5 1<5 34+4= 1 23 = (000000 010111) 1 y=23+2-23 69 1
4 8 16 7 (23-7Tmod16) — 1 8&£ 1 7 2 69 = (000001 000101) 1 y =69 +2%.23 — 161 1
5 16 32 7 (23-7Tmod32) —1 16 £ 1 7 3 161 = (000010 100001) 0 y =161 0
6 32 64 7 (23-7mod64) — 33 32 < 33 7T+32=239 4 161 = (000010 100001) 0 y =161 0

5 161 = (000010 100001) 1 y =161+ 2°.23 — 897 1

()

function DusseKaliski(a, 2)
input: a, k where ais odd and a < 2F
output: z = a~! mod 2*

1. z+1

2: fori=2tok

2a: if 271 < a-z(mod 2%)
2aa: r—ax+ 271

3: return x

As an example, consider the computation of 237! (mod 2°) illus-
trated in Table 1. Here, we have a = 23 and k = 6, and we start
with z = 1.

At the end of the algorithm we find x = 39, implying 237! =
39 (mod 2%); this is indeed correct since 23 - 39 = 1 (mod 2%). On the
other hand, the inverses mod 2/ for j = 1,2, 3,4,5 can be obtained
by reduction 39 (mod 27). We can also compute them using the suf-
fix property, by expressing 39 in binary as (100111),, and taking its
suffixes. However, we notice that the Dussé and Kaliski algorithm
already computes consecutive inverses 237! (mod 2) for i = 1,2,
3,4,5,6as (1), =1, (11), = 3, (111), = 7, (0111); = 7, (00111), = 7,
and (100111), = 39.

These consecutive inverses are computed in whole at each step
(rather than bit-by-bit, as we will see some other algorithms do).
The j-bit inverse 237! (mod 27) is computed at the jth step. This
property affects the performance, since the entire j-bit number is
computed (rather than a single bit).

4.2 Algorithm 2 in Arazi and Qi Paper
Arazi and Qi review three existing algorithms, and introduce a
new algorithm in their paper [1]. All 4 algorithms in [1] compute
2 =a"! (mod 2%). First of all, Algorithm 1 is Dussé and Kaliski
algorithm which we have already covered.

Algorithm 2 is described in the narrative of the article [1] with-
out explicitly giving its steps. We find it useful to describe this
algorithm and give its pseudocode. Assume a and z are A-bit
binary numbers. Since a and z are both odd, i.e., 4y = X, = 1, they
can be written as

a= (Ap1Ak—2--- A1 Ag) = (Aj1 Ao --- AL)
z= (X1 X X1 Xo) = (Xpm1 Xp—2 - - Xi1)

The main idea of Algorithm 2 is that the equality
a-x=1=(00---01), (mod 2"),

implies that the least significant & bits of y =a -z is equal to
(00---01),, and y can be written as

k bits k bits
—_——— e ——
y:a'x:(Zk,1~'-leU 0001)2 (1)

Our aim is to compute the remaining bits of z, i.e.,, X; for i =1,
2,...,k—1, making sure that as y is iteratively computed, its
least significant & bits become equal to (00---01), according to
Equation (1).

Notice that the LSB of a is 1, and thus, the ith bit of 2! - a is equal
to1foranyi € [1,k — 1]. Iterative computation of y is accomplished

897 = (001110 000001

by starting with y = a, adding 2’ - a to y if ¥; = 1, since this would
make the resulting Y; zero. By proceeding to the left, we make all
Yi=0fori=1,2,...,k—1, except Yy = 1. The steps of Algorithm2
are given below. It computes the bits of the inverse x from the least
significant to the most significant bit, at the ith step either adding
2’ a to y or not, and determining X; as 1 or zero.

function Algorithm2(a, 2")

input: a, k where a is odd and a < 2F
output: z = ¢! mod 2"

1. y«<a

2 Xy« 1

3: fori=1tok—1

3a: ifY, =1

3aa: y—y+2-a
3ab: X; 1

3b: else

3ba: X, —0

4 returnz = (Xj_1--- X1X)y

The computation of 237! (mod 2°) using Algorithm 2 is illus-
trated in Table 2. The initial value of y is a = 23, and at each step Y;
is checked; if ¥; = 1, then 2' - a is added to y. As the progress of the
algorithm shows, the lower k=6 bits of y eventually becomes
(000001). The inverse is computed as z = (100111), = 39. This is
indeed correct since 23 - 39 = 1 (mod 2°).

Algorithm 2 computes the inverse z = a~! (mod 2¥) bit by bit. At
the jth step, the jth bit of = is computed. Hence, the inverse mod 2/
becomes available at the jth step: (X;_;---X1Xj) is the inverse
mod 2.

