IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Hiding Hardware Trojan Communication Channels
in Partially Specified SoC Bus Functionality

Nicole Fern*¥, Ismail Sanf, Cetin Kaya Koc*, and Kwang-Ting (Tim) Cheng*}
*University of California, Santa Barbara
Email: {nicole, timcheng} @ece.ucsb.edu, koc@cs.ucsb.edu
f Anadolu University, Eskisehir, Turkey
Email: isan@anadolu.edu.tr
"Hong Kong University of Science and Technology

Abstract—On-chip bus implementations must be bug-free and
secure to provide the functionality and performance required
by modern SoC designs. Regardless of the specific topology and
protocol, bus behavior is never fully specified, meaning there
exist cycles/conditions where some bus signals are irrelevant, and
ignored by the verification effort. We highlight the susceptibility
of current bus implementations to Hardware Trojans hiding in
this partially specified behavior, and present a model for creating
a covert Trojan communication channel between SoC components
for any bus topology and protocol. By only altering existing bus
signals during the period where their behaviors are unspecified,
the Trojan channel is very difficult to detect. We give Trojan
channel circuitry specifics for AMBA AXI4 and APB, then create
a simple system comprised of several master and slave units
connected by an AXI4-Lite interconnect to quantify the overhead
of the Trojan channel and illustrate the ability of our Trojans
to evade a suite of protocol compliance checking assertions from
ARM. We also create an SoC design running a multi-user Linux
OS to demonstrate how a Trojan communication channel can
allow an unprivileged user access to root-user data. We then
outline several detection strategies for this class of hardware
Trojan.

I. INTRODUCTION

Hardware Trojans are a concern for both semiconductor
design houses and the U.S. government [1]. The design, man-
ufacturing, testing, and deployment of silicon chips involves
many parties. If a single party involved deems it advantageous
to insert malicious functionality into the chip, referred to as
Hardware Trojans, the consequences can be catastrophic.

Hardware Trojans may be inserted into the system specifica-
tion, high-level models, RTL code, gate level net list, circuit
layout, or circuit mask for a given design. Trojan behavior
ranges from denial of service attacks such as premature
aging and bus deadlock to subtler attacks which attempt to
gain undetected privileged access on a system, leak secret
information through side channels, or weaken random number
generator output [2].

This work focuses on Trojans in SoC on-chip buses. The
ability to manipulate the bus system is extremely valuable to an
attacker since the bus controls communication between critical
system components. A denial of service Trojan halting all bus

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

traffic can render an entire SoC useless. Any information trans-
ferred to/from main memory, the keyboard, system display,
network controller, etc. can be passively captured or actively
modified by Trojan circuitry inserted in the interconnect.

There exist many different bus protocols designed to opti-
mize different design parameters such as area/timing overhead,
power consumption, and performance [3]. Regardless, all
protocols employ signals to mark when valid bus transactions
occur and handshakes to provide rate-limiting capabilities,
meaning valid and idle bus cycles can be clearly differentiated.
While bus protocols clearly define the desired values for
each data or control signal during valid transactions, the
values of these signals during idle cycles are unspecified and
largely ignored by bus protocol checkers, formal verification
properties, and scrutiny during simulation-based verification.
Trojan behavior during these cycles will not be detected by
traditional verification methodologies.

The Trojans we propose in this work operate entirely within
idle bus cycles, with the goal being to provide a covert
communication channel built upon existing bus infrastructure.
This Trojan channel can be used to connect Trojan components
spread across the SoC in addition to enabling information
leakage from legitimate components not possible in the orig-
inal design. Unlike previously proposed bus Trojans, which
lock the system bus, modify bus data, and allow unauthorized
bus transactions [4], [5], our Trojans never hinder normal bus
functionality or affect valid bus transactions.

In Section II we review the current solutions addressing
bus architecture security issues, and motivate why these are
not adequate for detecting bus Trojans hiding in partially
specified bus functionality. Section III-A outlines the threat
model, Section III-B introduces the Trojan channel model
and circuitry, and Section IV provides complete details for
AMBA AXI4 and APB. The overhead of creating a 2-way
information leakage channel between slaves with varying
channel parameters in an AXI4-Lite interconnect is explored
in Section V, then in Section VI a Trojan channel is inserted
in a full SoC system running multi-user Linux to demonstrate
how a malicious unprivileged software program can access
root-user data. Several detection methodologies are outlined
in Section VII, and Section VIII summarizes our results and
contributions.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

II. RELATED WORK

A. Bus Security

The following are bus security issues being addressed in
literature and industry:

1) Malicious snooping of bus data

2) Enforcing bus slave access control policies

3) Deadlock prevention (malicious and accidental)
4) Data integrity, data tampering prevention

Previously proposed bus Trojans include denial of service
attacks accomplished by indefinitely asserting the LOCK sig-
nal in one of the bus masters or the WAIT signal in a bus
slave, observing bus transactions between other components,
corrupting bus data, and allowing a master to access forbidden
address ranges [4], [5].

In [5], the authors present a secure AHB bus architecture to
detect the above mentioned Trojans at runtime. A watchdog
timer is added to detect bus deadlock, and to prevent snooping
multiplexors are added on all data lines to zero the lines visible
to components uninvolved in the current transaction, however
this additional circuitry was shown to have significant impact
on the maximum bus operation frequency.

Encryption of bus data [6], [7] has been proposed as a
method to prevent bus snooping. Key maintenance, along with
the overhead of encryption circuitry limits the widespread
adoption of this countermeasure. While encryption of bus data
prevents snooping, it does not prevent the existence of a Trojan
communication channel.

To prevent illegal peripheral access, [5] adds registers
holding the allowable access ranges for each bus master
ensuring unauthorized requests are blocked and recorded.
ARM TrustZone Controllers are commercial IP blocks which
provide access control mechanisms to memory regions and
bus peripherals and are compatible with other ARM bus IP
and AMBA protocols [8].

Both these measures monitor valid bus transactions for vi-
olations. Since our proposed Trojans never modify existing or
create new valid bus transactions, these countermeasures will
not detect communication on the Trojan channel. Moreover,
neither of these countermeasures address rouge communica-
tion between 2 slaves.

Extensive research on formal verification of bus protocols
has been performed to ensure deadlock avoidance and fairness
[9], [10], [11]. The properties checked using formal methods
can be re-used during protocol compliance checking of spe-
cific bus implementations using either formal or simulation
based methods. The availability of commercial compliance
checking verification IP (ex. [12] for AMBA protocols) and
pre-packaged SystemVerilog assertions suites [13] illustrate
the importance of verifying the correctness of specified bus
functionality.

During idle bus cycles, when VALID signals are de-asserted,
there are no properties/assertions to capture what the correct
behavior is, because it is not relevant to the protocol. Our
proposed Trojans exploit this fact, and operate exclusively
during these cycles to avoid violating assertions or detection
during property checking.

