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Abstract—We introduce a matrix decomposition method and prove that multiplication in GFð2kÞ with a Type 1 optimal normal basis for

can be performed using k2 � 1 XOR gates irrespective of the choice of the irreducible polynomial generating the field. The previous

results achieved this bound only with special irreducible polynomials. Furthermore, the decomposition method performs the

multiplication operation using 1:5kðk� 1Þ XOR gates for Type 2a and 2b optimal normal bases, which matches previous bounds.

Index Terms—Massey-Omura, type 1, type 2a, type 2b normal bases, gaussian normal bases, elliptic curve cryptography
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1 INTRODUCTION

THE subject of the paper is the multiplication operation in
the field GFð2kÞwhose elements are represented using a

normal basis. Parallel multipliers for GFð2kÞ have applica-
tions in error-correcting codes [1] for smaller values of k,
usually from 16 to 32. Applications in cryptography,
for example, elliptic curve cryptographic functions EC-
DSA, EC-IES and EC-based random number generators [2],

require hardware and software implementations of GFð2kÞ,
but for much larger values of k. Polynomial basis multipli-
cation is probably more suitable for such implementations,
though standards (such as ANSI X9.62) suggest normal
bases as well [3]. Since optimal normal bases exist only for a
smaller subset of k values suggested by cryptographic
standards, often sub-optimal Gaussian normal bases are
used. For example, the standard ANSI X9.62 suggests select-

ing a Type 2 basis for GFð2kÞ, and if this does not exist, then
and a Type 1 basis, and if neither exists, then a Type T basis
with the smallest value of T .

Furthermore, the new research in elliptic curve cryptog-
raphy, particularly, Edward curves and its derived versions
based on binary fields [4], [5], has shown that GFð2kÞ fields
coupled with binary Edward curves are highly efficient and
secure [5].

2 PRELIMINARIES

All symbols and terms used in this paper are given in
Table 1. An element b of the field GFð2kÞ is called a normal

element if any element a 2 GFð2kÞ can be uniquely written
as a linear sum of the powers of 2 powers of b as

a ¼
Xk�1

i¼0

aib
2i ¼ a0bþ a1b

2 þ a2b
4 þ � � � þ ak�1b

2k�1
:

such that ai 2 f0; 1g. For the brevity of the notation, we will

interchangeably use bi ¼ b2i for i ¼ 0; 1; . . . ; k� 1, and the
denote the basis set by B ¼ fb0;b1; . . . ;bk�1g. Also we will
use 11 (boldface 1) to represent the identity element
expressed in normal basis, which is equal to the sum of all
basis elements:

11 ¼ bþ b2 þ b4 þ � � � þ b2k�1 ¼ b0 þ b1 þ b2 þ � � � þ bk�1:

The normal representation of an element in GFð2kÞ is partic-
ularly useful for squaring; the normal expression of a2 is
obtained by left-rotating the digits of the normal expression
of a. The ease of squaring in normal basis is remarkable, but
the multiplication is more complicated.

In order to describe the normal basis multiplication, we
refer to the Massey-Omura algorithm [6], which follows the
following steps: Given the bits ai and bi of the input oper-
ands a and b, the Massey-Omura multiplier first generates
all partial product terms aibj for 0 � i; j � k� 1 using AND
gates, and then sums the subsets of these partial product
terms using XOR gates to obtain the bits cr of the product
for r ¼ 0; 1; . . . ; k� 1.

For uniformity of the analysis throughout this paper we
assume that AND and XOR gates have 2 inputs, and we
denote the individual gate delays by TA and TX .

There are k2 partial product terms aibj, which can be

computed using k2 2-input AND gates in a single TA delay.

This computation is space-optimal; k2 is both upper and
lower bound on the number of partial product terms,
because all of them need to be computed.

In the computation of each product term cr for 0 � r �
k� 1, we need only a subset of the k2 partial product terms
aibj. According to the optimality theorem of the normal
basis multiplication [7], the number of aibj terms needed to
compute any of cr is at least 2k� 1. If there exists a normal

basis in GFð2kÞ for which the number of aibj terms for com-
puting cr is exactly 2k� 1, then this normal basis is called opti-
mal. In this case, a cr term can be computed using 2k� 2 XOR
gates, while all cr terms for r ¼ 0; 1; . . . ; k� 1 would require
kð2k� 2Þ XOR gates for optimal normal bases. However, this
is an upper bound as there are common aibj terms among the
computations of cr terms for different r values. It is shown
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that certain subsets of GFð2kÞ fields, for example, those gener-
ated by irreducible all-one-polynomials [8], [9], require only

k2 � 1 XOR gates. This paper introduces a matrix decomposi-

tion method which requires k2 � 1 XOR gates for the Type 1
optimal normal basis, irrespective of the choice the irreducible
polynomial. Moreover the method is applicable to Type 2a
and 2b bases as well, requiring 1:5kðk� 1Þ XOR gates, which
matches certain previous bounds [10], [11].