4.3 Algorithm 3 in Arazi and Qi Paper

Arazi and Qi describe Algorithm 3 in detail [1], and give pseudo-
code. This algorithm has two stages: in the first stage which is
called Algorithm 3a, the quantity —v = (2)™! (mod a) is computed.
In the second stage (Algorithm 3b), the quantity —v is used to com-
pute z = a~! (mod 2¥). This algorithm is essentially the extended
euclidean algorithm. Given ged(a, 2¥) = 1, the EEA computes

(x,v) — EEA(q, 2"
za—v-2"=1
a~' =z (mod 2F)

2" = —v(mod a)
After —v is available, we can compute x using the identity

140v-2F
a

)

which requires a shift (the computation of v - 2k), an increment
operation, and a division by a operation (which is very expensive).
Algorithm 3 is the least efficient of all 4 algorithms in [1], since it
requires a full division with k-bit integers in the second stage of the
algorithm.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

TABLE 3
Steps 1 and 2 of Algorithm 3 for Computing 23~ (mod 2°)

i v Vo v=v+a v=1uv/2

0 1 = (000001) 1 v=1+23—24 v=24/2 — 12
1 12 = (001100) 0 v=12 v=12/2 -6
2 6 = (000110) 0 v="6 v="6/2—3

3 3 = (000011) 1 v=3+23— 26 v=26/2 — 13
4 13 = (001101) 1 v=13423 — 36 v=36/2 — 18
5 18 = (010010) 0 v=18 v=18/2—9

The computation of —v = (2¥)™" (mod a) for an odd « is quite
easy, due to the Montgomery reduction algorithm called the Coarsely
Integrated Operand Scanning (CIOS) whose details are found in [11].

Writing it as —v = 2% (mod a), we first compute this quantity
v= (Vi1 ---V1V}) using the CIOS algorithm at the end of Step 2;
we then compute the inverse x in Step 3.

function Algorithm3(a, 2)

input: a, k where a is odd and a < 2*
output: 2z = o~ mod 2*

1. v1

2. fori=0tok—1

2a: ifVp=1

2aa: v vta

2b: ve—v/2

3: ze— (14+v-29/a

4: return x

The correctness of Algorithm 3 depends on the fact that the quan-
tity (1 + v - 2¥) is divisible by a. This is easily proved by noting that
—v=27"%(mod a) implies —v-2*¥ =1 (mod a), and thus, —v-2F =
1+ N - afor someinteger N. Therefore, 1 +v- 28 = —N - a.

Steps 1 and 2 of Algorithm 3 for computing 237! (mod 2°) is
illustrated in Table 3. The initial value is v = 1, and at each step Vj
is checked; if Vi = 1, then a is added to v, and v is shifted to left
(i.e., divided by 2).

At the end of Step 2 for i = 5, we obtain —v = 9. In Step 3, we
use the formula (1 + v - 2¥)/a and the value of —v = 9, to compute
the inverse as x = (1 + (—9)-2%)/23 = —25, which is equal to
39 (mod 2%). This inverse is computed in whole in a single step, using
a shift, an addition and a division operation involving k-bit num-
bers. On the other hand, the inverses mod 2’ for i € [1, k — 1] can be
computed only after Step 3 is completed, by reducing = mod 2'.

4.4 Algorithm 4 in Arazi and Qi Paper

Algorithm 4 is the last one described in [1], and it is presented as
the authors’ contribution. It is based on the idea that, given a =
(agar) = ay - 2' + a;, where ay and ay, are the upper and lower 4
bits of the 2i-bit binary number q, the inverse z = a~! (mod 2%) can
be computed from the inverse of a;, mod 2°. Algorithm 4 computes
the inverse of « mod 2% where k is a power of 2, that is, it computes
z=a"" (mod 2%), and it accomplishes this computation in s=
log 5 (k) steps. In other words, the number of steps of Algorithm 4 is
logarithmic in .

909

Given a = (agay) = ay -2' +ay and x = (zyxy) = vy - 20 + 21,
we assume z;, = a;' (mod 2') is already computed and available.
Note that ay, ar, g,z are all i-bit integers. Algorithm 4 computes
the upper part zy of the inverse z = ™! (mod 2%) in 3 steps:

1) Compute the product ap -z = (byby)="by 2" +b, =

by -2 + 1.
2) Compute the product ag - z1 = (cyer) = ey -2/ + ¢y
3) Compute the expression xy = —(by + cz) - 71, (mod 2°).

4) Theinverseis givenasz = (zgzr) = vy - 2' + 2.

