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Abstract—Modular multiplication forms the basis of many cryptographic functions such as RSA, Diffie-Hellman key exchange, and

ElGamal encryption. For large RSA moduli, combining the fast Fourier transform (FFT) with McLaughlin’s Montgomery modular

multiplication (MLM) has been validated to offer cost-effective implementation results. However, the conditional selections in

McLaughlin’s algorithm are considered to be inefficient and vulnerable to timing attacks, since extra long additions or subtractions may

take place and the running time of MLM varies. In this work, we restrict the parameters of MLM by a set of new bounds and present a

modified MLM algorithm involving no conditional selection. Compared to the original MLM algorithm, we inhibit extra operations caused

by the conditional selections and accomplish constant running time for modular multiplications with different inputs. As a result, we

improve both area-time efficiency and security against timing attacks. Based on the proposed algorithm, efficient FFT-based modular

multiplication and exponentiation are derived. Exponentiation architectures with dual FFT-based multipliers are designed obtaining

area-latency efficient solutions. The results show that our work offers a better efficiency compared to the state-of-the-art works from

and above 2048-bit operand sizes. For single FFT-based modular multiplication, we have achieved constant running time and obtained

area-latency efficiency improvements up to 24.3 percent for 1,024-bit and 35.5 percent for 4,096-bit operands, respectively.

Index Terms—Montgomery modular multiplication, modular exponentiation, RSA encryption, number-theoretic weighted transform,

field-programmable gate array (FPGA)
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1 INTRODUCTION

MODULAR multiplication is the core operation of modu-
lar exponentiation based cryptosystems. These include

the RSA algorithm [1], the Diffie-Hellman key exchange
scheme [2], and many other cryptographic functions. The
security of RSA relies on the difficulty of finding the two
prime factors p and q of modulus n. Due to the advances
in factorization methods, the commonly used modulus size
is at least 1,024-bit for a secure RSA. Moreover, as recom-
mended by the NIST [3], 3,072-bit or even larger modulus
would be used in the near future for long-term protection.
While larger modulus renders higher security, it also
increases the processing time and consumes more hard-
ware resources. Therefore, high-performance modular
exponentiation processor for large operands is in demand
for RSA or other cryptosystems.

Modular exponentiation is usually performed by the
binary (square-and-multiply) method [4], which scans one

exponent bit every iteration either from left to right (L2R) or
from right to left (R2L). For a 1,000-bit exponent, around 1,500
multiplicationswould be performed on average. Several tech-
niques have been studied to reduce the number of multiplica-
tions by scanning multiple bits each time, such as the m-ary
method and the constant length sliding-windows (CLSW)
method [5]. However, the cost of such savings is high [6].
Specifically, compared to the 1,024-bit binary method, m-ary
saves 19 percent of the multiplications but needs 5 times of
the hardware resources on FPGA; meanwhile, CLSW saves
22 percent of themultiplications but needs 4 times of the hard-
ware resources. For larger operands, the asymptotic value of
savings offered by m-ary is 33 percent, and CLSW is 35 per-
cent [4]. As a result, choosing the binary method would be
better for a cost-effective exponentiation architecture, as both
m-ary andCLSWare costly in terms of hardware resources.

The efficiency of modular multiplication has a direct
impact on the performance of modular exponentiation. For
the modular multiplications by using the regular methods,
such as the schoolbook method, the Karatsuba method [7],
and the Toom-Cook method [8], either area or latency will
become unacceptable when the operand size reaches thou-
sands of bits [6], [9]. On the other hand, combining the
Montgomery modular multiplication (MMM) [10] with the
fast Fourier transform (FFT) method [11], [12], [13], [14]
offers an efficient solution for large operand sizes (3,072-bit
and above) because of its low complexity [15], [16], [17].

The benefits of applying FFT method to McLaughlin’s
Montgomery modular multiplication [18] have been
explored in [17]. Compared to other FFT-based approaches
[15], [16], the work in [17] reduces the FFT length by half
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and improves area-time efficiency due to the avoidance of
zero-padding [19], [20]. However, the conditional selections
in MLM are considered to be inefficient. First, they must be
performed in sequence due to the data dependency, and
thus parallel computation for higher throughputs is
unavailable. Second, extra hardware resources are needed
as complex control logic is employed. Besides, every condi-
tional selection involves an extra large size addition or sub-
traction, performing such operation is costly due to the long
carry propagation. In addition to affecting the efficiency, the
conditional selections may also raise security concerns.
Studies in [21] and [22] reveal that the conditional selection
in MMM [10] may be vulnerable against timing attacks.
Since the conditional selection occurs with different possi-
bilities for squares and multiplications [23], the secret key of
RSA can be deduced after collecting enough timing observa-
tions [23], [24]. Similar timing attacks may be mounted
against MLM as it also involves conditional selections.
Therefore, for both efficiency and security concerns, the
MLM algorithm needs to be further improved.

This paper studies and investigates the conditional selec-
tion issue in MLM. We propose an improved algorithm,
named as McLaughlin’s multiplication without conditional
selections (MLWS), which eliminates all the conditional selec-
tions by enlarging the input or output (I/O) bound. As it per-
forms no extra addition or subtraction and runs at a constant
time, both area-time efficiency and security against timing
attacks [23], [25] are improved. A secondary objective of this
paper is to create implementations ofmodular exponentiation
with high area-time efficiency, rather than to create very low
area or ultra high-speed implementations at the high cost of
the other. The contributions of this paper are listed as follows:

� MLM without conditional selections (MLWS) is pro-
posed, which eliminates all conditional selections of
MLM and achieves improvements on both area-time
efficiency and security against timing attacks.

� Combining MLWS with the FFT method, we pro-
posed the FFT-base MLWS (FMLM). With carry-save
technique and computing data-flow optimization,
FMLM reduces the number of long additions and
subtractions from 10 to 3.

� An efficient FFT-based modular exponentiation
(FMLE) algorithm is derived by combining FMLM
with the binary exponentiation method.

� Pipelined architecture with dual FFT-based multi-
pliers is designed for FMLE. We also equip the archi-
tecture with protection against simple power
analysis. The FPGA implementation results show
that better area-time efficiency is achieved for 2,048-
bit and above operand sizes.

� At last, we show that the number of long additions
and subtractions of MLWS can be reduced to only 1
if an even larger I/O bound is allowed.

The rest part of this paper is organized as follows. Section 2
provides the mathematical backgrounds. Section 3 proposes
the MLWS algorithm. Section 4 presents the FMLM algo-
rithm and its algorithm level improvements. Section 5 pro-
vides the FMLE algorithm and its parameter specifications.
Section 6 describes the pipelined architectures of FMLE and
FMLM in detail. Section 7 provides the FPGA implementa-
tion results and comparisons with other works. Section 8

discusses a method to further reduce the number of long
additions inMLWS. Section 9 summarizes the remarks.

2 PRELIMINARIES

We use lower case letters x; y . . . to denote time domain vari-
ables, upper case letters X;Y . . . for spectral domain varia-
bles, and boldface letters xx;XX . . . for integer sequences in
time or spectral domain. For the ease of reference, notations
and abbreviations in this paper, as well as their descrip-
tions, are listed in Table 1.

2.1 Number-Theoretic Weighted Transform

For a non-negative integer x, its base-b representation can be
defined as: x ¼Ps�1

i¼0 xib
i, where 0 4 xi 4 b� 1. The collec-

tion of digits xi is denoted as xx ¼ fxi : 0 4 i 4 s� 1g.
Evaluating the polynomial xðtÞ ¼ xs�1ts�1 þ xs�2ts�2 þ � � � þ
x1tþ x0 at t ¼ b yields the standard representation of xx. We
usually choose b as a power of 2, i.e., b ¼ 2u, for the ease of
computation.