B. Hardware Trojan Detection

Trojans with Rare Triggering Conditions: Many Trojans
proposed in literature hide from the verification effort by only
performing malicious functionality under extremely rare trig-
gering conditions. Detection methods targeting this Trojan type
identify “almost unused” logic, where rareness is quantified
by an occurrence probability threshold. This probability is
either computed statically using approximate boolean function
analysis [14], [15] or based on simulation traces [16], [17].

The Trojans we propose in this work only modify signals
under conditions during which they are unspecified, and to be
detected by the existing methods, the occurrence of such con-
ditions must be sufficiently rare. We argue that this is seldom
the case. For example, our proposed Trojan communication
channel can be used to snoop data destined for Slave A by
placing data from valid writes to Slave A into a FIFO from
which the data is read and leaked to Slave B’s bus interface
whenever the channel is idle. The FIFO write condition is
a valid data transfer to Slave A, and the leakage condition
causing the data to appear at Slave B’s bus interface is an idle
channel, neither of which are inherently “rare” conditions.

Detection Through Side-Channel Fingerprinting: Be-
cause our Trojans do not rely on rare triggering conditions
and may be active frequently, differences in side-channel pa-
rameters such as power consumption and delay exist if a circuit
infested with a Trojan channel is compared with a Trojan-free
version. A large number of Trojan detection methods exist
which use these differences (ex. in power consumption [18]
and path delay [19]) to detect Trojan circuitry.

One requirement for most side-channel fingerprinting meth-
ods is a set of Trojan-free chips used to measure a “golden”
side-channel fingerprint for comparison against the fingerprint
measured for the chips suspected of containing Trojan cir-
cuitry. Even techniques which do not require a small popu-
lation of “golden” chips, such as [20], still rely on having a
golden Spice-level model to extract the Trojan-free fingerprint.
In our threat model, given in Section III-A, we assume that
the Trojan communication channel can be inserted in the
RTL code and all subsequent stages in the design lifecycle,
meaning it is possible that no golden RTL, gate-level, Spice-
level models, or golden chips exist.

Trojans in Unspecified Functionality: Unspecified func-
tionality is defined in [21] as incompletely specified state
transition and output functions, given a digital system specified
as a finite-state machine (FSM). The detection methodology
proposed in [21] requires analysis on a symbolic representation
of the design state space and the manual labeling of protected
v. non-protected symbolic states.

The authors in [22] introduce a class of Trojans which leak
information by only modifying RTL don’t care bits, and use
combinational equivalence checking techniques to differentiate
between don’t cares which can be exploited by an attacker to
leak information and those which are harmless and should
remain in the design for optimization during synthesis. A
drawback of this technique is that only unspecified function-
ality captured by don’t care bits can be analyzed.

Using mutation testing, which is applicable broadly to FSM,
C, SystemC, TLM, RT, and gate-level models, [23] builds upon

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

the ideas presented in [22] to identify dangerous unspecified
functionality in any type of design, including bus systems.
Mutant simulation and analysis is expensive, but this process
is necessary if one cannot identify dangerous unspecified
functionality directly by inspection. Since bus systems are
characterized by well-defined protocols and set of common
topologies, our work directly presents a general model for
dangerous unspecified bus functionality.

IIT. TROJAN COMMUNICATION CHANNEL

There are many bus standards, providing the ability to
optimize with respect to area/timing overhead, power con-
sumption, and performance parameters [3]. For example the
AXI [24] and APB [25] protocols from the ARM AMBA
bus architecture target low-latency/high-throughput and low-
speed/low-power respectively, and a similar pair of standards
(the PLB and OPB protocols) exist in the IBM CoreConnect
bus architecture [26].

Common among all standards are control signals marking
when valid bus transactions occur. During idle cycles, the
value of many control and data signals are unspecified, al-
lowing a powerful Trojan communication channel to be built
using the existing bus infrastructure. This section first gives
our threat model, then details how to insert such a channel for
any bus topology and protocol.

A. Threat Model

Since a covert communication channel is useless without a
sender and receiver of information, we assume that at least
one component connected to the system bus contains a Trojan
utilizing the information received on the channel, and that
there is another Trojan to either leak data from the component
it resides in or snoop bus data otherwise not visible to the
receiver and send it over the channel.

Although it is possible for the Trojan to create new bus
transactions adhering to the bus protocol during unused cycles,
verification infrastructure often includes bus checkers which
count and log all valid bus transactions. For this reason, our
proposed Trojans do not suppress, alter, or create valid bus
transactions, but instead re-use existing bus protocol signals to
define a new “Trojan” bus protocol allowing communication
between different malicious components across the SoC.

Trojan Insertion Stage: It is assumed the Trojans are
inserted in the RTL code or higher-level model, meaning no
golden RTL model exists to aid in Trojan detection at later
stages in the design cycle. While is it theoretically possible
for a Trojan channel to be inserted by an adversary during
fabrication, the amount of extra logic required (while only
a small fraction of the total design area) is prohibitive. A
complex SoC requires hundreds of engineers to design and
test, and relies on third party IP and tools to meet time to
market demands. A single rouge design engineer or malicious
3rd party IP or CAD tool vendor has the potential to implement
a Trojan communication channel pre-silicon.

B. Trojan Channel Components

The structure and size of the Trojan communication channel
circuitry depends on the following:

1) Bus Topology: Determines necessity of FIFO and extra
Leakage Conditions Logic at receiver interface

2) Bus Protocol: Defines Leakage Conditions Logic and
selection of signal(s) to mark valid Trojan transactions

3) Trojan Channel Connectivity: Channel can be one-way
or bi-directional, contain an active or snooping sender,
and involve information leakage between two masters,
two slaves, or a master and a slave

4) Data Width of Trojan Channel (k): number of bits
leaked during a Trojan transaction

5) FIFO Depth (d): FIFO used to buffer Trojan channel
data if the receiver is busy accepting valid bus transac-
tions

Bus topology and protocol are selected by the system
designer, whereas Trojan channel connectivity is chosen by
the attacker. Data width (k) and Trojan FIFO depth (d) are
parameters selected by the attacker to trade-off performance
and overhead of the Trojan channel.

The black-colored components in Figure la are necessary
to implement a Trojan communication channel for a shared
bus topology, which is shown in Figure 1b. For this case,
the Data and Control lines from the sender component are
directly visible at the receiver. The red-colored components in
Figure la show the extra circuitry required to implement the
channel in an interconnect with a MUX based topology, which
is shown in Figure lc.