An algebraic proof is given in [1]. Here we illustrate this method
for the 32-bit number a = 2583209455 = (99 f8a5ef),;. This gives
ag = 39416 = (99f8),, and a; = 42479 = (abef),s. Furthermore,
we assume the inverse of the lower part a;, mod 216 is already com-
puted and available: z;, = a;' (mod 2'°) as z;, = 10511 = (290),.
We then compute zy using

1) ag - = 42479 - 10511 = 446496769 = (1a9d0001),, = (byby).
This gives by = 6813 = (1a9d),; and by, = 1.
2) ag-xp =39416 - 10511 = 414301576 = (18b1bd88),; = (crcr).
This gives cy = (18b1),; = 6321 and ¢, = (bd88),; = 48520.
3) gy = —(6813 +48520) - 10511 (mod 2!6). This gives zy =
26837 = (685),;-
4) Theinverse: z = (zgxr) = (68d5290f),, = 1758800143.
This is indeed correct 2583209455 - 1758800143 = 1 (mod 2%%).
Algorithm 4 is a essentially a recursive algorithm. The inverse of
amod 2*? invokes the computation of the inverse a mod 2', which
the computation of the inverse a mod 28 and so on. However, it can
also be made iterative by first computing the inverse mod 2!, using
this inverse to compute the inverse mod 22 and then mod 2*, and
so on. The authors describe Algorithm 4 in the narrative of the arti-
cle [1], however they do not provide a pseudocode. Below we give
the pseudocode for computing the inverse mod 2" for k = 2°. The
binary expansion of a is expressed as a = (A;_1---A;A) and
k = 2° for some integer s.

function Algorithm4(a, 2)
input: a, k where a is odd, a < 2¥,and k = 2°
output: z = o~ mod 2¥

1. ap«— Ay

2: apg < A1

3: Ty < 1

4: fori=1tos

4a: (beL) —ar-xr,
4b: (CHCL) —ag - Ty .
4c: 2y — —(by + cr) -z, (mod 227)
4d: ar, — (Ayi_y -+ Ap),
4e: amg — (Agiﬂ,l S AQZ)Q

4f: xr — (xgrr)

4: returnz = (xgzy)

Table 4 illustrates the inverse computation z = a~! (mod 2%?) for
a = (99f8a5ef) s, where s = 5. The algorithm computes the inverse
x = a! (mod 2%?), by successively computing the inverse mod 2’
fori=1,2,4,8,16,32.

TABLE 4
Algorithm 4 for Computing (99 f8a5ef);, (mod 2%2)

S (aH aL) xy, (bH bL) — aj - Iy, (CH CL) —ag -y Ty (ZL‘H CCL)

1 (11), (1), (01), (01), (1), (L 1),

2 (11 11), (11), (10 01), (10 01), (11), (11 11),

3 (e g (e (e 1) (d 2)4 (0)16 (0 fie

4 (ab ef)yq (0f)16 (0e 01)y (09 ab),; (29),6 (29 0f);

5 (998 abef), (290f) 44 (1a9d 0001),4 (18b1 bd88), (68d5) 6 (68d5 290)4

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

910

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

TABLE 5

Dumas lteration for Computing 12~

! (mod 5'6)

oi

i Tiq p ;=i 1 (2—a-z;_1)modp”

1 9 =3 52 71 =3-(2-12-3) — 23

2 T =23 54 x9 =23-(2—12-23) — 573

3 Ty = 573 58‘ x5 =573-(2—12-573) — 358073

4 r3 = 358073 516 x4 = 358073 - (2 — 12 - 358073) — 139872233073

TABLE 6

Dumas Iteration for Computing 23~

! (mod 2%2)

i T 22 ;=1 (2—a-x;_;)mod 22

1 =1 22 r1=1-(2-23-1)—3

2 o =3 21 2y =3-(2-23-3) =7

3 To =T 28 3="T-(2—23-7) — 167

4 r3 = 167 216 xy =167 (2 —23-167) — 14247

5 xy = 14247 232 vy = 14247 - (2 — 23 - 14247) — 3921491879

The result is indeed correct since (99 f8a5ef), - (68d5290f),; =
1 (mod 2%2). Algorithm 4 also computes a~! mod 2® for i =0,1,2,
3,4,5 at every step:

(99f8a5ef) ;s = (1), (mod 2)

(99f8a5ef) s = (11), (mod 2)
(99f8a5ef) s = (f), (mod 2%)

(99 f8(15€f)1_(,1 (0), (mod 2°)
(99f8abef)1s = (290f),4 (mod 29)
(99f8a5ef) s = (68d5290f),s (mod 2°2).