Assume x; y < bs � 1 are in base-b representation, then
z ¼ xy mod ðbs � 1Þ is equivalent to a length-s cyclic convolu-
tion of xx and yy, denoted as ðxx �s yyÞ [26]:

z ¼
X2s�1
k¼0

 X
iþj¼k

xiyj

!
bk mod ðbs � 1Þ

¼
Xs�1
k¼0

 X
iþj¼k

xiyj

!
bk þ

Xs�1
k¼0

 X
iþj¼kþs

xiyj

!
bk

:¼
Xs�1
k¼0
ðxx �s yyÞkbk:

(1)

TABLE 1
Abbreviation and Notation List

Abbr. and

Notation

Description

FFT fast Fourier transform

NWT number-theoretic weighted transform

CT cyclic transform

NCT nega-cyclic transform

MMM Montgomery modular multiplication

MLM McLaughlin’s Montgomery modular multiplication

MLWS McLaughlin’s multiplication without conditional selections

FMLM FFT-based McLaughlin’s multiplication

FMLE FFT-based McLaughlin’s exponentiation

I/O input or output

R2L right to left

PEA/B processing element A / B

SPA simple power analysis

n modulus of RSA

r, h moduli of McLaughlin’s MMM

l bit length of r

b radix for long integer decomposition

s transform length / number of digits

u bit length of b

v number of FFT stages

v primitive sth root of unity

f primitive 2sth root of unity

q ring size of NWT

c integer to generate q

dd fds�1; . . . ; d1; d0gweight digit sequence of NWT

e exponent

t bit length of exponent e
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In terms of modulus bs þ 1, z ¼ xymod ðbs þ 1Þ is equivalent
to a length-s nega-cyclic convolution of xx and yy, denoted as
ðxx �s yyÞ [26]:

z ¼
X2s�1
k¼0

 X
iþj¼k

xiyj

!
bk mod ðbs þ 1Þ

¼
Xs�1
k¼0

 X
iþj¼k

xiyj

!
bk �

Xs�1
k¼0

 X
iþj¼kþs

xiyj

!
bk

:¼
Xs�1
k¼0
ðxx �s yyÞkbk:

(2)

Similar to the frequency domain in signal processing lit-
erature, the number-theoretic transform (NTT) provides the
spectral domain where cyclic convolution is computed point-
wisely [27]. Crandall and Fagin [26] modified this transform
to support nega-cyclic convolution by introducing an extra
weight digit sequence comprised of s non-zero integers:

dd ¼ fdi : i ¼ 0; 1; 2; . . . ; s� 1g: (3)

This modified NTT is named as number-theoretic weighted
transform (NWT). Let XX be the NWT of xx, the forward and
inverse NWTs over ring Zq are defined as:

Xk ¼ NWTðxxÞk :¼
Xs�1
i¼0

dixiv
ik ðmod qÞ;

xk ¼ INWTðXXÞk :¼ ðdksÞ�1
Xs�1
i¼0

Xiv
�ik ðmod qÞ;

(4)

where k ¼ 0; 1; . . . ; s� 1, v is the primitive sth root of unity
in Zq (v

s � 1mod q).
An NWT becomes precisely the NTT in the case when

dd ¼ 11 [26]. We rename such NWT as cyclic transform (CT).
LetXX ¼ CTðxxÞ, xx ¼ ICTðXXÞ, and � be the point-wise multi-
plication, then cyclic convolution can be computed as:

ðxx �s yyÞ ¼ ICT½CTðxxÞ � CTðyyÞ� ðmod qÞ: (5)

In terms of nega-cyclic convolution, we define another
special case of NWT as nega-cyclic transform (NCT) by setting
dd ¼ fdi ¼ fig, where f is the primitive 2sth root of unity
(f2s � 1mod q) [26]. Let X̂̂X ¼ NCTðxxÞ and xx ¼ INCTðX̂̂XÞ,
then nega-cyclic convolution can be computed as:

ðxx �s yyÞ ¼ dd�1 � ½ðdd� xxÞ �s ðdd� yyÞ�
¼ INCT½NCTðxxÞ �NCTðyyÞ� ðmod qÞ: (6)

Note that Zq supports an length-s convolution if and only if
sjðqi � 1Þ for every prime factor qi of q [26], [27]. In addition,
to avoid data overflow, the ring size q must be greater than
the largest possible component of the convolutions, i.e.,
q > sðb� 1Þ2.

When s is a power of 2, i.e., s ¼ 2v, the radix-2 fast Four-
ier transform [28] can be applied to both CT and NCT [26],
which has the advantage of reducing the digit-level com-
plexity from Oðs2Þ to Oðs log sÞ. Therefore, by invoking the
radix-2 FFT algorithm to Equations (5) and (6), cyclic convo-
lution and nega-cyclic convolution could be further acceler-
ated as a lower computational complexity is achieved.

2.2 Right-to-Left Binary Method

In this paper, we implement the right-to-left binary method
for modular exponentiation. The R2L binary method is
described in Algorithm 1, where a squaring is performed in
each iteration, and depending on the scanned bit, a multipli-
cation is performed. The maximum number of modular
multiplications required by the algorithm is found to be 2t
in the worst-case when e ¼ ð111 . . . 11Þ2. While in the aver-
age-case, the number is found to be 3t=2. For fast modular
reduction, MMM or MLM algorithm can be applied to per-
form the modular multiplication steps, i.e., Steps 4 and 5 in
Algorithm 1.

Algorithm 1. Right-to-Left Binary Method for Modular
Exponentiation [4]

Input: x, n, e ¼ ðe½t � 1�e½t � 2� � � � e½1�e½0�Þ2
Output: t ¼ xe ðmod nÞ
1: y x
2: t 1
3: for i ¼ 0 to t � 1 do
4: if e½i� ¼ 1 then t ty ðmod nÞ
5: y y2 ðmod nÞ
6: end for
7: return t

2.3 McLaughlin’s Montgomery Modular
Multiplication

Montgomery modular multiplication [10] is particularly
efficient for modular exponentiation. But it has the zero-
padding issue when adopting the FFT method [16]. Differ-
ent from the MMM algorithm, McLaughlin’s Montgomery
modular multiplication (MLM) [18] redefines r ¼ 2l � 1
with an additional modulus h ¼ 2l þ 1, cf. Algorithm 2.
Besides, by carefully selecting the parameters, e.g., let
2l ¼ bs, the modular multiplication steps in MLM can be
computed by the FFT method without zero-padding [17].
Thus, a lower computational complexity is achieved com-
pared to the FFT-based MMM [16]. As a trade-off, MLM
involves more l-bit additions and subtractions than MMM
because of the conditional selections and the special forms
of r and h. When l is sufficiently large, these l-bit operations
are non-trivial due to their long carry propagations.

Algorithm 2. McLaughlin’s Montgomery Modular Mul-
tiplication (MLM) [18]

Input: Let x � x0rmodn, y � y0rmodn, both x; y < n. Choose
r ¼ 2l � 1 > n and h ¼ 2l þ 1, verify gcdðr; nÞ ¼ 1 and
gcdðr; 2hÞ ¼ 1, n0 ¼ �n�1 mod r

Output: t ¼ xyr�1 ðmod nÞ
1: m xyn0 ðmod rÞ
2: g ðxyþmnÞ ðmod hÞ
3: f  �g ðmod hÞ
4: if 2jf then w f=2, else w ðf þ hÞ=2
5: if xyþmn � w ðmod 2Þ then t w, else t wþ h
6: if t < n then return t, else return t� n

2.4 Timing Analysis on McLaughlin’s Multiplication

Algorithm 2 consists of three extra operations, namely, f þ h
in Step 4, wþ h in Step 5, and t� n in Step 6. Depending on
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the input values, the need for each extra operation is differ-
ent, which results in a variable running time ofMLM.

Meanwhile, there exist dependencies among the three
extra operations. Given 0 4 f < h in Step 4 of Algorithm 2,
we would have 0 4 w < h=2 when 2jf , otherwise h=2 4
w < h. It is a common case to use a large modulus n for
modular multiplication, so we assume h=2 < n < r. Thus,
t ¼ w < h=2 < n is ensured (t� n is not needed) when
both additions, f þ h in Step 4 and wþ h in Step 5, are not
computed. Besides, if wþ h is performed, t� n is needed
since t ¼ wþ h > n. Base on the above observations, let
Tcon be the time spent on each extra operation, the timing
measurements of MLM can be divided into two subsets
depending on the relationship between t and n:

� If t 5 n and t� n is needed, at least one of the two
extra operations f þ h and wþ h must be computed.
The timing difference is 2Tcon or 3Tcon compared to
the case when no extra operation is computed.

� If t < n and t� n is not needed, wþ h is unneces-
sary. The timing difference is 0 or Tcon.

Therefore, similar to MMM, timing attack on MLM also
relies on the relationship between t and n.

Though different methods are employed, the basic con-
cepts of MMM and MLM are the same: both algorithms are
based on the equality of rt ¼ xyþmn [10], [18]. Thus, the
need for t� n in MLM is also different for square and multi-
plication, and it can be evaluated by the probability estima-
tion methods of MMM [23], [24]. As a result, when using
MLM for modular exponentiation, similar timing attack
methods proposed in [22], [23], [24] can be mounted for
recovering the exponent bits.