The sender and the receiver can be any master or slave
component on the interconnect. The goal of the Trojan channel
is to use only pre-existing interconnect interfaces to pass data
from the sender to the receiver. For example, the line labeled
Data in Figure 1a on the sender’s side could be the write data
or read/write address port if the sender is a bus master and
the read data port if the sender is a bus slave and vice versa
for the Data on the receiver’s side.

Since the Trojan data is transmitted using the same lines
as normal bus traffic, additional signaling must mark when
valid Trojan data is being transmitted. These signals are
labeled as Control in Figure la, and like the Trojan data, are
mapped to pre-existing data/address/control signals, meaning
no additional interface ports are created.

The Leakage Conditions Logic is protocol dependent and
examines signals at the sender’s interconnect interface to
determine when it is “safe” to replace the original bus signal
values with Trojan values.

C. Topology Dependent Trojan Channel Properties

All bus signals can be classified as address, data, or control
signals, and additionally classified as belonging to read and/or
write functionality. The interconnect topology specifies the
degree of parallelism between the different categories of bus
signals, and the connectivity between masters and slaves [3].

Figures 1b and 1c show the read and write data channels
for topologies sitting at opposite ends of the area efficiency
and channel throughput trade-off. Figure 1b is the most area

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

,,,,,,,,,,,,, Sender ... [meromneet Recelver Interconncet
Original Mo M1 So S1 Write Data Crossbar
Original Trojan '
1} W w
Trojan 1 ! s
! FIFO Read RW RW RW RW R \ R
Leakage Leakage I] I I n

Conditions
(Receiver)

Conditions
(Sender)

leak_r

Original —1 () Control §

Trojan —| 1

c. ¢ “ﬂ
w w
M S1
X "

4 Read Data Crossbar

(a) Trojan Channel in a MUX-based Configuratio

(b) Shared R/W Data Channels [3]

(c) Concurrent Data Channels [27]

Fig. 1: Bus Communication Topologies and a Trojan Channel

efficient, but can only support a single transaction at a time,
whereas Figure lc contains significantly more circuitry, but
can support multiple simultaneous transactions.

In Figure 1b, all read and write transactions are visible to
all bus components, meaning no Trojan circuitry is required to
simply snoop bus data. If a Trojan bus component wishes to
send information, the black-colored circuitry inside the sender
block of Figure la is required.

In Figure 1c, data is not visible to a component uninvolved
in the transaction. Unlike Figure 1b, forming a channel be-
tween two slaves or two masters requires extra circuitry inside
the interconnect, shown in red in Figure la.

Because the signals at the sender’s interconnect interface
are not visible at the receiver’s interface and vice versa,
new leakage conditions are required, which monitor the re-
ceiver’s interface and determine when it is safe to leak data
without altering valid bus transactions. Signals available at
the receiver’s interface must also be selected to implement
the Data and Control lines. The FIFO is necessary because
leakage conditions at the sender and receiver may not occur
simultaneously.

D. Protocol Dependent Trojan Channel Properties

The specifics of the Leakage Conditions Logic, which
produces leak_s and leak_r, and the selection of Data and
Control signals depend on the bus protocol used. Because
of the similarities between various bus protocols, a general
procedure for determining the Leakage Conditions Logic and
the selection of Data and Control signals can be given.

1) Data Signal Selection: In order to remain stealthy, the
Trojan cannot create additional signals to transmit data, and
must send data via pre-existing signals in the bus protocol.
Being that the primary purpose of a bus is to transmit data,
all bus protocol/topology combinations have signals that are
suitable for sending/receiving Trojan data.

In a protocol with separate read and write data signals,
selection depends on if the Trojan Sender/Receiver resides in a
master or slave component, since masters drive write data and
observe read data signals, and vice versa for slave components.
If the Trojan Sender resides in a master component, the read
and write address signals can also be used to send Trojan data.

2) Leakage Conditions Logic: Since pre-existing bus sig-
nals are used to transmit Trojan data, logic ensuring that
normal bus operation is not compromised by the Trojan is
necessary. The Leakage Conditions Logic examines protocol

control signals to identify when Trojan Data signals are not
being used to transmit valid data, and have unspecified values.

Every bus protocol clearly defines the conditions for which
data, address, and error reporting signals are valid. Some
protocols, such as AXI4, designate a “valid” signal for each
data channel, while others such as APB use the current state
within the protocol to identify which signals are valid.

leak_s is set when the Trojan Sender has data to transmit
and the Data signals are not involved in a valid transaction. If
the Trojan Sender is leaking valid bus transactions instead of
actively sending information, then leak_s is not needed. leak_r
is set when there are items in the Trojan FIFO and the Data
signals at the receiver interface are not currently involved in
a valid transaction.

3) Control Signal Selection: When a Trojan Data signal
is not being used in a valid bus transaction, its value is
unspecified. During idle bus cycles, either Trojan data is being
transmitted, or the bus is truly idle, and no data (Trojan or
valid) is sent. To distinguish between these two cases, existing
bus signals are selected to be Trojan Control signals, which
mark when Trojan data is on the bus.

The criteria for selecting these signals and their correspond-
ing values is that when leak_s/leak_r is asserted, the normal
behavior of the signal is predictable, but also unspecified. For
most protocols, control signals are good candidates because
they often are unused during idle cycles, yet their values
remain static when idle for a given implementation.

IV. PROTOCOL SPECIFIC TROJAN CHANNEL DEFINITIONS

Following the general Trojan channel procedure outlined
in Section III-D, we present the Leakage Conditions Logic
and selection of Trojan Control and Data signals in detail
for two commonly used bus protocols from ARM: AMBA
AXI4/AXI4-Lite and AMBA APB in order to insert a Trojan
in unspecified functionality.

AXI4 is a protocol designed for connecting high speed com-
ponents such as processors, memory, and network controllers,
and contains complex features to increase channel throughput.
In contrast, APB is a simple protocol designed to connect low
speed peripherals such as UART, keyboard, and timer modules.
In a typical SoC, components on the APB bus are connected
to the high speed bus via a bridging component [3].

A. AMBA AXI4

AXI4 defines 5 independent transaction channels seen at
the interface of every master and slave: read address channel,

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

read data channel, write address channel, write data chan-
nel, and write response channel [24]. Each channel uses a
VALID/READY handshake signal pair to indicate when the
receiver is ready to process bus data, and to mark when valid
data is on the bus.

Typically, buses using AXI4 choose MUX-based configu-
rations such as those shown in Figure lc, meaning that the
red-colored circuitry in Figure la is required to create the
Trojan channel.

1) Master Sender: Data can be leaked through any bus
signals a master drives, mainly those on the read or write
address channels, or the write data channel. The values of all
master driven signals on these channels have no functional
meaning when the channel VALID signal is low, hence:

leak_s = troj_data_ready & ~VALID

Control Signal Selection: WSTRB is used in both AXI4
and AXI4-Lite, and quoting the specification, “A master must
ensure that the write strobes are HIGH only for byte lanes
that contain valid data. When WVALID is LOW, the write
strobes can take any value...”