It is not clear if Algorithm 4 as formulated can be generalized for an
arbitrary k; it seems that it cannot be. There are s steps in the algo-
rithm, and at step 7 the inverse mod 22 computed fori =1,2,...,s
The authors describe a method (without detail) in Section 2.2 of [1]
for dealing with a composite k, but they do not give a method for
computing the inverse for an arbitrary k. The inverse mod 2* for an
arbitrary (not a power of 2) is not directly computed by this algo-
rithm. However, the inverse mod 2* for an arbitrary k can be
obtained by first computing the inverse mod 2% for the nearest
2* > k, and then reducing the result mod 2*. For example, if we
need a~! mod 2%, then we will have to compute the inverse mod 22’
first, since 2° > 29.

4.5 Newton-Raphson Iteration by Dumas

Dumas in [3], [4] shows that Algorithm 4 given by Araziand Qi [1]is
actually a specific case of Hensel lifting [12], and provides a proof of
the derivation of it. Dumas also gives Hensel’s lemma mod p* and its
proof from Newton-Raphson iteration. This results in several formu-
las for computing a~* (mod 2*) for k = 2¢, one of which is Algorithm
4. Dumas studies different implementation variants of this iteration
and shows that the explicit formula works well for small exponent
values but it is slower for large exponent, for example, more than 700
bits. An important contribution of Dumas is an iterative formula
which computes z; = a~! (mod p*’) for a prime p, by iterating over
1=1,2,...,5as

zo = a~' (mod p)

ri=xi12—a-xq) modpzi.
By selecting p = 2, the formula also specializes to the binary case.

The number of steps of the iteration is s = log, (k). Below we illus-
trate the computation of z, = a~! (mod p*) for a = 12, p = 5, and

s = 4. The iteration starts with zp = 127! (mod 5), which is found
as zy = 3, and proceeds over i = 1,2, 3,4, as shown in Table 5.

The result x4, = 139872233073 is indeed correct since
12 - 139872233073 = 1 (mod 5'6). We note that during its iteration
the Dumas algorithm actually computes consecutive inverses 1271
(mod 5%) fori = 0,1,2,3,4:

1271 = 3 (mod 5)

127! = 23 (mod 5%)

127! = 573 (mod 5*)

1271 = 358073 (mod 5°)

1271 = 139872233073 (mod 5'°).

However, inverses modulo other powers of 5 are not computed.
While the algorithm takes s =log,(k) steps, it also computes
s = log, (k) inverses. However, the inverse mod p” for an arbitrary
k can be obtained by first computing the inverse mod p** for the
nearest 2° > k, and then reducing the result mod 2. For example,
if we need a~! mod p*, then we will have to compute the inverse
mod p? first, since 2° > 29.

The binary version of the Dumas algorithm is similar, but it is
more compact than Algorithm 4. It uses the same formula as for p,
but taking p = 2 and assuming that a is odd. The starting value
x) =1 since p=2 and a is odd. Below we illustrate the computation
ofzy =a” (mod p¥) fora = 23,p = 2,and s = 5. The iteration starts
with zg = 237! (mod 2), which is found as zy = 1, and proceeds over
i=1,2,3,4,5by computing z; = ;1 - (2 — a - z;_1) mod 2*".

The result x5 = 3921491879 1is indeed correct since 23-
3921491879 = 1 (mod 2'%). We note that during its iteration the
Dumas algorithm actually computes 137! (mod 2%) for i =0, 1,2,
3,4,5, as shown in Table 6:

237! =1 (mod 2)
2371 = 3 (mod 2%)
2371 = 7 (mod 2*)

237! = 167 (mod 2°)
2371 = 14247 (mod 2'%)
2371 = 3921491879 (mod 2%?),

However, inverses modulo other powers of 2 are not computed.
Similarly, the inverse mod 2* for an arbitrary k can be obtained by
first computing the inverse mod 22" for the nearest 2° > k, and
then reducing the result mod 2*.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020 911
TABLE 7
ModInverse Algorithm for Computing 12! (mod 5°)

i b; X; =c-b;modp bivi=(bi—a-X;)/p

0 by =1 Xo=(3-1mod5) — 3 by =(1-12-3)/5 — 7

1 by =—7 X; =(3-(=7)mod5) — 4 by =(=7—12-4)/5 — —11

2 by = —11 X, = (3 (—=11)mod5) — 2 by = (—11—12-2)/5 — —7

3 by = -7 X3 =(3-(=7)mod5) — 4 by =(-7-12-4)/5 — —11

4 by = —11 X, = (3 (=11)mod5) — 2

However, it turns we do not need to compute the inverses
mod up to p?¥ for 2° > k in order to obtain the inverse mod p*
for an arbitrary k& < 2°. As suggested by one of the Reviewers,
we can compute the inverses up to mod p> ' for the nearest
257! < k (rather than 2° > k), and then apply one additional
iteration for i = s

Ty =251 (2—a-xs5-1) (mod pk)7

which is computed mod p* (rather than mod p*").