There are simple countermeasures to avoid timing
attacks. One of these is to perform every extra operations
within each MLM. Thus dummy operations might be pro-
duced. However, as MLM involves more conditional selec-
tions than MMM, implementing this approach may reduce
the performance significantly. In this paper, we proposed a
modified MLM algorithm which prevents all the condi-
tional selections, so that each modular multiplication can be
performed within constant running time. Due to this fact,
the modified algorithm is considered to be secure against
timing attacks [21], [23], [24]. Moreover, as fewer long addi-
tions or subtractions are required, the area-time efficiency is
also improved.

3 MCLAUGHLIN’S MONTGOMERY MODULAR

MULTIPLICATION WITHOUT CONDITIONAL

SELECTIONS

In MLM algorithm, performing the conditional selections is
costly as extra computational efforts are required. Besides,
since the running time varies from different inputs, using
MLM for RSA computation is considered to be vulnerable
to timing attacks. For both efficiency and security concerns,
an improved MLM is proposed in this section, which elimi-
nates all the conditional selections.

The original MMM [10] computes

t ¼ xyþmn

r
: (7)

Given x < 2n, y < 2n, r > 4n andm ¼ xyn0mod r < r, t is
bounded by

t <
4n2 þ rn

r
¼ 4n2

r
þ n < 2n: (8)

Let h > r > 4n and gcdðr; hÞ ¼ 1, the equality of Equa-
tion (7) still holds when both sides are reduced by h:

t ¼ xyþmn

r
ðmod hÞ: (9)

Next, we demonstrate that t in Equation (9) can be solved
more efficiently than MLM when x, y and t are bounded by
2n, and h ¼ 2l þ 1 > r ¼ 2l � 1 > 4nwhere gcdðr; hÞ ¼ 1.

Merging Steps 3 and 4 in Algorithm 2: As can be derived
from Equation (9), g in Step 2 of Algorithm 2 equals to
g ¼ rt ðmod hÞ. Because r � �2 ðmod hÞ, we would obtain

2t � �g ðmod hÞ ¼ f: (10)

Since h > 4n > 2t, if f ¼ g ¼ 0, the only possible solution
is t ¼ 0.

Now we prove that t ¼ 0 if and only if xy ¼ 0. Assume
xy ¼ kn where k is a positive integer. Then njxy if xy 6¼ 0,
and m ¼ xyn0 ðmod rÞ ¼ r� k. After substituting xy and m
into Equation (9), we have:

t ¼ knþ rn� kn

r
ðmod hÞ ¼ n: (11)

Since t ¼ n < 2n is a valid output, only xy ¼ 0 results in
t ¼ 0. In practice, encrypting a zero message using RSA is
meaningless as the output is still zero. Therefore, Steps 3 and
4 can bemerged by ensuring xy 6¼ 0, and Step 3 is revised to:

if 2jg then w h� g=2, else w ðh� gÞ=2.
Eliminating the Parity Check of g: Since xyþmn ¼ rt <

2rn < 22l, the bit length of xyþmn is less than 2l. Then,
given h ¼ 2l þ 1, computing g ¼ xyþmn ¼ rt ðmod hÞ
requires two steps. First, we compute

gh ¼ ðrtmod2lÞ �
�
rt

2l

�
; (12)

then add h if gh < 0. From r ¼ 2l � 1, we derive

rt ¼ 2lt� t ¼ ðt� 1Þ2l þ ð2l � tÞ: (13)

As we assume xy 6¼ 0, t > 0 is ensured, and thus 0 4 t�
1 < 2l and 0 < 2l � t < 2l. Finally, combining Equa-
tion (12) with Equation (13), gh is solved by

gh ¼ 2l � 2tþ 1 ¼ h� 2t: (14)

Equation (14) reveals two observations: first, g ¼ gh as
0 4 gh < h is always true; second, gh (or g) is always odd.
The first observation indicates that g can be obtained by only
one subtraction, and the latter indicates the parity check of g
can be removed. Consequently, the first conditional selection
ofMLM is eliminated, and Step 3 is further revised to:

w ðh� gÞ=2.
Eliminating Steps 5 and 6 in Algorithm 2: Step 4 in Algo-

rithm 2 removes the scalar 2 of Equation (10), so t ¼ w
ðmod hÞ. As mentioned previously, we have 0 < w ¼ ðh�
gÞ=2 < h and 0 < t < 2n < h, so that both w and t are
within the range of ½0; hÞ. Therefore, t ¼ w and the parity
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checks of w and xyþmn can be saved. This conclusion is
able to be verified by substituting Equation (14) into
w ¼ ðh� gÞ=2, and we get w ¼ ðh� gÞ=2 ¼ ðh� hþ 2tÞ=
2 ¼ t. As a result, the second conditional of MLM is elimi-
nated. In addition, as x, y and t are bounded by 2n, the last
conditional selection (Step 6) is also eliminated.

The algorithm of McLaughlin’s multiplication without
conditional selections (MLWS) is provided as shown in
Algorithm 3. Compared to the original MLM algorithm,
the efficiency of MLWS is improved as no extra addition or
subtraction is ever performed. Besides, MLWS computes
modular multiplication with constant running time, which
is considered to be one of the countermeasures against
timing attacks [23]. Therefore, the security of MLWS is also
improved.

Algorithm 3. McLaughlin’s Multiplication without
Conditional Selections (MLWS)

Input: Let x � x0rmodn, 0 < x < 2n, and y � y0rmodn, 0 <
y < 2n. Choose r ¼ 2l � 1 > 4n and h ¼ 2l þ 1 > 4n.
Verify gcdðr; nÞ ¼ 1 and gcdðr; hÞ ¼ 1. Compute n0 ¼
�n�1 mod r

Output: t � xyr�1 ðmod nÞ, t < 2n
1: m xyn0 ðmod rÞ
2: g ðxyþmnÞ ðmod hÞ
3: w ðh� gÞ=2
4: return t w < 2n

4 FFT-BASED MODULUAR MULTIPLICATION

UNDER MCLAUGHLIN’S FRAMEWORK

In order to compute the modular multiplication with large
operand size efficiently, the FFT method is employed in the
modular multiplication steps of MLWS.

4.1 FFT-Based MLWS Algorithm

Let r ¼ 2us � 1, h ¼ 2us þ 1, where l ¼ us, u is the digit
length, and s is the transform length, the FFT method can be
used to compute m and g in Algorithm 3. Depending on the
moduli, CT is used to compute m while NCT is used for g.
Algorithm 4 presents the FFT-based MLWS (FMLM), which
involves 9 length-s FFTs and 4s point-wise multiplications.
Compared to FFT-based MMM [15] and [16], the transform
length in FMLM is reduced by half due to the avoidance of
zero-padding. Besides, compared to [17], FMLM involves
fewer long additions because the conditional selections in
MLM are prevented.

When modular multiplications are required repeatedly,
such as modular exponentiation, n and n0 would appear
more than once. Therefore, we precompute their transformed
results N̂̂N andN 0N 0 in Algorithm 4, and save them for later use.

Observing that modulo-r or h reduction is required after
every inverse transform in Steps 1, 3 and 5 of Algorithm 4.
Taking Step 1 as an example, since a0a0 ¼ ðxx �s n0n0Þ, a0k <
sb2 ¼ 22uþv, and thus,

Ps�1
k¼0 a

0
kb

k < 2lþuþvþ1. This means the
accumulation result may be greater than r, therefore, a mod-
ulo-r reduction is performed in Step 2 to adjust the result to
be less than r. For the same reason, modular reductions are
employed after Steps 3 and 5.

Computing each modulo-r reduction in FMLM requires
one l-bit addition and one l-bit subtraction. For instance, we

let a0 ¼Ps�1
k¼0 a

0
kb

k in Step 2, so that a0 < 2lþuþvþ1 < 22l.
Thus, a ¼ a0mod r can be computed within two steps. The
first step computes

ar ¼
�
a0

2l

�
þ ða0mod 2lÞ; (15)

where ar equals to either a or aþ r. Then, the second step
obtains a by removing the extra r. Similarly, m in Step 4 can
be computed by the same operations. In terms of modulo-h
reduction in Step 7, g can be obtained by only one l-bit sub-
traction according to the discussion in Section 3. As a result,
each FMLM involves 6 long additions (subtraction is
counted as addition).

Algorithm 4. FFT-Based McLaughlin’s Multiplication
without Conditional Selections (FMLM)

Input: Let x � x0r ðmod nÞ, 0 < x < 2n, and y � y0r ðmod nÞ,
0 < y < 2n. Choose r ¼ 2us � 1 > 4n and h ¼ 2usþ
1 > 4n. Verify gcdðr; nÞ ¼ 1 and gcdðr; hÞ ¼ 1. Precompute
N 0N 0 ¼ CTðn0n0Þ, N̂̂N ¼ NCTðnnÞwhere n0 ¼ �n�1 ðmod rÞ.