3 OPTIMAL NORMAL BASES

The constructions of optimal normal bases are described in
[7], [12], [13], and summarized in the following theorem:

Theorem 1. An optimal normal basis for GFð2kÞ exists in either
of the following cases, and can be constructed as:

1) If kþ 1 is prime and 2 is a primitive element in Zkþ1.
Each of the k nonunit ðkþ 1Þth root of identity forms

an optimal normal basis in GFð2kÞ.
2) If p ¼ 2kþ 1 is prime and

2a: Either, 2 is primitive in Z�
p;

2b: Or, 2kþ 1 ¼ 3 ðmod 4Þ and 2 generates quadratic
residues in Z�

p.

In this case, b ¼ g þ g�1 generates an optimal normal basis

in GFð2kÞ, where g is a primitive pth root of identity.

The optimal normal bases that are derived from the first
part of the theorem are named Type 1, while the ones that
follow from the second part are named Type 2 bases, or
more specifically, as Type 2a and Type 2b bases. For k � 30,
the optimal normal bases are listed in Table 2.

4 NORMAL BASIS MULTIPLICATION ALGORITHM

Given the input operands a and b as

a ¼
Xk�1

i¼0

aibi ; b ¼
Xk�1

i¼0

bibi;

the multiplication algorithm computes each bit of the
product c, which can be written as a double summation as

c ¼
Xk�1

i¼0

Xk�1

j¼0

aibjbibj :

This in turn can be written as a vector-matrix product

a0 a1 � � � ak�1½ � �� b0 b1 � � � bk�1½ �T ;

such that every element of the k� k matrix �� is the sum of
a subset of the normal elements fb0;b1;b2; . . . ;bk�1g. Fur-
thermore, the �� matrix can be expressed in terms of the
k� k matrices ��i for i ¼ 0; 1; . . . ; k� 1 with entries in
f0; 1g such that

�� ¼ ��0b0 þ ��1b1 þ ��2b2 þ � � � þ ��k�1bk�1 :

5 DIRECT MULTIPLICATION IN GFð22Þ
Consider the smallest extension field GFð22Þ, which has
both Type 1 and Type 2 of optimal normal bases. We will
use the Type 1 optimal normal element b ¼ x and the irre-

ducible polynomial pðxÞ ¼ x2 þ xþ 1, and derive the ��
matrix. Given the normal representations of two elements
of the field a ¼ a0b0 þ a1b1 and b ¼ b0b0 þ b1b1, their prod-
uct c is given as

c ¼ a0b0b
2
0 þ a0b1b0b1 þ a1b0b0b1 þ a1b1b

2
1

¼ a0b0b1 þ a0b1ðb0 þ b1Þ þ a1b0ðb0 þ b1Þ þ a1b1b0 ;

where the equalities b2
0 ¼ b1, b0b1 ¼ b0 þ b1, and b2

1 ¼ b0 are
obtained using the normal element b ¼ x and the irreduc-

ible polynomial pðxÞ ¼ x2 þ xþ 1. The vector-matrix expan-
sion of the product can be written as

c ¼ a0 a1½ � b1 b0 þ b1
b0 þ b1 b0

� �
b0
b1

� �
;

which gives us the ��matrix as

�� ¼ b1 b0 þ b1

b0 þ b1 b0

� �
:

Furthermore, we obtain the ��0 and ��1 matrices for GFð22Þ as

�� ¼ ��0b0 þ ��1b1 ¼
b1 b0 þ b1

b0 þ b1 b0

� �

¼ 0 1

1 1

� �
b0 þ 1 1

1 0

� �
b1 :