5 A NEwW ALGORITHM FOR INVERSION MoD p*

We introduce a new algorithm for computing = = a~! (mod p*) for
a prime p and arbitrary positive integer k. Our algorithm relies on
Dixon’s algorithm [2] for exact solution linear equations using
p-adix expansions, whose general idea is credited to German math-
ematician Kurt Wilhelm Sebastian Hensel. Dixon’s algorithm aims
to exactly solve a linear system of equations with integer coeffi-
cients, such as A - X = b in the sense that the solutions are obtained
as rational numbers rather than approximate values using floating-
point arithmetic.

Similar to Dixon’s approach, we formulate the inversion prob-
lem as the exact solution of the linear equation

a-x=1(mod p*),

for a prime p, an arbitrary positive integer £ > 1 and ged(a,p) = 1

or 1 < a < p. By solving this equation, we compute the inverse

x = a~* (mod p*). The algorithm starts with the computation of
c=a"" (mod p),

using the extended euclidean algorithm. It is more often the case
that the prime p is small, thus, this computation may not constitute
a bottleneck. In fact, the computation of ¢ for the case of p = 2 is triv-
ial, since ¢ =1 for any odd a. The algorithm then iteratively finds
the digits of 2 expressed in base p such that = a! (mod p*). In

other words, the algorithm computes the vector (Xj_; --- X1 X)) b
with X; € [0, p — 1] such that
k—1))
=) Xip=Xo+ X1 p+Xo-p'+- 4 Xy p",

Il
o

i

function ModInverse(a, p*)

input: a, p, k where ged(a,p) = land a < p*
output: z = a~! mod p*

1. ¢« a ! (mod p)

2: b(] — 1

3 fori=0tok—1

3a: X; — ¢+ b; (mod p)

3b: bi+l — (bl —(Z'Xi)/p

4: return x = (X]{;,l s X1X())p

p=>5, and k=5. First we compute ¢ =a"!

! (mod 5°). We have a = 12,
(mod p), which is
found as c¢=12"1=2"! =3 (mod 5). Starting with the initial
value by = 1, the algorithm proceeds for i =0,1,2,3,4 as illus-
trated in Table 7. The algorithm computes = expressed in base
5as x = (X4 X3X5X1Xj); = (24243),. In decimal, this is equal to
2-57+4-55+2.52+4-5+3=1823. Indeed 127! = 1823 (mod 5°)
since 121823 = 1 (mod 5°).

Our algorithm actually computes 127! (mod 57) for j=1,2,3,
4,5 at each step, since it generates the base 5 digits of the inverse as
T = (X4X3X2X, X)), = (24243);. The inverses for 5/ are the suf-
fixes of the inverse = = (24243);, given as

Consider the computation of 12~

127 = (3), = 3(mod 5)
1271 = (43); = 23(mod 5)
127! = (243); = 73 (mod 5°)
1271 = (4243); = 573 (mod 5*)
1271 = (24243), = 1823 (mod 5°).

6 CORRECTNESS OF MODINVERSE

First of all, the term (b; — a - X;) in Step 3b is divisible by p for every
i since

b,;—a-X,;:b,'—a~c-b,;:b,,;—b,;:O(modp),

due to the fact that a-c¢=1(mod p). Therefore, b; is integer for
every i€ [0,k—1]. It also follows that when ¢ =0, the term
(bp —a - Xy) = (1 — a-¢) is divisible by p. Furthermore, the terms b;
and z; are found as
bi=(1—a-o/p
bip=0-a-¢
X; = c¢-b; (mod p),

fori=0,1,...
on i.
The Basis Step: For i = 0, we have

,k — 1. The identity for b; can be proven by induction

by = 1
Xo=c-by = ¢(mod p).

These follow from Step 2 and Step 3a of the algorithm for i = 0.
The Inductive Step: Assume the formulas for b; and X; are correct
for i. Due to Step 3b, we can write b;;; - p = b; — a - X;, and thus

bis1-p=b—a-X;

=(l-a-ofp'—a-c-(1-a-¢)/pf
—(-a-d-(-a-d/p
=(1—a o™/

b p =1 —a-¢)".