Output: t ¼ FMLMðx; yÞ ¼ xyr�1 ðmod nÞ < 2n
1: a0a0  ICT½CTðxxÞ �N 0N 0� ðmod qÞ
2: a �Ps�1

k¼0 a
0
kb

k
� ðmod rÞ

3: m0m0  ICT½CTðyyÞ � CTðaaÞ� ðmod qÞ
4: m �Ps�1

k¼0 m
0
kb

k
� ðmod rÞ

5: g0g0  INCT½NCTðxxÞ �NCTðyyÞ þNCTðmmÞ � N̂̂N �ðmod qÞ
6: restrict each g0k by applying (18)
7: g �Ps�1

k¼0 g
0
kb

k
� ðmod hÞ

8: w ðh� gÞ=2
9: return t w

In Step 5, we add xy and mn in spectral domain point-
wisely. Therefore, the largest possible value is decided by
the sum of two nega-cyclic convolutions. Due to this fact,
the ring size of Zq should be extended by one more bit to
avoid data overflow:

q > 2sðb� 1Þ2: (16)

Besides, the purpose of Step 5 is to compute g0g0 ¼ ðxx �s yyÞþ
ðmm �s nnÞ. Thus, based on Equation (2), g0k may be a negative
integer since it is bounded by

�2ðs� 1� kÞðb� 1Þ2 4 g0k 4 2ðkþ 1Þðb� 1Þ2: (17)

However, for a negative g0k, g
0
k þ q 5 0 would be obtained

instead since the INCT in Step 5 is defined over Zq. There-
fore, a restriction step (Step 6) is performed immediately
after Step 5 to recover the bounded value of g0k:

g0k  
g0k; if g0k satisfies ð17Þ;
g0k � q; otherwise:

�
(18)

FMLM can be simplified when performing squaring or
common-multiplicand multiplication. Feeding both inputs
of Algorithm 4 with the same value yields the squaring
variation of FMLM, where 2 FFTs are saved. For common-
multiplicand multiplication, assume x is the common-
multiplicand which appears in more than one modular mul-
tiplication, we can compute AA (a ¼ xn0mod r) and X̂̂X and
save them for subsequent operations. Thus, in common-
multiplicand multiplication variation of FMLM, Steps 1 and
2 in Algorithm 4 are removed, Step 3 is revised to
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m0m0  ICT½CTðyyÞ �AA� ðmod qÞ; (19)

and Step 5 is revised to

g0g0  INCT½X̂̂X �NCTðyyÞ þNCTðmmÞ � N̂̂N� ðmod qÞ: (20)

As a result, 4 FFTs and s point-wise multiplications are
saved for common-multiplicand multiplication.

4.2 Further Optimizations for FMLM

Employing the carry-save technique in the modulo-r reduc-
tion (Step 2 of Algorithm 4) can save one l-bit addition and
one l-bit subtraction. The two operations are replaced by
one (uþ vþ 2)-bit addition, which contains a much shorter
carry chain compared to the previous ones, cf. Section 5.1 in
[16] or Section 4.1 in [17]. However, the correct value of
m ¼ m0 ðmod rÞ must be obtained during the modulo-r
reduction in Step 4, since a different modulus h is involved
in the subsequent steps.

Optimizing the computing data-flow of Steps 7 and 8 can
save one more l-bit subtraction. Combining the computation
of Step 7 with Step 8 we have

h� g

2
¼ 1

2
hþ

�
g0

2l

�
� ðg0mod 2lÞ

� �
: (21)

According to Equation (17), g0 is bounded by 2lþuþvþ2. Thus,
bg0=2lc < 2uþvþ2 	 2l. Given that h ¼ 2l þ 1 ¼ ð10000 . . .
000001Þ2, the computation of Steps 7 and 8 is then simplified
to one (uþ vþ 3)-bit addition (1þ bg0=2lc), one l-bit subtrac-
tion and one bitwise shift. Based on the above optimiza-
tions, the number of long additions is further reduced from
6 to 3.

In addition, the number of FFTs can also be reduced.
Computing m ¼ xyn0mod r sequentially requires 5 FFTs, cf.
Steps 1-4 in Algorithm 4. While multiplying the three oper-
ands “all-at-once” requires only 3 FFTs:

m0m0  ICT½CTðxxÞ � CTðyyÞ �N 0N 0� ðmod qÞ: (22)

As a trade-off, a larger q is required in order to maintain the
dynamic bound:

q > s2ðb� 1Þ3: (23)

The number of operations in FMLM and other FFT-based
approaches are compared in Table 2, where the long sub-
tractions are counted as long additions. Note that a length-

2s FFT involves s log ð2sÞ modulo-q multiplications. This
number is reduced by more than 50 percent in a length-s
FFT, which involves s

2 log smodulo-q multiplications.

5 FFT-BASED MODULUAR EXPONENTIATION

UNDER MCLAUGHLIN’S FRAMEWORK

Combining the right-to-left binary method with FMLM pro-
vides an efficient computation of modular exponentiation
with large operand size.

5.1 FFT-Based Modular Exponentiation

Algorithm 5 presents the FFT-based McLaughlin’s exponen-
tiation (FMLE), which is based on R2L binary modular
exponentiation, cf. Algorithm 1. In Steps 10 and 11 of Algo-
rithm 5, the two FMLMs are performed simultaneously.
Specifically, Step 10 computes the common-multiplicand
multiplication variation of FMLM, which shares a common-
multiplicand y with Step 11, while Step 11 performs the
squaring variation of FMLM.

Algorithm 5. FFT-Based McLaughlin’s Exponentiation
(FMLE)

Input: e ¼ ðe½t � 1�e½t � 2� � � � e½1�e½0�Þ2, 0 < x < n, r ¼ 2us � 1 > 4n

and h ¼ 2us þ 1 > 4n. Ensure gcdðr; nÞ ¼ 1 and gcd
ðr; hÞ ¼ 1. Find integer n0 ¼ �n�1 mod r.

Output: t ¼ FMLEðx; eÞ ¼ xe ðmod nÞ
/* Precomputed variables */

1: r0  rmodn
2: r1  r2 modn
3: r2  r1n

0mod r
4: R̂1R̂1  NCTðr1r1Þ, R2R2  CTðr2r2Þ
5: N̂̂N  NCTðnnÞ, N 0N 0  CTðn0n0Þ

/* Main steps */
6: y x
7: t r0
8: y FMLMðy; r1Þ
9: for i ¼ 0 to t � 1 do
10: if e½i� ¼ 1 then t FMLMðt; yÞ
11: y FMLMðy; yÞ
12: end for
13: t FMLMðt; 1Þ
14: return t

Since the essence of FMLM is the Montgomery modular
multiplication [10], the input x of Algorithm 5 should be
converted into Montgomery form before the iterations. Step
8 performs the conversion y � xr � x � ðr2 modnÞ � r�1 ðmod nÞ,
where y < 2n. Then in Step 13, after the iterations, the
result is converted out of Montgomery form by performing
t � 1� r�1 ðmod nÞ. Note that FMLMðt; 1Þ ¼ ½tþ ðtn0mod rÞ
n�=r 4 ð2n� 1þ rn� nÞ=r 4 n. The case when FMLM
ðt; 1Þ ¼ n is excluded due to the parameter restrictions of
modular exponentiation in RSA [29], therefore, FMLE needs
no final conditional subtraction. Besides, the CT and NCT of
1 cost no extra computational efforts, since 1 ¼ ð000 . . . 001Þb
and CTð1Þ ¼ NCTð1Þ ¼ 11.

We also include the number of operations required by
different FFT-based exponentiation algorithms in Table 2.
Since the average-case of exponentiation is considered, the
Hamming weight of the exponent is assumed to be t=2.

TABLE 2
Number of Operations in Different FFT-Based Algorithms

Algorithm FFT

(length)

Point-wise

multiplication

Point-wise

addition

Long

addition

[16] 7 (2s) 3s 2s 0

[17] 9 (s) 4s s 10

FMLM 9 (s) 4s s 3

FMLM (Squaring) 7 (s) 4s s 3

FMLM (Com.-Multi.) 5 (s) 3s s 3

FMLM* 7 (s) 4s s 3

[15] 9t þ 9 (2s) 9tsþ 6s 0 3t þ 2

FMLE 9:5t þ 10 (s) 5:5tsþ 6s 1:5tsþ 2s 4:5t þ 6

FMLE� 7:5t þ 10 (s) 5:5tsþ 6s 1:5tsþ 2s 4:5t þ 6

� The all-at-once technique is applied to reduce the number of FFTs;
Com.-Multi. refers to common-multiplicand multiplication.
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Therefore, every FMLE involves t=2þ 2 common-multipli-
cand multiplications and t squares.