If the application uses all byte lanes in every transfer, it is
likely that all strobe bits would be kept HIGH, even when
WVALID is LOW, so a good indicator of a valid Trojan
transaction would be to set 1 or more bits LOW when leak_s
is asserted. If the interconnect services peripherals with data
widths of 1, 2, and 4 bytes, asserting exactly 3 out of 4
bits of WSTRB is a better option, since this set of values is
unlikely to be assigned to WSTRB during normal operation.
The following assignment of WSTRB (where WSTRB_ORIG
is the Trojan-free value of WSTRB) would work in both cases:

WSTRB = leak_s 7 4°b1011 : WSTRB_ORIG

The signal WLAST is used to indicate the last transfer in
a write burst transaction. When WVALID is low, WLAST
is not used, however almost certainly will be de-asserted,
meaning that asserting this signal can also mark a valid Trojan
transaction:

’WLAST = leak_s 7 1 : WLAST_ORIG

2) Slave Sender: Data can be leaked through any bus
signals a slave can drive (those on the read data channel or
write response channel). The logic for leak_s is identical to
the logic presented in the previous section since both channels
employ VALID signals. To mark when Trojan data is valid,
RLAST can be used in a similar manner as WLAST.

RRESP and BRESP are 2-bit error reporting signals and
are typically set to indicate “OKAY, normal access success”
(all 0’s) when not in use (channel VALID is LOW). Setting
either RRESP or BRESP to a non-zero state when leak_s is
asserted can indicate the presence of Trojan data on the bus,
for example:

’RRESP = leak_s ? 2’b10 : RRESP_ORIG

3) Trojan Receiver: A Trojan master/slave receives infor-
mation on the same set of bus signals a Trojan slave/master
sends. Because of this symmetry, the selection of Data and
Control signals is identical to the previous sections. The only

No transfer

IDLE
PSELx =0
PENABLE =0

Transfer

PREADY = 1
and no
transfer

SETUP
PSELx =1
PENABLE =0

PREADY =1
and transfer

ACCESS
PSELx =1
PENABLE =1

Fig. 2: AMBA APB Transaction State Diagram [25]

difference is that before leaking data to a receiver, the FIFO
must not be empty, meaning:

’leak_r = fifo_not_empty & ~VALID

B. AMBA APB

The bridging component is the only bus master in APB. The
slave components have their own slave select signal (PSELx),
but typically share all read data (PRDATA) and control signals
(PREADY and PSLVERR) in an AND-OR configuration like
the one shown in Figure 1b.

1) Slave Sender: Since slaves can only drive PRDATA,
PREADY, and PSLVERR, PRDATA is used for Trojan Data
and PREADY and PSLVERR are selected as the Trojan
Control signals. Since all 3 signals are visible to all bus
components, the black-colored circuitry presented in Figure
la is sufficient to implement the Trojan channel.

Figure 2 shows the state diagram for an APB transac-
tion. PRDATA is only valid during the ACCESS state. The
malicious slave leaks information by placing Trojan data on
PRDATA as not to conflict with a valid transaction, but can
only place data on PRDATA when PSELxX is set, meaning
information can only be leaked during the SETUP state:

leak_s = troj_data_ready & PSELx & ~PENABLE

Either PREADY or PSLVERR must be used to mark when
valid data is on the Trojan channel. As seen in Figure 2,
PREADY can take on any value during the SETUP phase
without affecting the behavior of a valid transaction. Similarly,
quoting the specification, “PSLVERR is only considered valid
during the last cycle of an APB transfer, when PSEL, PEN-
ABLE, and PREADY are all HIGH” [25]. The combination
of setting PSLVERR and de-asserting PREADY during the
SETUP phase can be used to signal valid Trojan data.

2) Master Sender: The APB bridge is the only bus master,
and a malicious APB bridge component can be used to connect
a Trojan component from the high-speed bus with an APB bus
slave. The APB bridge can leak data over PWRITE during the
IDLE state, and use the combination of de-asserting all PSEL
lines while asserting PENABLE to signal the occurrence of a
Trojan transaction.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

SystemVerilog Testbench S0 S1

8-bit 8-bit

AXI4-Lite AXI BFM Adder Adder
Compliance AXI4-Lite | | AXI4-Lite | | AXT4-Lite i ; $;
Checker Master Master Master AXI4-Lite | | AXI4-Lite
Slave

t i T

AXI4-Lite Interconect Fabric

S

Fig. 3: AXI4-Lite Example System Verification Infrastructure

V. AXI4-LITE INTERCONNECT TROJAN EXAMPLE

The system shown in Figure 3 is created to verify the
AXI4-Lite Interconnect Fabric through RTL simulation. The
two slaves are simple 8-bit adder coprocessors which receive
3 operands to add via the interconnect from 3 processors.
Since the specifics of the main processors are irrelevant, in
the example infrastructure, they are replaced by AXI4-Lite
bus functional models (BFMs) from [28]. Additionally, AXI4-
Lite assertions packaged by ARM for protocol compliance
checking [13] are active during system simulation.

The AXI4-Lite Interconnect Fabric IP block used is the
LogiCORE IP AXI Interconnect (v1.02.a) from Xilinx [27]
configured in Shared-Address Multiple-Data (SAMD) mode
(the topology shown in Figure Ic).

A. Trojan Operation

The AXI4-Lite Interconnect IP in Figure 3 is infected with
two copies of the circuitry shown in red in Figure 4 to allow
S1 to snoop on read requests for SO and vice versa. Without
the Trojan, the read data channel for SO is not visible to S1
and vice versa.

The waveform in Figure 5 first demonstrates how 3 read
data responses (values 42, 15, then 14) from S1 are snooped
and routed to SO’s write channel, then shows a single read data
response (value 96) from SO routed to S1’s write channel, and
finally another read data response from S1 (value 13) leaked
to SO. All Trojan transactions are highlighted in red in Figure
5. The WSTRB signal is used to indicate when leaked data is
on the bus. Normally WSTRB == 1, but when information
is leaked, WSTRB == 9.