Once b;;; is available, we can write from Step 3a as x4 =
¢ biy1 (mod p). This concludes the induction.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

912

ModInverse Algorithm for Computing 237! (mod 29)

TABLE 8

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

i bt X,':b,' (InOd 2) b7,+1:(b,'7a'X,,)/2

0 by =1 Xo=1(mod 2) — 1 b =(1-23-1)/2 — —11

1 by =—11 X; = —11(mod 2) — 1 by = (=11 —23-1)/2 — —17

2 by = —17 Xy =—17(mod 2) — 1 by =(-17—-23-1)/2 — =20

3 b;; =—-20 T3 = —20 (HlOd 2) — 0 1)4 = (—20 —23- 0)/2 — —10

4 by =—10 Xy =—-10(mod 2) — 0 b; =(-10—-23-0)/2 — -5

5 b5:75 X5:75(m0d 2)*>1

TABLE 9
Complexity Analysis of the Modular Inversion Algorithms
Number of Operand
Algorithm Steps Operations Sizes a~! mod p/ p k Output
DK [5] k 1M +2A 1,k i=1,.k 2 any whole
AQI1] Alg2 k 1M+ 1A 1.,k only j =k 2 any bits
AQ[1] Alg3 k 1M+ 1A only j =k 2 any whole
1 1D
AQI1] Alg 4 s 3M + 24 2!, ..,2¢ j=20.2° 2 2° bits
Dumas [3], [4] p* s 2M + 1A 2L .., 28 j=20,2° any 28 digits
Dumas [3], [4] 2% s 2M + 14 2!, .., 2¢ j=25.,2° 2 2° bits
ModInv p* k 1M 1 j=1,,k any any digits
k 1M+ 1A k

ModInv 2¢ k 1A k j=1,..k 2 any bits

To prove that the algorithm indeed computes z = a~! (mod p*),
we note that a - x can be written as

k-1 _ k-1)
a Xi-p=a-) c-b-p
=0 i=0
k—1
=a-Y c-(l—a-c)
i=0
k
1—a-eo)f =
PN 0
l-a-c—1
—1-(1—-a-o"

Thus, we find a -2 =1— (1 —a- ¢)*. We have already determined
that (1 — a - ¢) is a multiple of p, thus, (1 —a - o)fisa multiple of p*.
This gives a - x = 1 (mod p*).

7 INVERSION Mob 2F

The proposed algorithm significantly simplifies when p = 2, and it
constitutes an efficient alternative to the existing algorithms. First
of all, for x = a~' (mod 2*) to exist, ged(a,2*) must be 1, which
implies that a is odd. Given an odd a, the value of ¢ = a~! (mod 2)
is trivially found: ¢ = 1. The modified algorithm is given below.

function ModInverse(a, 2¥)

input: a, k where a is odd and a < 2F
output: 2 = ¢! mod 2"

1: bo — 1

2. fori=0tok—1

2a:)(Z — bi (Il’lOd 2)

2b: bi+1 — (bl —a- Xl)/2

3: return x = (Xk—l s X1X0)2

The mod 2 operation in Step 2a is computed by checking the
LSB. Obviously we have X; € {0, 1}, and the inverse z is produced
in base 2, that is = (Xj_1--- X1Xy),. On the other hand, the

division by 2 in Step 2b is performed by right shift. Below, we illus-
trate the computation of a = 23 and %k = 6, in order to compare to
the presented algorithms.

The algorithm produces the binary result = (100111), = 39.
This is indeed correct, since 237! = 39 (mod 2%). Moreover, our
algorithm computes 237! (mod 2) for k = 1,...,6, which are given
in base 2 as: (1), =1, (11), =3, (111); =7, (0111); =7, (00111), =
7,and (100111), = 39, as shown in Table 8.

8 COMPLEXITY ANALYSIS

For each algorithm presented in this paper, we analyze the number
steps (within the for-loop), the number of arithmetic operations in
each step, and the types and sizes of the operands involved, and
what the algorithm actually computes. These algorithms differ from
another in terms of the number of steps, the types of outputs (for
example, the whole number at once or digit-by-digit) and whether
or not the consecutive inverses are computed.

A realistic complexity analysis of the algorithms would require
that we count of number of bit operations. However, operations
requiring O(1) bit operations per step can safely be ignored. These
include check the LSB and right or left shift of the operands. Two impor-
tant parameters are k (the size of a) and s = log , (k). The symbols D,
M, and A stand for the processing times for division, multiplication,
and addition or subtraction operations. Table 9 summarizes our
analysis.

There are four aspects of these modular inversion algorithms,
and the interpretation of their complexity results should take them
into account.