5.2 Parameter Specification

Selecting appropriate parameters would accelerate the com-
putation of FMLM, and therefore, improve the performance
of FMLE. For example, we choose b ¼ 2u for fast base-b
decomposition, choose s ¼ 2v for applying the radix-2 FFT
algorithm, and define r ¼ 2us � 1 and h ¼ 2us þ 1with l ¼ us
for invoking the FFT method to compute modulo-r and h
multiplications inMLWS. To further accelerate the computa-
tion, other parameters also need to be selected carefully.

Table 2 indicates that FFT is the most compute-intensive
operation in FMLE. Since FFT is defined over Zq, every
operation during the transform is reduced by q. Besides, the
point-wise multiplications performed in spectral domain
are also reduced by q. Therefore, a well-selected q would
benefit the performance of FMLE a lot. In this work, we
selected q in the form of

q ¼ 2cs þ 1; (24)

where c > 0 is an integer [30], and q is either a Fermat num-
ber or a pseudo-Fermat number depending on c.

The selection of q has following advantages:

� Fast modular reduction can be employed during FFT
computation, where each modulo-q is computed by
one subtraction [16];

� We can define v ¼ 22c and f ¼ 2c for length-s FFT,
since 2 is the 2csth primitive root of unity (22cs � 1
mod q). Thus, multiplying a power of v or f is sim-
ply a bitwise shift [27];

� The supported transform length of each q is flexible,
i.e., choosing a small c results in large transform
length, and vice versa.

Combining Equation (24) with Equation (16) derives
c 5 ðvþ 2uþ 1Þ=s, when employing the all-at-once tech-
nique, c 5 ð2vþ 3uÞ=s. In practice, we usually choose the
smallest possible value of c in order to minimize ring size q.
In addition, for the special case when c ¼ 1=2, there exists
an eligible expression of f ¼ ffiffiffi

2
p

in Zq [27]:

ffiffiffi
2
p
� 23�2

v�3 � 22
v�3 ðmod 22

v�1 þ 1Þ: (25)

Thus, c ¼ 1=2 is also considered when selecting the parame-
ters because a smaller q ¼ 2s=2 þ 1may be obtained.

Based on the above discussion, a parameter set selection
method for FMLE is summarized as follows:

1) For a given modulus n, its bit-length dlog 2ne is one of
the recommended RSA key size (i.e., 1,024, 2,048,
3,072, ...), set l ¼ dlog 2ne þ 2 and v ¼ 2;

2) Compute s ¼ 2v, u ¼ dl=se and b ¼ 2u;
3) Generate r ¼ 2us � 1 and h ¼ 2us þ 1;
4) If ðvþ 2uþ 1Þ=s 4 1=2 then c ¼ 1=2, otherwise

c ¼ dðvþ 2uþ 1Þ=se;
5) If c 5 ð2vþ 3uÞ=s then apply the all-at-once tech-

nique, otherwise apply Algorithm 4 for modular
multiplications;

6) Compute q ¼ 2cs þ 1, v ¼ 22c and f ¼ 2c;
7) Record ðl ¼ us; r; h; u; v; q;v;fÞ as an eligible param-

eter set for the given n;
8) Increase v by 1 and repeat 2-7 until c first reaches 1=2.
Table 3 presents some eligible parameter sets generated

by the parameter selection method. The marked sets in the
table indicate the values of ðu; v; sÞ support both FMLMs
with and without the all-at-once technique. For these
parameter sets, the number of FFTs is reduced at no cost.
Another observation is that the use of pseudo-Fermat num-
bers slacks off the growth rate of the ring size q. Taking
the first parameter set in the table as an example, if q can
only be a regular Fermat number, q ¼ 2128 þ 1 instead of
q ¼ 296 þ 1 would be the choice for 1,024-bit moduli, which
results in a higher computational complexity.

6 ARCHITECTURE DESIGN OF FMLE

Fig. 1 depicts the top-level architecture of FMLE, which con-
sists of two processing elements (PEA and PEB), one Control
unit, and one RAM unit. In general, the FMLE computation
can be divided into three stages. Stage 1 converts x into
Montgomery form, cf. Step 8 in Algorithm 5, stage 2 com-
putes the iterations (Steps 9-12), and stage 3 converts the
result out of Montgomery form (Steps 13). As the size of the
exponent for RSA computation is usually more than 1,000
bits, the time spent on stage 1 or 3 is trivial when compared
to stage 2. To minimize the running time of stage 2, we
employ two processing elements (PE) for the FFT-based
squaring and FFT-based common-multiplicand multiplica-
tion, respectively. Fig. 2 provides the workloads of two PEs
during the exponentiation, where PEA is responsible for the
multiplication in stage 1 and all squares in stage 2, while

TABLE 3
Eligible Parameter Sets for Different Key Sizes

dlog 2ne l u s ¼ 2v c q v f

1,024 1,056 33 32 ¼ 25 3 296 þ 1 64 8
1,024� 1,088 17 64 ¼ 26 1 264 þ 1 4 2

2,048� 2,112 33 64 ¼ 26 2 2128 þ 1 16 4
2,048 2,176 17 128 ¼ 27 0.5 264 þ 1 2

ffiffiffi
2
p

3,072 3,136 49 64 ¼ 26 2 2128 þ 1 16 4
3,072 3,200 25 128 ¼ 27 0.5 264 þ 1 2

ffiffiffi
2
p

4,096 4,160 65 64 ¼ 26 3 2192 þ 1 64 8
4,096� 4,224 33 128 ¼ 27 1 2128 þ 1 4 2

7,680 7,744 121 64 ¼ 26 4 2256 þ 1 256 16

� The same ðu; v; cÞ also support the all-at-once technique. Fig. 1. Top-level architecture of FMLE, AA denotes the CT of
a ¼ yn0 ðmod rÞ and Ŷ̂Y denotes the NCT of y.
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PEB is responsible for the rest of the multiplications. As a
result, the running time Texp of FMLE depends only on the
bit length of e, which can be evaluated by

Texp ¼ tTsquaring þ 2Tcommon�multi: (26)

6.1 Architecture of Processing Element (PE)

Fig. 3 presents the architecture of PEA, and Fig. 4 shows the
workloads of two PEs within the iteration when e½i� ¼ 1.
Because the underlying operations involved in FFT-based
squaring and FFT-based common-multiplicand multiplica-
tion are the same, PEB has the same building blocks as PEA.
On the other hand, different from PEA, the RAM module in
PEB pre-loads r instead of x. Besides, the Multiply-adder in
PEB involves one more input to forward AA and Ŷ̂Y from PEA
as the precomputed variables of common-multiplicand
multiplication, cf. Fig. 4. After some minor modifications, it
is possible to switch both PEs between squaring mode and
common-multiplicand mode.

6.1.1 FFT Operator and Multiply-Adder

The FFT Operator computes the forward and inverse FFTs,
where decimation-in-time FFT is employed. The jth stage
equations of FFT for CT are expressed as follows:

x
ðjþ1Þ
i ¼ x

ðjÞ
2i þ x

ðjÞ
2iþ12

2cJ �bi=Jc ðmod qÞ
x
ðjþ1Þ
iþs=2 ¼ x

ðjÞ
2i � x

ðjÞ
2iþ12

2cJ�bi=Jc ðmod qÞ;

8<
: (27)

where J ¼ 2v�j�1, i ¼ 0; 1; . . . ; s2� 1 and j ¼ 0; 1; . . . ; v� 1.
The jth stage equations of FFT for NCT are expressed as

follows:

x
ðjþ1Þ
i ¼ x

ðjÞ
2i þ x

ðjÞ
2iþ12

2cJ �bi=JcþcJ ðmod qÞ
x
ðjþ1Þ
iþs=2 ¼ x

ðjÞ
2i � x

ðjÞ
2iþ12

2cJ �bi=JcþcJ ðmod qÞ:

8<
: (28)

Changing 22cJ �bi=Jc in Equation (27) to 22cs�2cJ �bi=Jc yields the
jth stage equations of IFFT for both ICT and INCT.