For AXI4-Lite, there are over 50 assertions monitoring
bus signals during simulation, and none of them are

Interconnect

Mo § 2 d § S0

aeyeo]

MI : Data
r| | RVALID

leakr WSTRB
(Original)

Leakage Conditions Logic 4’61001

Fig. 4: Trojan Channel Logic for AXI4-Lite Interconnect

TABLE I: Trojan-Free Design Results (After Place and Route)

Configuration #FF | # LUT | # BRAM Fr[‘{\‘}';fz'icy
[3 Masters 2 Slaves [1814 | 2474] 2 [250 |
[4 Masters 6 Slaves [3071 | 4247 | 3 [250 |

TABLE II: Area Overhead of 2-way HW-Trojan Channel

Data % Increase in FF % Increase in LUT
width | FIFO Depth mayps4nMes | 3M2S | 4M6S
2 0.8 0.5 0.9 0.4
2 4 I.1 0.7 1.5 0.6
8 1.4 0.8 1.8 1.1
2 1.0 0.6 14 0.7
4 4 1.3 0.8 2.0 0.8
8 1.7 1.0 2.0 1.5
2 14 0.8 1.8 1.0
8 4 1.8 1.0 2.4 1.2
8 2.1 1.2 3.0 1.7

violated even when information is flowing through the
Trojan channel!

B. Overhead

To determine the area and timing overhead of implementing
a 2-way Trojan channel between SO and S1, the System Verilog
Testbench in Figure 3 is replaced by several simple bus
masters. Table I shows results for the Trojan-free design, after
placement and route, assuming 3 masters and 2 slaves (labeled
as 3M2S) as well as 4 masters and 6 slaves (labeled as 4M6S)
for a Virtex-7 FPGA (7vx330t-3).

Table II illustrates how the selection of Trojan channel
parameters Data Width (k) and FIFO Depth (d) affect the
results. The Trojan channel does not affect the operating
frequency of the design, and stays within 3% of the original
FF and LUT utilization. As the number of masters and slaves
increases, the interconnect and overall design area increases,
but the size of the Trojan circuitry does not change.

The Trojan channel is easier to hide as the complexity of
the interconnect and the number of components connected
increases. The master and slave components used to generate
the results in Tables I and II are far simpler than those in
a typical SoC, so the results in Table II give a loose upper
bound on the expected percentage of area increase caused by
the Trojan channel in a modern design.

VI. TROJAN CHANNEL IN SOC IMPLEMENTATION

To demonstrate how our proposed Trojan channel can give
an attacker an extremely powerful foothold in a complex
system, we infest a Xilinx Zynq ARM processor based SoC
framework running a Linux OS with Trojan circuitry allowing
an unprivileged user access to root-user memory transactions.
In this section, we detail the Trojan channel operation, the
interactions of users within the OS, and the area overhead of
the Trojan.

A. Zyng-7000 Based SoC Platform Overview

We design and implement a Trojan infested SoC architecture
based on the Zyng-7000 programmable SoC platform in
order to demonstrate the operation of the proposed Trojan

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Cik JEREERE R R R iR N iR iR R R RN pEREREERREREEREpERE
S_AXI_BUS_A_RDATA _[31:0] 5)i 96
=z S_AXI_LBUS_A_RVALID 1
-5,“ S_AXI_BUS_A_WDATA [31:0] 2 ! | 33 1 [e] 1 115 1 1] 1 B
2 S_AXLBUS_A WVALID | | [1] [[1 [
S_AXI_BUS_A_WSTRB_[3:0] C o] 3 [9] C o] L |ENER
S_AXI_BUS_A_RDATA [31:0] 3 2 | 15 | 1 3
E S_AXI_LBUS_A_RVALID [1 [1 [1 [1
| SLAXLBUS_A_WDATA [31:0] ! Jos !
s S_AXI_BUS_A_WVALID |1 [
S_AXI_BUS_A_WSTRB_[3:0] ! m :

Fig. 5: 2-way Information Leakage Waveform

Processing System (PS)

ARM Cortex-A9 ARM Cortex-A9 Root
CPU CPU Program
< i
e ! Dual-core ARM running multi-user Lm\\,\@
< - <« both user

and root can
access with proper
control mechanisms

|I| UART I|
ENET

3

Qx
I Interconnect[S

[S]
B

(a) Block Diagram of Platform Architecture

256-KB (016)V(2)
SRAM Interconnect

1

AXI Interconnect I

IMAXT In’t_e‘rconnect

Programmable Logic (PL)

Processing System (PS) °AXI Bus Trojan:

Leak data written

from OCM to BRAM
slave interface

Root
o Program
:' Dual-core ARM running multi-user Linux} \ eBRAM Trojan:

Store leaked data
in BRAM

o
-

AMBA

1/0 Unit

256-KB
SRAM

ocM
Interconnect

I tl e Attacker:

‘ NG, L | Malicious 11.\(;1 B
3| Z 3 program reads BRAN
¥ Trojan [§

Dl——y — [5]

AXI Tifterconnect[S} CDMA AKI Interconnect
5] D]
i Trojan o

Programmable Logic (PL)

(b) Hardware Trojan Operation

Fig. 6: Zyng-7000 Based SoC Platform Used for Trojan Demonstration

channel in a real-world application. A full SoC environment
running multi-user Linux is created containing Trojan infected
Interconnect and Block RAM (BRAM) Controller IP allowing
an unprivileged user to observe any data transferred via the
Central Direct Memory Access (CDMA) Controller.

A block diagram of the SoC architecture is shown in
Figure 6a. The SoC architecture includes (1) ARM processors
running a multi-user Linux OS, (2) an on-chip memory (OCM)
available to all users, but managed by the kernel to ensure
memory isolation and privacy, (3) a central direct memory
access (CDMA) controller only accessible by a user with
root privileges which performs direct memory transfers from
a source address to a destination address and (4) a BRAM
component which can be accessed directly by any user.

Components communicate through several AXI Intercon-
nect blocks, the most relevant labeled as (5) and (6) in Figure
6a. The ARM cores access the CDMA and BRAM periph-
erals through (5), and in (6) the CDMA initiates read/write
transactions to the BRAM and on-chip memory.

The system is created using Vivado 2015.1 [29] targeting
the Zyng-7000 All-Programmable SoC found in the Zedboard
platform [30]. The Zyng-7000 architecture integrates two
ARM Cortex-A9 cores, on-chip memory, and other periph-
erals, designated as the Processing System (PS) with Xilinx
Programmable Logic (PL) [31]. The Processing System pro-
vides the necessary resources to run Xillinux [32], a multi-user

Linux distribution, while the flexibility of the Programmable
Logic allows for Trojan insertion.

B. Hardware Trojan Operation

Figure 6b illustrates how Trojan circuitry inserted in the
BRAM Controller and AXI Interconnect enables an unprivi-
leged user program to observe memory transfers made by root.
Details of the inserted circuitry are given in the Appendix.

First, a root program must initiate a DMA transfer by
writing to control registers in the CDMA. The most basic
DMA transfer requires specifying the Source Address (SA),
Destination Address (DA), and number of Bytes to Transfer
(BTT) [33]. Once the BTT register is written, the DMA
transfer is performed by issuing read and write transactions to
the relevant peripheral (in Figure 6b the CDMA is transferring
data between two locations in on-chip memory). This flow is
illustrated by blue arrows in Figure 6b.