Once all partial products aibj for 0 � i; j � k� 1 are com-

puted using k2 AND gates, the ��i matrices determine which

TABLE 1
All Symbols and Terms Used in This Paper

Symbol or Term Meaning

k A nonzero positive integer
GFð2kÞ Galois field of 2k elements
a; b; c Arbitrary elements of GFð2kÞ
ai; bi; ci Binary coefficients of a; b; c
b A normal element of GFð2kÞ
bi Equals to b2

i

B The basis set fb0; . . . ;bk�1g
Zkþ1 The set of integers f0; 1; . . . ; kg
p A prime number
Z�

p The set of integers f1; 2; . . . ; p� 1g
g The primitive pth root of identity
g þ g�1 Equals to the normal element b
�� The k� kmatrix; sum subsets of B
�� �� ¼ ��0b0 þ ��1b1 þ � � � þ ��k�1bk�1

��ij The ði; jÞ entry of the matrix ��

��ij Equals to b2iþ2j ¼ b2ib2j ¼ bibj

��i The k� kmatrices with entries f0; 1g
Qp The set of quadratic residues mod p
Q0

p The set of quadratic nonresidues mod p

TA and TX Delays of 2-input AND or XOR gates

TABLE 2
The Optimal Normal Bases for k � 30

k values

Type 1 2; 4; 10; 12; 18; 28
Type 2a 2; 5; 6; 9; 14; 18; 26; 29; 30
Type 2b 3; 11; 23
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subsets of the partial products aibj are to be summed to

obtain a particular product term cr. For GFð22Þ, we have

c0 ¼ a0 a1½ � 0 1
1 1

� �
b0
b1

� �
¼ a0b1 þ a1b0 þ a1b1; (1)

c1 ¼ a0 a1½ � 1 1
1 0

� �
b0
b1

� �
¼ a0b0 þ a0b1 þ a1b0: (2)

There are three 1s in each of the ��0 and ��1 matrices, and
therefore, there three terms partial product terms aibj in the
expressions for c0 or c1. The total number of XOR gates to
compute both of c0 and c1 is 2 � 2 ¼ 4.

6 MATRIX DECOMPOSITION METHOD FOR GFð22Þ
However, we observe a certain similarity in the ��0 and ��1

matrices: each can be written as the sum of two matrices
such that the first matrix is the same for both, in other words,

��0 ¼ 0 1
1 1

� �
¼ 0 1

1 0

� �
þ 0 0

0 1

� �
; (3)

��1 ¼ 1 1
1 0

� �
¼ 0 1

1 0

� �
þ 1 0

0 0

� �
: (4)

This matrix decomposition implies that the computation of
c0 and c1 can be performed in two steps: the first step
involves a common matrix for both c0 and c1, and while the
second steps involve two different matrices

c0 ¼ a0 a1½ � 0 1

1 0

� �
þ 0 0

0 1

� �� �
b0

b1

� �

¼ a0 a1½ � 0 1

1 0

� �
b0

b1

� �
þ a0 a1½ � 0 0

0 1

� �
b0

b1

� �
;

c1 ¼ a0 a1½ � 0 1

1 0

� �
þ 1 0

0 0

� �� �
b0

b1

� �

¼ a0 a1½ � 0 1

1 0

� �
b0

b1

� �
þ a0 a1½ � 1 0

0 0

� �
b0

b1

� �
:

The first vector-matrix product needs to be performed only
once for both c0 and c1, followed by the second vector-
matrix products which need to performed separately for
each c0 and c1. After these steps, we need add the partial

sums to get c0 and c1. Therefore, our algorithm for GFð22Þ
follows the following steps:

� Step 1: First, we compute the common partial product
term, which requires one XOR gate and one TX delay:

s ¼ a0 a1½ � 0 1
1 0

� �
b0
b1

� �
¼ a0b1 þ a1b0 : (5)

� Step 2: Now, we use the decomposition of ��0 and ��1

to compute t0 and t1; this step does not require any
XOR gates and any delay:

t0 ¼ a0 a1½ � 0 0
0 1

� �
b0
b1

� �
¼ a1b1 ; (6)

t1 ¼ a0 a1½ � 1 0
0 0

� �
b0
b1

� �
¼ a0b0 : (7)

� Step 3: Finally we compute c0 and c1 using c0 ¼ sþ t0
and c1 ¼ sþ t1. This step requires one XOR gate and
one TX delay.

The matrix decomposition method for GFð22Þ reduces the
number of XOR gates to 3, while the direct computation
using the formulae (1) and (2) imply four XOR gates. The
total gate delay is TA þ 2TX .