The Multiply-adder computes the point-wise multiplica-
tion and addition of FMLM. In our case, the operand size of
point-wise multiplication is usually a small value (less than
300 bits). Thus, applying the FFT method recursively to
computed the point-wise multiplication is inefficient since
the time spent on data transfer is non-trivial. On the con-
trary, choosing one of the regular methods, such as the
schoolbook method or the Karatsuba method [7], would be
faster and more straightforward [31].

As a result, our PE modules apply the pipelined FFT
operator and Karatsuba multiplier provided in [17] for an
area-time efficient design. In particular, the pipelined FFT
Operator involves two butterfly structures, so that four
inputs are operated in parallel every clock cycle. Mean-
while, the Multiply-adder consists of two parts. The first
part is a pipelined modulo-q Karatsuba multiplier, which
performs the recursive Karatsuba method for the point-wise
multiplications, cf. Steps 1, 3, 5 in Algorithm 4. The second
part is a subsequent conditional adder, when selected, the
point-wise addition in Step 5 would be performed.

6.1.2 The Design of Adder

Performing a long addition either in a single clock cycle or
digit-by-digit in s cycles is considered to be inefficient. The
first approach reduces the clock frequency due to the long
carry chain, while the latter approach requires too many
cycles and no other operations can be performed during
this period due to the data dependency. Note that the bit
length of q is csþ 1, where csþ 1 5 2uþ vþ 1 > 2u. Thus,
at least 2u bits can be performed every cycle without

Fig. 2. Parallel computation of FMLE t xe ðmod nÞ.

Fig. 3. Architecture of PEAmodule. Different from PEA, the RAM in PEB
pre-loads r, and one more input port is connected to the Multiply-adder
for the precomputed variables of common-multiplicand multiplication.

Fig. 4. Parallel computations of y FMLMðy; yÞ and t FMLMðt; yÞ.
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affecting the clock frequency of the FFT Operator or theMul-
tiply-adder. As a result, the clock cycle required by each long
addition reduces from s to s=2. For some parameter sets, the
long addition can be performed even faster. Taking the sec-
ond parameter set in Table 3 as an example, when u ¼ 17
and q ¼ 264 þ 1, the long addition can be added every 4u-bit
(68-bit) per cycle, and thus only s=4 cycles are required. In
this work, we call this 2u or 4u-bit digit as a segment.

The Adder module is designed for the modulo-r reduc-
tions of FMLM, cf. Fig. 5. It consists of two cascade adders,
the first adder computes xþ y, and their sum adds the
carry bit z in the subsequent adder. As discussed in Section
4.2, performing the modulo-r reduction in Step 2 of Algo-
rithm 4 requires only one clock cycle, since it can be sim-
plified to a (uþ vþ 2)-bit addition and uþ vþ 2 < 2u.
The modulo-r reduction in Step 4 requires two operations,
we first compute

mr ¼
�
m0

2l

�
þ ðm0mod2lÞ; (29)

then remove the extra r by computing

m ¼ ðmr mod 2lÞ þmr½l�; (30)

where l ¼ us and mr½l� is the lth bit of mr. However, when
mr ¼ r ¼ ð111 . . . 1111Þ2 is obtained in Equation (29),
because r has l bits and mr½l� ¼ 0, an incorrect result m ¼ r
would be delivered by Equation (30). To avoid this incorrect
result, an all-one check is employed during the first addition

� ¼ mr½0� ^mr½1� ^mr½2� ^ � � � ^mr½l� 1�: (31)

Then the correctm is obtained by computing

m ¼ ½ðmr mod2lÞ þ ðmr½l� _ �Þ�mod 2l: (32)

Equations (29), (31) and (32) are computed segment-by-
segment. Depending on the segment size, computing m
requires s or s=2 clock cycles.

6.1.3 The Design of Subtracter

The Subtracter module is designed for the modulo-h reduc-
tion and ðh� gÞ=2 in Algorithm 4. The architecture of
Subtracter is provided in Fig. 6, which consists of 2 cascade
subtracters. Similar with long addition, the long subtraction
is also computed segment-by-segment. According to Equa-
tion (21), the two operations, g0modh and ðh� gÞ=2, can be
merged and computed by involving only one long sub-
traction. Moreover, since g ¼ h� 2t > h� r ¼ 2 and

h� g < 2l, computing h� g in binary representation is
equivalent to first obtaining

1� g ¼ 1þ
�
g0

2l

�
� ðg0mod2lÞ; (33)

then ignoring the lth (or signed) bit. Finally, dropping the
least significant bit of h� g yields t ¼ ðh� gÞ=2. Note that
1þ bg0=2lc can be computed in one clock cycle since
uþ vþ 3 < 2u.

6.2 The Control Unit

The Control unit consists of three sub-modules: a finite-state
machine (FSM), a block RAM, and a control signal genera-
tor. FSM consists of four states as shown in Fig. 7. States S0,
S1 and S2 are corresponded to the three computing stages
of FMLE, respectively. The state transitions are described as
follows:

� If signals rst_n and en equal to 1, IDLE!S0, other-
wise IDLE!IDLE;

� If y ¼ FMLMðy; r1Þ is obtained, S0!S1;
� If i ¼ t � 1 and t ¼ FMLMðt; yÞ is obtained, S1!S2,

otherwise S1!S1;
� If t ¼ FMLMðt; 1Þ is obtained, S2!IDLE.
The block RAMpre-loads the exponent e, and sequentially

outputs e½0�; e½1�; . . . e½t � 1� each time when FSM transits to
state S1. The control signal generator controls the two PEs to
perform the FMLMs in FMLE by following the computing
data-flows as shown in Fig. 4. Moreover, since the computing
data-flows of FMLMðy; yÞ and FMLMðt; yÞ are similar, we can
use the same set of control signals to control the two PEs
simultaneously. Also, a same control signal generation mech-
anism is repeatedly used for all the FMLMs in FMLE.

6.3 The RAM Unit in the Top-Level Architecture

Since the squaring and common-multiplicandmultiplication
use the same parameter set, a RAM unit with (csþ 1)-bit
data width and 5s depth is designed to store all the precom-
puted variablesN 0N 0, N̂̂N ,BuBu,R2R2 and R̂1R̂1. In particular,BuBu repre-
sents the upper bounds of g0k in Equation (17):

Fig. 5. Architecture of Addermodule, MSB refers to themost significant Bit.

Fig. 6. Architecture of Subtracter module, LSB refers to the least signifi-
cant bit.

Fig. 7. State transition diagram of the FSM in Controlmodule.
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Bu ¼ f2ðkþ 1Þðb� 1Þ2 : k ¼ 0; 1; 2 . . . s� 1g: (34)

The result of INCT is a collection of non-negative integers,
but the lower bounds in Equation (17) satisfy �2ðs� 1� kÞ
ðb� 1Þ2 4 0. Therefore, it is unnecessary to precompute
and store the lower bounds.

6.4 FMLE Architecture with Simple Power Analysis
Protection

The two PEs behave differently during FMLE computation.
In particular, Fig. 2 indicates that PEA works all the time
while PEB only works when e½i� ¼ 1. Moreover, Fig. 4 shows
that after PEB obtains TT , it must wait until PEA obtains AA in
each iteration when e½i� ¼ 1. Due to these two facts, simple
power analysis (SPA) can be mounted to retrieve the secret
key. To this end, we should make the two PEs behave more
regularly by either employing dummy operations into the
R2L binary method or implementing the Montgomery
powering ladder algorithm [32]. Also, the common-multi-
plicand multiplication method should be modified in order
to remove all the idle states in Fig. 4.

In this paper, we implement Montgomery powering lad-
der for SPA protection. Fig. 8 presents the computing data-
flow of Montgomery powering ladder [32]. The first FMLM
in PEB and the last FMLM in PEA are dummy operations,
note that FMLMðr; rÞ ¼ r. Thus, one squaring and one mul-
tiplication are preformed constantly which is highly regular.
When e½i� ¼ 1, we forward YY instead of AA from PEA to PEB
so that the operations performed in both PEs are synchro-
nized, cf. Fig. 9. This minor change may increase the compu-
tational complexity as more FFTs are introduced. However,

from the hardware point of view, this change costs no extra
resource. In addition, when e½i� ¼ 0, TT and T̂̂T are forwarded
from PEB to PEA.

The proposed architecture is capable of performing
Montgomery powering ladder with some modifications.
First, the exponent bit should be read from left to right. Sec-
ond, the input ports of Multiply-adder modules in PEA and
PEB should be rearranged in order to perform both squar-
ing and common-multiplicand multiplication. Finally, one
input port and one output port should be added to PEA and
PEB, respectively, so that TT and T̂̂T can be transferred when
e½i� ¼ 0. These modifications require no extra operator, but
need more wiring and multiplexers. Besides, the critical
path of exponentiation remains the same when implement-
ing the Montgomery powering ladder. Therefore the run-
ning time still can be evaluated by Equation (26).