The following steps, shown using red arrows in Figure 6b,
illustrate Trojan operation:

1) AXI Bus Trojan leaks transactions visible only at the
OCM slave interface to the BRAM slave interface

2) BRAM Trojan captures leaked data at the AXI interface,
stores at incrementing BRAM memory locations

3) Malicious unprivileged user program reads BRAM lo-
cations containing the leaked data

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

root@localhost:~/Desktop#
root@localhost:~/Desktop#
root@localhost:~/Desktop#
root@localhost:~/Desktop#

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS rootglocalhost:~/Desktop#

Xillinux
Terminal

SD Card w/
Xillinux OS

ZedBoard

Fig. 7: Demonstration Environment

One should note that even if an attacker does not have the
ability to run or infiltrate a software program running on the
SoC, information from the Trojan channel can be captured and
transmitted to the attacker using only hardware Trojans. For
example, instead of leaking the DMA transfer data to BRAM,
a Trojan infested Ethernet or UART Controller could be used
to send data to an attacker.

C. OS-Level Extraction of Trojan Channel Information

Figure 7 shows the demonstration environment. Xillinux
runs on an SD card located on the Zedboard, and a USB/UART
cable connects a desktop workstation to a Xillinux root termi-
nal.

The demo uses two Xillinux users: root and attacker.
The privileged user root can read/write directly to physi-
cal addresses using a program called access_addr while
attacker is unprivileged, and cannot use this program.

However, to allow non-privileged users access to the
BRAM, the executable read_bram runs with root privileges,
but can be executed by any user, and reads the first 10 locations
in the BRAM. The read_bram program can be thought of as
a very simple device driver since it provides an unprivileged
user with controlled and limited access to a peripheral.

In the demo, root uses the DMA controller to transfer the
contents at address 0x4 to address 0x8 (both on-chip memory
locations). In the system memory map, on-chip memory
addresses start at 0x0, the CDMA base address is 0x60000000,
and the BRAM base addresses is 0x70000000.

Figure 8 shows Xillinux terminal output during the demon-
stration of Trojan functionality. Note that the commands at the
beginning of the demo are executed as root.

(1) Data at addresses 0Ox4 and Ox8 are read using
access_addr. (2-4) CDMA registers are written, instructing
the CDMA to transfer 4 bytes of data from address Ox4
to address 0x8. (5) access_addr is used to confirm that
the correct data from address 0x4 (0Oxel2fff10) is written to
address 0x8. (6) The demo switches to the perspective of
the attacker user. Notice that attacker tries to execute
access_addr to learn the contents of addresses 0x4 and
0x8, but does not have sufficient privileges to do so. (7)

root@localhost:~/Desktop#
root@localhost:~/Desktop#
root@localhost:~/Desktop#
root@localhost:~/Desktop#
— root@localhost:~/Desktop#
got@localhost:~/Desktop#
localhost:-/Desktop# 1s
read_bram.c test-dma tes
root@localhost:~/Desktop# ./access_addr -a ox4 -i

* READ: Addr=00000004,| Data=e12fff10

B

root@localhost:~/Desktop# ./access_addr -a ©x8 -i

test-linux-dmz
bsp test_addr.c
1) Read on-chip
memory locations

* READ: Addr=00000008, Data=0001cf6c *

root@localhost:~/Desktop# ./access_addr -a 0x60000018 -0 Ox4 2) Write DMA SA
* WRITE: Addr=60000018, Data=00000004 * Register

root@localhost:~/Desktop# ./access_addr -a 0x60000020 -0 6x8 3) Write DMA DA
* WRITE: Addr=60000020, Data=00000008 * Register

root@localhost:~/Desktop# ./access_addr -a 0x60000028 -o 0x4 4) Write DMA BTT
* WRITE: Addr=60000028, Data=00000004 * Register

root@localhost:~/Desktop# ./access_addr -a 0x8 -i

5) Check DMA
Transfer

Switch from root
to attacker user

* READ: Addr=00000008, Data=e12fff1e *
root@localhost:~/Desktop# su attacker 6
alocalhost: /root/Desktop$)

Ttacker@localhost; /root/Desktops ./access_addr -a 0x4
./access_addr:
attacker@localhost:/root/Desktop$./access_addr -a ox8

./access_addr: Permission denied

attacker@localhost:/root/Desktops ./read_bram 7) Read leaked data
Addr=70000000,
Addr=70000004, Data=00066660 from BRAM

Addr=70000008,
Addr=7000000c,
Addr=70000010,
Addr=70000014,
Addr=70000018,

Data=00000000
Data=00000000
Data=00000000
Data=00000000
Data=00000000
Addr=7000001c,
Addr=70000020,
Addr=70000024,

Data=00000000
Data=00000000
Data=00000000

Fig. 8: OS-Level Trojan Demonstration Shell Commands

Because of the hardware Trojan, the attacker is able to recover
the data transferred by root using read_bram.

D. Overhead

Table III shows the overhead of inserting the Trojan circuitry
in the AXI Interconnect and BRAM Controller IP. The Trojan
channel data width is 32 bits, and the interconnect topology is
such that no FIFO is necessary. Further Trojan circuitry details
are given in the Appendix.

The utilization results given are for the Programmable Logic
portion of the platform, since the Processing System exists on
the FPGA board as hard silicon, and cannot be modified or
further optimized by Vivado.

TABLE III: Overhead of Programmable Logic in SoC Platform
(After Place-and-Route)

Memory | # Block Freq.
REF HLUT | pur | RAMs | [MHz]
Trojan-Free 4766 4149 267 1 50
Trojan-Infested 4809 4201 267 1 50
[% Increase T o9 | 12] 0 [0 [o |

The presence of the Trojan circuitry did not affect the
frequency of the design, and the FF and LUT utilization rose
by approximately 1% making the Trojan circuitry unlikely to
be detected due to anomalous area consumption.

VII. DETECTION STRATEGIES

To guarantee that no Trojan channel exists in the intercon-
nect circuitry, one must:
1) Fully specify the behavior of every bus signal
2) Modify the bus implementation to comply with the fully
refined specification
3) Formally prove the bus implementation conforms to the
behavior specified in 1)

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

attackerslocalhost: irootiDesktois I

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Even if the requirement for formal verification is replaced
by assertions monitoring the interconnect during simulation,
for complex protocols, the task of complete behavior specifi-
cation without causing unacceptable overhead is formidable.

For example, in AXI4, it is easy to require that if a channel
VALID signal is LOW, all other channel signals must be driven
LOW. However, given that data and address buses in AXI4
are typically 32 or 64 bits wide, an implementation adhering
to this requirement must augment hundreds of bits with MUX
circuitry to switch between LOW and the original signal value.