7 MATRIX DECOMPOSITION METHOD FOR GFð24Þ
The success of the decomposition method in GFð2kÞ
depends on the the additive components the ��i matrices,
i.e., whether they have common terms among the expres-

sions for cr. We now consider the field GFð24Þwith the Type

1 optimal normal basis b ¼ x3 and the irreducible polyno-

mial pðxÞ ¼ x4 þ xþ 1. The normal representations of the
powers of b can be obtained by powering b and reducing
the resulting polynomials mod pðxÞ, as shown in [14]. The
resulting ��matrix is

�� ¼
b2 b3 b5 b9

b3 b4 b6 b10

b5 b6 b8 b12

b9 b10 b12 b16

2
664

3
775 ¼

b1 b3 11 b2

b3 b2 b0 11
11 b0 b3 b1

b2 11 b1 b0

2
664

3
775 :

The number of terms in the �� matrix for the optimal basis

b 2 GFð24Þ is equal to 4 � ð2 � 4� 1Þ ¼ 28. This implies
4 � ð2 � 4� 2Þ ¼ 24 XOR gates in direct computation of the
normal basis multiplication. To apply the matrix decompo-

sition method, similar to the case of GFð22Þ, we first derive
the 4� 4 ��r matrices for r ¼ 0; 1; 2; 3 from the 4� 4 ��matrix.
Furthermore, using exhaustive search we have obtained the
decomposition of the ��i matrices as follows:

��0 ¼

0 0 1 0

0 0 1 1

1 1 0 0

0 1 0 1

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775þ

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2
6664

3
7775;

��1 ¼

1 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775þ

1 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775;

��2 ¼

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 0

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775þ

0 0 0 1

0 1 0 0

0 0 0 0

1 0 0 0

2
6664

3
7775;

��3 ¼

0 1 1 0

1 0 0 1

1 0 1 0

0 1 0 0

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775þ

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0

2
6664

3
7775:

The steps of our algorithm for the normal basis multiplica-
tion in GFð24Þ are:

� Step 1: First, we compute the common partial prod-
uct term using three XOR gates. This step requires
2TX gate delays, by arranging the sum computation
as a binary tree with four leaves, with depth 2TX,
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s ¼ a0 a1 a2 a3½ �
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2
664

3
775

b0
b1
b2
b3

2
664

3
775;

¼ a0b2 þ a1b3 þ a2b0 þ a3b1:

� Step 2: Then, we use the decomposition of ��i to com-
pute all 4 tr terms 4� 2 ¼ 8 XOR gates. This step
also requires 2TX gate delays

t0 ¼ a0 a1 a2 a3½ �
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
664

3
775

b0
b1
b2
b3

2
664

3
775;

¼ a2b1 þ a1b2 þ a3b3 ;

t1 ¼ a0 a1 a2 a3½ �
1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

2
664

3
775

b0
b1
b2
b3

2
664

3
775;

¼ a0b0 þ a3b2 þ a2b3 ;

t2 ¼ a0 a1 a2 a3½ �
0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

2
664

3
775

b0
b1
b2
b3

2
664

3
775;

¼ a3b0 þ a1b1 þ a0b3 ;

t3 ¼ a0 a1 a2 a3½ �
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

2
664

3
775

b0
b1
b2
b3

2
664

3
775;

¼ a1b0 þ a0b1 þ a2b2 :

� Step 3: Finally, we compute cr for r ¼ 0; 1; 2; 3 using 4
XOR gates: cr ¼ sþ tr. This will require a single TX

gate delay.
The computation of c0; c1; c2; c3 using the matrix decom-

position method requires 3þ 8þ 4 ¼ 15 XOR gates, instead
24 XOR gates required by the direct method. Since Steps 1
and 2 are independent of one another, the total gate delay is
equal to TA þ 3TX.