7 IMPLEMENTATION RESULTS AND COMPARISONS

The architectures of FMLE and its SPA protected version are
implemented on the Xilinx Virtex-6 (xc6vlx240t-3) FPGA
device. Parameter sets with 1,024, 2,048, 3,072, 4,096 and
7,680-bit operand sizes are described in Verilog-HDL and
synthesized by ISE 14.7. We use the block RAMs with cer-
tain look-up tables (LUTs) to build all the RAM modules,
and use the DSP48E1 slices to build the pipelined Karatsuba
multiplier in the PEs. Both block RAM and DSP48E1 are
synthesized with maximum operating frequency.

Table 4 reports the post place-and-route results of FMLE
with different parameter sets. The RSA public key is
assumed to be 216 þ 1 [33], [34], [35], while the private key is

Fig. 8. Simple power analysis protected Montgomery powering ladder. Fig. 9. Simple power analysis protected parallel computation of
y FMLMðy; yÞ and t FMLMðt; yÞ.

TABLE 4
Virtex-6 Implementation Results of the FMLE Architecture and Its SPA Protected Version

Key-length
dlog 2ne

l u v FFT
length s

Ring
size q

LUTs Slices RAM blocks
36Kb/18Kb

DSP48E1
Slices

Cycles
per FMLM

Period
(ns)

Encryption
time (ms)

Decryption
time (ms)

1,024� 1,088 17 6 64 264 þ 1 11,834 3,470 32/2 18 822 2.99 0.047 2.52
1,024� (SPA) 1,088 17 6 64 264 þ 1 11,884 3,433 32/2 18 822 3.01 0.047 2.54
2,048� 2,112 33 6 64 2128 þ 1 27,363 7,644 62/2 54 849 4.33 0.070 7.54
2,048� (SPA) 2,112 33 6 64 2128 þ 1 27,386 7,719 62/2 54 849 4.24 0.068 7.38
3,072 3,136 49 6 64 2128 þ 1 27,069 7,539 65/1 54 1,266 4.33 0.104 16.85
3,072 (SPA) 3,136 49 6 64 2128 þ 1 27,050 7,649 65/1 54 1,266 4.25 0.102 16.54
4,096� 4,224 33 7 128 2128 þ 1 27,799 7,832 66/1 54 1,632 4.29 0.133 28.69
4,096� (SPA) 4,224 33 7 128 2128 þ 1 27,914 7,994 66/1 54 1,632 4.22 0.131 28.24
7,680 7,744 121 6 64 2256 þ 1 67,950 18,598 122/4 162 1,274 6.91 0.167 67.63
7,680 (SPA) 7,744 121 6 64 2256 þ 1 67,950 18,827 122/4 162 1,274 6.95 0.168 68.02

� The all-at-once technique is adopted.
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with the same bit length of n. It can be found that the area
and latency differences between the FMLE architecture and
its SPA protected version are less than 3 percent, which
matches our analysis in Section 6.4. The cycle requirement
of FMLE is determined by the transform length s and
whether the all-at-once technique is applied. Parameter sets
performed by the same technique with the same s always
result in similar numbers of clock cycles (e.g., the 1,024-bit
and 2,048-bit cases in Table 4). On the other hand, the FPGA
resource usage and clock frequency are determined by the
ring size q. Parameter sets with the same q result in similar
areas (number of LUTs or slices) and clock periods (e.g., the
2,048-bit and 3,072-bit cases in Table 4).

The performance comparison between FMLE and other
modular exponentiation architectures is provided in Table 5.
Since [38] only provides the MMM latency, we estimate its
exponentiation latency by computing 9:7 ms
 1:5
 8;192,
where 9:7 ms is the reported multiplication time and 1:5 

8;192 is the number of MMMs for the average-case.
Besides, we speculate the area and latency of [6] (d ¼ 2)
and [37] for 2,048-bit, 4,096-bit and 7,680-bit operand sizes
and list the results in Table 5. Since the two designs are
based on regular modular multiplication methods, their
area and latency growth rates would be constant. Thus,
both their time and area could be speculated once the
growth rates are estimated.

Taking the R2L (d ¼ 2) design in Table VIII of [6] as an
example, the reported latencies are 0.33 ms for 512-bit and
1.38 ms for 1,024-bit, the growth rate is approximately 4.2.
This indicates for each time when the operand size is dou-
bled, the latency may be increased by roughly 4.2 times.
Thus, we may speculate the latencies as 5.80 ms for 2,048-
bit, 24.30 ms for 4,096-bit and 88.92 ms for 7,680-bit. Specu-
lation results of [37] can be obtained in the same way.

For 1,024-bit in Table 5, the area of FMLE is larger than
the design of [9], but smaller than the other works. Mean-
while, the latency of FMLE is lower than the designs of [9],
[34] and [35], but higher than [6] and [37]. Thus, the area-
latency efficiency of FMLE is not sufficiently superior to the
others: 9 for FMLE, 10 for [6], and 12 for [37]. This indicates
the FFT method is not guaranteed to be the optimal solution
for 1,024-bit modular exponentiation. Appropriate compu-
tation method should be considered based on different
design targets.

In terms of 2,048-bit and above key sizes in Table 5,
though [6] and [37] have speed advantages, they consume
much more LUTs or Slices than FMLE. As a result, FMLE
achieves better area-time efficiency than the other compared
works. Moreover, studies in [16] and [17] reveal that it is
possible to speedup FMLE by either choosing a smaller
transform length s or involving more butterfly structures,
however, at the expense of consuming more hardware
resources. Due to the area-time efficiency superiority of
FMLE, such trade-off could be more cost-effective than the
other approaches. Therefore, choosing FMLE would be
more suitable for cost-effective modular exponentiation
with 2,048-bit and above operand sizes.

We also compared the performance of a single FMLM
with the state-of-the-art MMM architectures in Table 6, and
the area-latency product growth tendency of different FFT-
based multipliers are provided in Fig. 10. We only select the
most area-latency efficient design of each operand size for a
fair comparison. Meanwhile, both best-case and worst-case
cycle requirements of [17] are included in the table, the best-
case skips all the extra operations in MLM, while the worst-
case performs them all. In addition, since different designs
may involve different DSP slices and RAM blocks, their
costs are also included for evaluation.

When compared with [16], FMLM obtains a smaller area-
latency product and the efficiency is improved around 60
percent on average. Such improvement mainly comes from
the avoidance of zero-padding, i.e., for the same u, the trans-
form length s of FMLM is always half of [16]. The design in
[16] implements Walter’s variation of MMM [25], which
eliminates the conditional selection of MMM. Thus, both
multipliers have constant running time, and they are con-
sidered to be secure against timing attacks.

Both FMLM and [17] are based on McLaughlin’s frame-
work. Due to the elimination of the conditional selections in
MLM, fewer clock cycles are required by FMLM for every
multiplication. Besides, the clock period of FMLM is also
reduced due to the simplified control logic. Thus, FMLM
achieves better efficiency for 1,024-bit, 3,072-bit and 4,096-
bit. On the other hand, the efficiency of [17] is better for
2,048-bit. This is because s ¼ 128 and q ¼ 264 þ 1 are no lon-
ger available for FMLM when using the all-at-once tech-
nique c ¼ ð3uþ 2vÞ=s ¼ 65=128 > 1=2 and a larger q must

TABLE 5
Performance Speculation and Comparison of Modular

Exponentiations from 1,024-Bit to 7,680-Bit

Designs Devices LUTs Slices Latency Area-latency

product

(ms) (LUTs
s) (Slices
s)
dlog 2ne ¼ t ¼ 1;024 (bit)

[36] ASIC 715,621 (mm2) 2.23 (ms) — —

[9] Stratix-III 4,127 — 11.06 46 —

[34] Virtex-II — 12,537 10.35 — 130

[35] (5 to 2) Virtex-II — 26,136 2.73 — 71

[6] (R2L, d ¼ 2) Virtex-5-3y 27,750 7,303 1.38 38 10

[37] (R2L) Virtex-5-3 — 12,716 0.92 — 12

FMLE Virtex-6-3 11,834 3,470 2.52 30 9

dlog2ne ¼ t ¼ 2;048 (bit)

[9] Stratix-III 8,150 — 53.98 440 —

[6] (R2L, d ¼ 1) Virtex-5-3 39,012 — 10.53 411 —

[6] (R2L, d ¼ 2) Virtex-5-3 55,309$ — 5.80$ 321 —

[37] (R2L) Virtex-5-3 — 25,432$ 3.68$ — 94

FMLE Virtex-6-3 27,363 7,644 7.54 206 58

dlog2ne ¼ t ¼ 4;096 (bit)