To overcome the large area and power overhead of zeroing
circuitry for data and address signals, this circuitry can be
implemented only for signals that have the potential to become
Trojan channel Control signals (ex. WSTRB and WLAST).
Preventing the ability to signal when Trojan transactions occur
greatly decreases the usability of the Trojan channel.

If no zeroing circuitry can be afforded, the Trojan channel
can be targeted by developing additional complex assertions,
which define the behavior of bus signals during invalid cycles
in a less straight forward, but more area efficient way. For
example, instead of requiring WSTRB == 0 when VALID is
LOW, a test bench monitor can record the value of WSTRB
during the most recent valid write transaction and require that
this value remain unchanged until the next valid transaction.

The detection strategy employed will ultimately be de-
termined by the complexity of the protocol, the amount of
overhead tolerated, the amount of effort budgeted for design
verification, and the overall level of security desired. Detailed
descriptions of detection methods are beyond the scope of this
paper and are not included.

VIII. CONCLUSION

We present a new type of Hardware Trojan which creates
a covert communication channel between components spread
across an SoC using only existing on-chip bus signals without
affecting normal bus functionality. We illustrate how our
Trojan channel communication model is applicable to any
bus topology and protocol, and give details for two widely
used protocols. Our Trojan channel circuitry is shown to avoid
detection by a protocol compliance checking suite from the IP
vendor, and confirmed to have manageable area overhead. We
also illustrate how Trojan channel information can be extracted
by malicious unprivileged software by creating a complete
SoC platform infected with a bus Trojan. Additionally, several
detection strategies are outlined.

APPENDIX
DETAILS OF TROJAN INSERTION IN XILINX IP

Each block in the Programmable Logic portion of Figure
6a corresponds to a Verilog or VHDL module provided by
Xilinx, with Vivado integrating the IP into a complete system.
Trojans are inserted in the AXI4 Interconnect and AXI BRAM
Controller IP blocks.

AXI4 Interconnect: The AXI Interconnect block labeled
(6) in Figure 6a has a single bus master (the CDMA) and two
slaves. The Verilog file, axi_crossbar_v2_I1_axi_crossbar.v,

from AXI Interconnect 2.1 (Rev. 5) [34] is modified to insert
the Trojan into this block.

Because there is only a single bus master, the 32-bit write
data is broadcast to both of the slaves. Even though the BRAM
slave can observe write data destined for the processing
system, WVALID signals are not broadcast, meaning only the
processing system knows which cycle the data is valid. Trojan
circuitry is needed to notify the BRAM slave when valid data
is being sent to the processing system.

Similar to the example in Section V, the 4-bit WSTRB
signal seen at the BRAM slave interface is used to mark when
valid data is being written to the processing system. Since the
BRAM data width is 32 bits, WSTRB is always 4’b1111. The
Trojan circuitry sets WSTRB to 4’b1110 to mark when data
is being written to the processing system.

Since there is only one bus master, valid write data can never
be sent to BRAM and the processing system simultaneously,
guaranteeing that valid write transactions to BRAM are not
disrupted when the Trojan alters WSTRB. This eliminates the
need for Trojan FIFO or buffering circuitry.

AXI BRAM Controller: The Trojan inserted in the AXI
BRAM Controller, labeled (4) in Figure 6a, captures WDATA
(32-bits) when WSTRB is 4’b1110, then writes the data to Port
B of the BRAM. In our example framework, the address the
leaked data is written to starts at 0x70000000, then increases
by 4 with every data word written.

The VHDL file, full_axi.vhd, from AXI BRAM Controller
v4.0 [35] is modified by adding a counter to increment the
BRAM address for the leaked data and logic to monitor the
AXI write data channel and write the leaked data to the
BRAM.

ACKNOWLEDGEMENTS

This work was supported by NSF/SRC STARSS (1526695).
The authors would also like to thank the Xilinx University
Program for the generous donation of multiple ZedBoard
development Kits.

REFERENCES

[1] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5,
pp. 34-39, May 2008.

[2] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10-25, Jan 2010.

[3] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System
on Chip Interconnect. Morgan Kaufmann Publishers Inc., 2008.

[4] L.-W. Kim, J. D. Villasenor, and C. K. Kog, “A trojan-resistant system-
on-chip bus architecture,” in Proceedings of the 28th IEEE Conference
on Military Communications, ser. MILCOM’09, 2009, pp. 2452-2457.

[5] L.-W. Kim and J. D. Villasenor, “A system-on-chip bus architecture
for thwarting integrated circuit trojan horses,” VLSI Systems, IEEE
Transactions on, vol. 19, no. 10, pp. 1921-1926, 2011.

[6] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in Proceedings of the 2011 IEEE Symposium on Security and Privacy,
ser. SP’11, 2011, pp. 49-63.

[7] M. Henson and S. Taylor, “Memory encryption: A survey of existing
techniques,” ACM Computing Surveys, vol. 46, no. 4, pp. 53:1-53:26,
2014.

[8] “Arm trustzone controllers.” [Online]. Available: http://www.arm.com/
markets/trustzone-controllers.php

[9] D. Wang, “Formal verification of the PCI local bus: A step towards ip
core based system-on-chip design verification,” Master’s thesis, Carnegie
Mellon University, May 1999.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

[10] A. Roychoudhury, T. Mitra, and S. R. Karri, “Using formal techniques to
debug the AMBA system-on-chip bus protocol,” in Design, Automation
and Test in Europe Conference and Exhibition, DATE’03, 2003, pp.
828-833.

R. Luo and H. Tan, “Formal modeling and model checking analysis of

the wishbone system-on-chip bus protocol,” in Proceedings of the Third

International Conference on Information Computing and Applications,

ICICA’12. Springer-Verlag, 2012, pp. 211-220.

“Synopsys vip for arm amba.” [Online]. Available:

http://www.synopsys.com/Tools/Verification/Functional Verification/

Verification]P/amba/Pages/default.aspx

“Amba 4 axi4, axi4-lite and axi4-stream protocol assertions bp063

release note (rOpl1-00rel0),” ARM. [Online]. Available: https://silver.

arm.com/browse/BP063

A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identifi-

cation of stealthy malicious logic using boolean functional analysis,”

in Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, CCS’13. ACM, 2013, pp. 697-708.

D. Sullivan, J. Biggers, G. Zhu, S. Zhang, and Y. Jin, “FIGHT-Metric:

Functional identification of gate-level hardware trustworthiness,” in

Proceedings of the 51st Annual Design Automation Conference, DAC’14.

ACM, 2014, pp. 173:1-173:4.

[16] J.Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “VeriTrust: Verification for

hardware trust,” in Proceedings of the 50th Annual Design Automation

Conference, DAC’13. ACM, 2013, pp. 61:1-61:8.