8 DECOMPOSITION METHOD FOR TYPE 1
BASES IN GFð2kÞ

The decomposition method reduces the number of XOR
gates due to the common partial product terms aibj among
the computation of cr terms. We define the intersection of
two or more ��r matrices as the matrix whose ði; jÞ element
is 1 if all input matrices ��r has a 1 in their ði; jÞ location, and
0 otherwise. The intersection of all ��r matrices is the matrix
used the computation of the partial product term s. We will

denote this matrix by mm; for GFð22Þwe obtained it as

mm ¼ ��0

\
��1 ¼ 0 1

1 1

� �\ 1 1
1 0

� �
¼ 0 1

1 0

� �
;

Also, we obtained mm ¼ T3
r¼0 ��r for the field GFð24Þ as

mm ¼

0 0 1 0

0 0 1 1

1 1 0 0

0 1 0 1

2
6664

3
7775
\

1 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

2
6664

3
7775
\

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 0

2
6664

3
7775
\

0 1 1 0

1 0 0 1

1 0 1 0

0 1 0 0

2
6664

3
7775

¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775 :

Once the mm matrix is available, any of ��r matrices for
r ¼ 0; 1; . . . ; k� 1 can be written in terms of mm and a second
matrix. Let us denote the second matrix with nnr in the com-

putation of tr for GFð2kÞ. Thus, we have mm ¼ Tk�1
r¼0 ��r and

��r ¼ mmþ nnr for r ¼ 0; 1; . . . ; k� 1.
Of course, it is possible that the mm matrix can be a zero

matrix, implying that there are no common 1s among all ��r

matrices. In this case, our method would reduce to the
direct method, not offering any savings in the number of
XOR gates: ��r ¼ nnr.

However, we will prove in this section that mm matrix for

Type 1 optimal normal bases in GFð2kÞ is a nonzero matrix,
in fact it has exactly k 1s in it. The construction of the mm

matrix and the nnr matrices for GFð2kÞ can be accomplished
using the following steps:

1) First, we construct the �� matrix. The ði; jÞ entry of ��

matrix is equal to b2iþ2j for 0 � i; j � k� 1, where b

is the normal element.
2) We express b2iþ2j in the normal basis, i.e., express it

as a linear sum of power of two powers of b. Thus,
we obtain the ��matrix expressed in the normal basis.
This can be accomplished using the polynomial
representation of b and the irreducible polynomial
of the field to obtain all non-power of 2 powers of b
in the normal basis.

3) We obtain the ��r matrices for r ¼ 0; 1; . . . ; k� 1 by
expanding the �� matrix as a linear sum of the basis
elements br.

4) We obtain the intersection matrix mm ¼ Tk�1
r¼0 ��r.

5) Each nnr matrix is then obtained using nnr ¼ ��r � mm for
i ¼ 0; 1; . . . ; k� 1.

The construction of mm and nnr matrices depend on the
number common 1s in the ��r matrices, which in turn
depend on the structure and entries of the ��matrix. In order
to analyze the complexity of the new multiplication algo-
rithm, we need to look into the properties of the ��matrix.

Let us assume that GFð2kÞ has a Type 1 optimal normal
basis; this implies that kþ 1 is prime and 2 is primitive in
Z�

kþ1. Moreover, the optimal normal element b is a primitive

ðkþ 1Þst root of 1 in GF ð2kÞ. We write k ¼ 2m and use B to
represent the basis set B ¼ fb0;b1; . . . ;bk�1g. The ði; jÞ entry
of the matrix �� for 0 � i; j � k� 1 is given as
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��ij ¼ b2iþ2j ¼ b2
i
b2j ¼ bibj :

Now we refer to Lemmas 1 and 2 in [14] about the structure
of the ��matrix. The proofs are also given in the same article;
we note that the proofs do not assume a particular type of

irreducible polynomial generating the field GFð2kÞ.
Lemma 1. The elements of �� with the indices ði; iþmmod kÞ for

i ¼ 0; 1; . . . ; k� 1 are all 11s, where 11 ¼ b0 þ b1 þ � � � þ bk�1

andm ¼ k=2.

Lemma 2. The row r for 0 � r � k� 1 of �� is a permutation of
B � fbrg with 11 appearing in the column indexmþ r mod k.

We will denote the set of indices for which the elements
of �� are all 11s by L as

L ¼ fði; iþmmod kÞ j i ¼ 0; 1; 2; . . . ; k� 1g :

Note that L has k elements. As an example, for k ¼ 10, L is
obtained as

L ¼ fð0; 5Þ; ð1; 6Þ; ð2; 7Þ; ð3; 8Þ; ð4; 9Þ; ð5; 0Þ; ð6; 1Þ;
ð7; 2Þ; ð8; 3Þ; ð9; 4Þg ;

which is seen in the ��matrix for GFð210Þ below:

�� ¼

b1 b8 b4 b6 b9 11 b5 b3 b2 b7
b8 b2 b9 b5 b7 b0 11 b6 b4 b3
b4 b9 b3 b0 b6 b8 b1 11 b7 b5
b6 b5 b0 b4 b1 b7 b9 b2 11 b8
b9 b7 b6 b1 b5 b2 b8 b0 b3 11
11 b0 b8 b7 b2 b6 b3 b9 b1 b4
b5 11 b1 b9 b8 b3 b7 b4 b0 b2
b3 b6 11 b2 b0 b9 b4 b8 b5 b1
b2 b4 b7 11 b3 b1 b0 b5 b9 b6
b7 b3 b5 b8 11 b4 b2 b1 b6 b0

2
666666666666664

3
777777777777775

:

Using Lemmas 1 and 2, we will prove the following
theorem.