[9] Stratix-III 16,193 — 231.21 3,744 —

[6] (R2L, d ¼ 2) Virtex-5-3 110,236$ — 24.30$ 2,679 —

[37] (R2L) Virtex-5-3 — 50,864$ 14.72$ — 749

FMLE Virtex-6-3 27,799 7,832 28.69 798 225

dlog2ne ¼ t ¼ 7;680 (bit)

[9] (8,192-bit) Stratix-III 32,262 — 1062.19 34,268 —

[38] (8,192-bit) Stratix-V 214,321 — 119z 25,504 —

[6] (R2L, d ¼ 2) Virtex-5-3 192,248$ — 88.92$ 17,095 —

[37] (R2L) Virtex-5-3 — 89,012$ 51.52$ — 4,586

FMLE Virtex-6-3 67,950 18,598 67.63 4,595 1,258

$ Speculated results obtained by estimating the growth tendency of area or
latency;
y Virtex-5-3 denotes Virtex-5 FPGA with speed grade 3;
z Estimated by 9:7 ms
 1:5
 8;192, each MMM require 9.7 ms.
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be selected. When compared to [17], the security of FMLM is
also improved, since its running time is constant while [17]
varies.

In summary, the efficiency of FMLM is improved com-
pared to [16], and both efficiency and security are improved
compared to [17].

8 DISCUSSION ON FURTHER REDUCING THE

NUMBER OF LONG ADDITIONS

It is possible to save two more l-bit long additions by further
extending the I/O bounds from 2n to 3n, and redefining
r > 9n. As a result, the number of long additions and sub-
tractions is reduced from 10 to 1. This improvement is
described as follows.

Recalled in Section 4.2 that either a or aþ r is tolerable in
Step 2 of Algorithm 4. Similarly, if obtaining mþ r in Step 4
is permitted, we could use one (uþ vþ 2)-bit addition for
the modulo-r reduction, and finally compute ðxyþmnþ
rnÞ=r ¼ tþ n. Since tþ n � t ðmod nÞ, tþ n is still a valid
output as long as the input bounds are consistent with the
output. The output is bounded by tþ n < 3n, therefore, the
input bounds are extended to x < 3n and y < 3n. Besides,
as xy < rn should be satisfied in MMM [10], we have
h > r > 9n.

With the 3n I/O bound, q must be restricted to
q > 3ðb� 1Þ2s to avoid data overflow during the computa-
tion of ðxx �s yyÞ þ ðmm �s nnÞ þ ðrr �s nnÞ. In addition, since
r > 9n, the specification of l would be revised to
l ¼ dlog 2ne þ 4. Though the expressions of q and l change, it
can be found that the parameter sets in Table 3 still support
the 3n I/O bound.

Consequently, the long additions and subtractions of
FMLM can be reduced from 10 to 1 when applying the 3n
I/Obound.However, an extra conditional subtractionwould
be involved during modular exponentiation, since FMLM
ðt; 1Þ ¼ ½tþ ðtn0mod rÞn�=r 4 ð3n� 1þ 2rn� nÞ=r 4 2n. As
the subject of this paper is to avoid conditional selections, we
did not apply such improvement to the architecture of FMLE.

9 CONCLUSIONS

In this work, an improved variation of McLaughlin’s Mont-
gomery modular multiplication (MLWS) is proposed.
MLWS eliminates all the conditional selections in the original
McLaughlin’s multiplication (MLM) algorithm by accepting
a larger input or output bound and redefining larger moduli
(r and h). Compared to the original MLM algorithm, the
area-time efficiency of MLWS is improved as no extra addi-
tion or subtraction is required during the modular multipli-
cation. Besides, its security against timing attacks is also
improved as the processing time ofMLWS is constant.

Then, we apply the FFT method to the modular multipli-
cation steps of MLWS and derive the FFT-based MLWS

TABLE 6
Performance Comparison Between FMLM and the State-of-the-Art Modular Multiplication Architectures

l Platform Design DSP RAMB361 LUTs Slices Cycles Period

(ns)

Latency

(ms)

Area-latency

product (LUTs
ms)
Area-latency efficiency

improvement (%)

1,024 Virtex-II-42 [39] (radix-2, v ¼ 32) — — 5,310 — 1,056 9.55 10.09 53,577 —

1,024 Virtex-5-2 [40] (LZD ¼ 2) — — — 6,091 3403 2.5 0.851 — —

1,084 Virtex-6-1 [16] (u ¼ 17, s ¼ 128) 9 11 4,818 1,483 1,440 5.29 7.57 36,472 87.5

1,024 Virtex-6-1 [17] (u ¼ 16, s ¼ 64) 9 16.5 6,047 1,757 1,052 (992) 3.80 4.00 24,173 24.3

1,088 Virtex-6-1 FMLM (u ¼ 17, s ¼ 64) 9 14.5 5,794 1,915 917 3.67 3.37 19,449 —

2,048 Virtex-II-4 [39] (radix-2, v ¼ 32) — — 10,587 — 2,112 9.79 20.68 218,939 —

2,076 Virtex-6-1 [16] (u ¼ 65, s ¼ 64) 54 27.5 14,895 5,534 837 6.6 5.52 82,220 39.6

2,048 Virtex-6-1 [17] (u ¼ 16, s ¼ 128) 9 17.5 7,337 2,083 2,036 (1,928) 3.88 7.90 57,960 -1.6

2,112 Virtex-6-1 FMLM (u ¼ 33, s ¼ 64) 27 26.5 12,771 4,074 924 4.99 4.61 58,884 —

3,072 Virtex-II-4 [39] (radix-2, v ¼ 32) — — 15,197 — 3,168 9.77 30.94 470,195 —

3,196 Virtex-6-1 [16] (u ¼ 25, s ¼ 256) 9 11 5,835 1,977 3,633 5.09 18.49 107,889 59.6

3,072 Virtex-6-1 [17] (u ¼ 24, s ¼ 128) 9 22.5 7,351 2,103 2,770 (2,566) 3.84 10.64 78,191 15.6

3,200 Virtex-6-1 FMLM (u ¼ 25, s ¼ 128) 9 21.5 7,561 2,436 2,391 3.74 8.94 67,613 —

4,096 Virtex-II-4 [39] (radix-2, v ¼ 32) — — 19,621 — 4,224 9.91 41.85 821,138 —

4,124 Virtex-6-1 [16] (u ¼ 129, s ¼ 64) 135 49.5 27,839 9,530 846 9.2 7.78 216,587 86.7

4,096 Virtex-6-1 [17] (u ¼ 32, s ¼ 128) 27 29 14,243 3,898 2,040 (1,932) 5.41 11.04 157,191 35.5

4,224 Virtex-6-1 FMLM (u ¼ 33, s ¼ 128) 27 29 13,083 4,194 1,784 4.97 8.87 116,000 —

1RAMB36 refers to 36 Kb RAM blocks, each 18 Kb block is counted as 0.5 RAMB36;
2Virtex-II-4 denotes Virtex-II FPGA with speed grade 4;
3Estimated value.

Fig. 10. Area-latency product growth tendency of FMLM, [16] and [17].
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(FMLM) algorithm. Based on McLaughlin’s framework, the
transforms involved in FMLM can be performed efficiently
without zero-padding. Besides, by applying the carry-save
technique and optimizing the computing data-flow, the
number of long additions and subtractions required by the
modulo-r and h reductions is further reduced to 3. Combin-
ing the right-to-left binary method with FMLM, we derive
an FFT-based modular exponentiation (FMLE) algorithm.
Due to the constant running time of FMLM, FMLE is consid-
ered to be secure against timing attacks and suitable for RSA
computation.

Finally, an area-latency efficient hardware architecture of
FMLE is created with dual pipelined FFT-based multipliers.
We also equip our FMLE architecturewith protection against
simple power analysis (SPA) by adopting the Montgomery
powering ladder. Because of the dual-multiplier design, the
SPA protected FMLE only increases less than 3 percent of
the area and requires the same clock cycles when compared
to its unprotected version. The implementation results of
FMLM validate that it provides constant running time for
different inputs as the cycle requirement remains the same.
Therefore, FMLM achieves both efficiency and security
improvements when compared to the state-of-the-art FFT-
based approaches. In addition, the comparison results show
that our FMLE exhibits the superiority of area-time efficiency
over the state-of-arts from and above 2,048-bit operand sizes.
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