M. Hicks et al., “Overcoming an untrusted computing base: Detecting

and removing malicious hardware automatically,” in Proceedings of the

2010 IEEE Symposium on Security and Privacy, SP’10. TEEE Computer

Society, 2010, pp. 159-172.

D. Agrawal et al., “Trojan detection using ic fingerprinting,” in /EEE

Symposium on Security and Privacy, 2007.

Y. Jin and Y. Makris, “Hardware trojan detection using path delay

fingerprint,” in Hardware-Oriented Security and Trust, 2008. HOST

2008. IEEE International Workshop on, June 2008, pp. 51-57.

Y. Liu, K. Huang, and Y. Makris, “Hardware trojan detection through

golden chip-free statistical side-channel fingerprinting,” in Proceedings

of the 51st Annual Design Automation Conference, ser. DAC *14. New

York, NY, USA: ACM, 2014, pp. 155:1-155:6.

C. Dunbar and G. Qu, “Designing trusted embedded systems from finite

state machines,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 13, no. Ss, pp. 153:1-153:20, Oct. 2014.

N. Fern, S. Kulkarni, and K.-T. Cheng, “Hardware Trojans hidden in

RTL don’t cares - Automated insertion and prevention methodologies,”

in Proceedings of the 2015 IEEE Internation Test Conference (ITC), Oct

2015.

N. Fern and K.-T. Cheng, “Detecting hardware trojans in unspecified

functionality using mutation testing,” in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, ICCAD’15. 1EEE

Press, 2015, pp. 560-566.

[24] AMBA AXI and ACE Protocol Specification, Issue E, ARM, 2013.

[25] AMBA 3 APB Protocol v1.0 Specification, Issue B, ARM, 2004.

[26] IBM, “Coreconnect bus architecture.” [Online]. Avail-
able: http://crkit.orbit-1lab.org/export/453/design/trunk/bfm/bfm_nt_12_
1/third_party/doc/crcon_pb.pdf

[27] DS768: LogiCORE IP AXI Interconnect (v1.02.a), Xilinx Inc., March

(11]

[12]

[13]

[14]

[15]

(171

[18]

[19]

[20]

[21]

[22]

[23]

2011.
[28] “Axi4 bfm.” [Online]. Available: https://github.com/sjaeckel/axi-bfm
[29] “Vivado design suite, 2015.1> [Online]. Avail-
able: http://www.xilinx.com/support/download/index.html/content/

xilinx/en/downloadNav/vivado-design-tools/2015- 1.html
[30] ZedBoard Hardware User’s Guide (v2.2), Avnet Inc., 2014. [Online].
Available: http://zedboard.org/
UG585: Zyng-7000 All Programmable SoC Technical Reference Manual
(v1.10), Xilinx Inc., February 2015.
[32] “Xillinux.” [Online]. Available: http://xillybus.com/xillinux
[33] PGO34: LogiCORE IP AXI Central Direct Memory Access (v4.1), Xilinx
Inc., November 2015.
[34] PGO59: LogiCORE IP AXI Interconnect (v2.1), Xilinx Inc., April 2016.
[35] PGO78: LogiCORE IP AXI BRAM Controller (v4.0), Xilinx Inc., April
2016.

[31]

Nicole Fern received her undergraduate degree in
Electrical Engineering from The Cooper Union for
the Advancement of Science and Art (2011) and her
PhD degree in Electrical & Computer Engineering
from University of California, Santa Barbara (2016)
under the advisement of Professor Tim Cheng. She
is currently a post-doc at UC Santa Barbara and a
Visiting Scholar at Hong Kong University of Science
and Technology. Her industry experience includes
internships at Cisco and Apple. Her research in-
terests include hardware verification and security,
specifically identifying unspecified design functionality susceptible to mali-
cious manipulation and exploring the role of hardware in both undermining
and strengthening system security.

Ismail San is an Assistant Professor in the Electrical
and Electronics Engineering Department at Anadolu
University, Turkey. He received his B.Sc. degree
from the same department at Anadolu University
(2008); B.Sc. degree from Department of Avionics
at Anadolu University (2008); PhD degree from the
Electrical and Electronics Engineering Department
at Anadolu University (2014). He was a student
intern at IBM Zurich Research Laboratory as part of
a Great Minds Student Internship program in 2013.
He held a visiting research scholar position at UC
Santa Barbara, from 2015 to 2016. His research interests include hardware
verification and security, design space exploration of application specific
processors, high performance computing, and fault tolerant computation.

Cetin Kaya Ko¢ received his PhD in Electrical &
Computer Engineering from University of California
Santa Barbara. His research interests are in elec-
tronic voting, cyber-physical security, cryptographic
hardware and embedded systems, elliptic curve cryp-
~ tography and finite fields, and deterministic, hy-
i s brid and true random number generators. Kog is
RN the co-founder of the Workshop on Cryptographic
,; \ Hardware and Embedded Systems, and the found-
R& ing Editor-in-Chief of the Journal of Cryptographic
’ Engineering. He has also been in the editorial boards
of IEEE Transactions on Computers (2003-2008, 2015-now) and IEEE Trans-
actions on Mobile Computing (2003-2007). Furthermore, he was a guest co-
editor of April 2003 & November 2008 issues of the IEEE Transactions on
Computers. Kog is the co-author of the three books Cryptographic Algorithms
on Reconfigurable Hardware, Cryptographic Engineering, and Open Problems
in Mathematics and Computational Science, all published by Springer. In
2007, he was elected as IEEE Fellow for his contributions to cryptographic
engineering.

Kwang-Ting (Tim) Cheng received his Ph.D. in
EECS from the University of California, Berkeley
in 1988. He has been serving as Dean of Engi-
neering and Chair Professor of ECE and CSE at
Hong Kong University of Science and Technology
(HKUST) since May 2016. He worked at Bell Lab-
oratories from 1988 to 1993 and joined the faculty
at Univ. of California, Santa Barbara in 1993 where
he was the Chair of the ECE Department (2005-
2008) and Associate Vice Chancellor for Research
(2013-2016). His current research interests include
design automation for photonics IC and flexible hybrid circuits, memristive
memories, mobile embedded systems, and mobile computer vision. He has
published more than 400 technical papers, co-authored five books, advised 40+
PhD theses, and holds 12 U.S. Patents in these areas. Cheng, an IEEE fellow,
received 10+ Best Paper Awards from various IEEE and ACM conferences
and journals. He has also received UCSB College of Engineering Outstanding
Teaching Faculty Award. He served as Editor-in-Chief of IEEE Design and
Test of Computers and was a board member of IEEE Council of Electronic
Design Automation’s Board of Governors and IEEE Computer Society’s
Publication Board.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