First of all, these algorithms can be divided into two categories in
terms of their asymptotic complexity: linear versus logarithmic, i.e.,
those requiring k steps versus those requiring s = log, (k) steps.
There are 3 algorithms requiring logarithmic time which are Arazi
and Qi Algorithm 3, and Dumas Algorithms for modulus p* and 2*.
The remaining 5 algorithms require O(k) steps. It is not automatically
concluded that the logarithmic time algorithms are superior. First of
all, this will depend on the size of k. As we have discussed in Section 2,
the most common use of the modular inversion algorithm is for the
implementation of the Montgomery multiplication algorithm. In

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

regard to this application, we note. The classical Montgomery algo-
rithm [13] requires & to be as large as the size of the RSA modulus n,
thus, 512 to 2048. Here, the linear versus logarithmic complexity
would be hugely different. However, the classical algorithm is
hardly used in practice. The most deployed implementations use the
CIOS algorithm [11] which chooses % to be the word size of the pro-
cessor. If k=32, then s =10g,(32) =5, and thus, the difference
between linear versus logarithmic is not that great. For example, com-
paring Algorithm 4 to ModInverse algorithm, we see that the former
requires 5- (3M + 2A) operations while the latter requires 32- A
operations.

Algorithmically, a multiplication operation has at least logarith-
mic depth in gate delays compared to addition (in both cases of
carry save and carry propagate adders) which is 4 or 5 if the operand
size is 16 or 32 bits. Taking Pentium as a modern architecture exam-
ple, we see that integer multiplication (in Pentium 2/3 and 4) Takes
5,7 clock cycles of latency compared to integer addition which take
1 clock cycle, as seen in Table 5.2 of [7]. On the other hand, the
latency is 1 cycle for an integer addition and 3 cycles for an integer
multiplication in Intel Core Duo 2. One can find the latencies and
throughput in Appendix C, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
TC.2020.2970411. of the “Intel 64 and IA-32 Architectures Optimiza-
tion Reference Manual”, which is located in [8].

We conclude that for k = 32, Algorithm 4 (Arazi and Qi) requires
5 (3M + 2A) operations, Dumas Algorithm requires 5 - (20 + 1A)
operations, while ModInverse requires only 324 operations. Assum-
ing M = 4A, Algorithm 4 requires 704, Dumas Algorithm requires
45A and ModInverse requires only 32A operations. For M = 3A4, the
number of additions becomes 554, 354 and 32A for the Algorithm
4, Dumas Algorithm, and ModInverse algorithm.

The second point about comparing these 8 algorithms is that they
can be divided into 2 categories: algorithms computing the inverse
mod p* (or 2¥) for any value of k versus algorithms that work only for
specific values of k, here namely, for those & that is a power of 2. The
modular inversion algorithms that work for any k are the Dussé and
Kaliski Algorithm, Arazi and Qi Algorithms 2 and 3, and ModInverse
Algorithms for p* and 2*. The remaining 3 algorithms compute the
inverse mod p* where k = 2°. These algorithms will require an addi-
tional reduction to compute the inverse for an arbitrary k; for exam-
ple, to compute the inverse mod p?, we will first have the compute
the inverse for mod st for an s such that 2° > £, and then obtain the
inverse mod p? by an additional reduction operation.

The third point about comparing these 8 algorithms is that they
can be divided into 2 categories: algorithms that compute and output
the consecutive inverses (for example, for j=1,2,....k or j=1,
2,...,s) versus algorithms that compute the output for a single &
only (however, consecutive inverses can still be obtained by reduc-
tions). Only Arazi and Qi Algorithm 2 and 3 compute the inverse for
a single modulus; while the Dussé and Kaliski Algorithm and Mod-
Inverse Algorithms for p* and 2¥ compute and output the consecutive
inverses for mod for i = 1,2,..., k. On the other hand, Arazi and Qi
Algorithm 4 and Dumas Algorithms for p* and 2¥) compute the
inverse for consecutive s moduli, specifically for p? forj=1,2,....s.

The fourth point about comparing these 8 algorithms is that
they can be divided into 2 categories: algorithms that work only for
p = 2 and algorithms that work for any prime p. The first category
contains 6 algorithms; while only two algorithms, namely ModIn-
verse and Dumas algorithms work for any p.

Finally, we note that the ModInverse algorithm is the only algo-
rithm that produce the digits (base p or base 2) of the inverse
directly, starting from the least significant digits proceeding to the
most significant. These digit-by-digit arithmetic algorithms are also
named as on-line arithmetic. Such algorithms introduce parallelism
between sequential operations by overlapping these operations in a
digit-pipelined fashion [6].

913

Furthermore, the ModInverse algorithm for mod 2k requires the
minimal number of arithmetic operation (just a single addition)
among all 8 algorithms.

9 CONCLUSION

We have introduced a new algorithm for computing the inverse
a~! (mod p*) given a prime p and a € [1,p — 1]. The algorithm is
based on the exact solution of linear equations using p-adic expan-
sions, due to Dixon [2]. The new algorithm starts with the initial
value ¢ = a~! (mod p) and iteratively computes the inverse v = a~!
(mod p*). The binary version of the proposed algorithm (that is,
when p = 2) is significantly more efficient than the existing algo-
rithms for computing a~! (mod 2*) when k is small, which is the
case for the CIOS Montgomery multiplication algorithm. More-
over, the proposed algorithm computes all inverses mod p' or 2°
for i =1,2,...,k and work for an arbitrary k. We have also
described and analyzed 6 existing algorithms, and provided an
extensive comparison and interpretation o the proposed algorithm.
Our proposed algorithm stands out as being the only one that
works for any p, any &, and digit-by-digit. Moreover it requires the min-
imal number of arithmetic operations (just a single addition) per step.

ACKNOWLEDGMENTS

The author thanks to Francois Grieu for comments in [6], Watson
Ladd for comments on Dixon’s algorithm being actually due to
Hensel, Markku-Juhani Olavi Saarinen for comments on Newton-
Raphson algorithm, and Michael Scott for reminding the references
[1], [3] and commenting on the first version of this article. The author
also thanks reviewers for pointing out that the article [3] was also
published in IEEE Transactions on Computers [4] and for greatly
improving and correcting the article with their rigorous reviews.

REFERENCES

[11 O. Arazi and H. Qi, “On calculating multiplicative inverses modulo 2,”
IEEE Trans. Comput., vol. 57, no. 10, pp. 1435-1438, Oct. 2008.

[2]]. D. Dixon,”Exact solution of linear equations using p-adic expansions,”
Numerische Mathematik, vol. 40, no. 1, pp. 137-141, 1982.

[3] J. Dumas, “On Newton-Raphson iteration for multiplicative inverses mod-
ulo prime powers,” arXiv:1209.6626v3, 2012. [Online]. Available: https://
arxiv.org/abs/1209.6626v3

[4]]J. Dumas, “On Newton-Raphson iteration for multiplicative inverses modulo
prime powers,” IEEE Trans. Comput., vol. 63, no. 8, pp. 2106-2109, Aug. 2014.

[5] S.R. Dussé and B. S. Kaliski Jr, “A cryptographic library for the Motorola
DSP56000,” in Proc. Workshop Theory Appl. Cryptographic Techn., 1990,
pp- 230-244.

[6] F.Grieu, “Answer to ‘How to determine the multiplicative inverse modulo
64 (or other power of two)?’,” StackExchange Cryptography, 2017. [Online].
Auvailable: https:/ /crypto.stackexchange.com/questions /47493

[71 ~ D.Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptog-
raphy, New York, NY, USA: Springer, 2004.

[8] Intel, “Intel 64 and IA-32 architectures software developer manuals,” Jan.
18, 2018. [Online]. Available: https://software.intel.com/en-us/articles/
intel-sdm

[91 B. S. Kaliski Jr., “The Montgomery inverse and its applications,” IEEE
Trans. Comput., vol. 44, no. 8, pp. 1064-1065, Aug. 1995.

[10] C. K. Kog, “High-speed RSA implementation,” RSA Lab., Hebron, CT,
Tech. Rep. TR 201, Nov. 1994.

[11] C.K.Kog, T. Acar, and B.S. Kaliski Jr., “Analyzing and comparing Montgom-
ery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26-33, Jun. 1996.

[12] E. V. Krishnamurthy and V. K. Murty, “Fast iterative division of p-adic
numbers,” IEEE Trans. Comput., vol. 32, no. 4, pp. 396-398, Apr. 1983.

[13] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519-521, Apr. 1985.

[14] E. Savas and C. K. Kog, “The montgomery modular inverse - revisited,”
IEEE Trans. Comput., vol. 49, no. 7, pp. 763-766, Jul. 2000.

[15] E.Savas and C. K. Kog, “Montgomery inversion,” |. Cryptographic Eng., vol. 8,
pp. 201-210,2017.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 10,2020 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/TC.2020.2970411
http://doi.ieeecomputersociety.org/TC.2020.2970411
https://arxiv.org/abs/1209.6626v3
https://arxiv.org/abs/1209.6626v3
https://crypto.stackexchange.com/questions/47493
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