Theorem 2. The ��r matrix of the field GFð2kÞ with a Type 1 basis
can be written as the sum of two matrices mm and nnr such
that elements of themmmatrix with indices in the setL ¼ fði; iþ
mmod kÞ j i ¼ 0; 1; 2; . . . ; k� 1g are 1s. All other entries of mm
are zero. Furthermore, the nnr matrix has k� 1 1s such that the
row r is all zero and every other row has a single 1.

Proof. Since the entries of �� with indices in set L are all 11
(which is equal to the sum of all k basis elements), the
entries of all ��r matrices with indices in the set L will be
1. Since the mm matrix is equal to the intersection of ��r

matrices, such entries of mm will be equal to 1 as well. Fur-
thermore, consider an entry of �� matrix with index
ði; jÞ 62 L. This entry would not be equal to 11, thus, miss-
ing at least one basis element. This implies a zero in the
ði; jÞ 62 L location of one of the ��r matrices, and therefore,
a zero in the intersection of all of them, which is the mm

matrix. Therefore, the ði; jÞ entry of the mmmatrix will be 1
iff ði; jÞ 2 L and 0 otherwise.

On the other hand we obtained nnr matrices by sub-
tracting mm from ��r, however, equivalently they can be
computed from the �� matrix by first removing 11s, and
then expanding the resulting matrix (which will be

denoted by ��0) in terms of all basis elements. For exam-

ple, for GFð24Þ we can obtain nnr matrices from the ��0

matrix by expanding it into a sum of all basis elements

��0 ¼ nn0b0 þ nn1b1 þ nn2b2 þ nn3b3;

such that

b1 b3 0 b2

b3 b2 b0 0

0 b0 b3 b1

b2 0 b1 b0

2
6664

3
7775 ¼

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2
6664

3
7775b0 þ

1 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775b1 þ

0 0 0 1

0 1 0 0

0 0 0 0

1 0 0 0

2
6664

3
7775b2 þ

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0

2
6664

3
7775b3:

Due to Lemma 2, the row r of the ��0 matrix is a permu-
tation of all basis elements except br. Since the row r
does not contain br, the entire rth row of the nnr matrix
will be zero. Furthermore, br will be present in all
other rows of the ��0 matrix except in the row r, there
will be a single 1 in all other rows of the nnr matrix, giv-
ing k� 1 1s in the nnr matrix. tu
Before we analyze the space requirements of our decom-

position method, we should state that the matrix decompo-
sition algorithm given in [8] has essentially the same
properties as the one in this paper for Type 1 optimal nor-
mal bases, however there are some differences. The method
in [8] uses irreducible all-one-polynomials to develop the
properties of the �� matrix and the decomposition of the ��r

matrices. Specifically, our Lemma 1 describes the same
property as the one in Equation (8) in [8], and our Theorem
2 describes the same decomposition as the one in Equa-
tion (7) in [8]. However, the analysis in [8] is limited to the
irreducible all-one-polynomials. Since an all-one-polyno-
mial of degree k is irreducible if kþ 1 is prime and 2 is a
primitive element in Zkþ1, which are also the existence con-
ditions of the Type 1 optimal normal basis, every optimal
normal basis Type 1 can be derived by selecting an irreduc-
ible all-one-polynomial [15]. However, optimal normal
bases Type 1 can also be derived using other irreducible

polynomials, for example, for GFð24Þ in Section 7, we used

the irreducible polynomial pðxÞ ¼ x4 þ xþ 1. Our decompo-
sition method does not depend on specific irreducible poly-
nomials, and is derived irrespective of the choice of the
irreducible polynomial, and furthermore, it is applicable to
the Type 2 optimal normal bases for which there are no irre-
ducible all-one-polynomials.

Theorem 3. The decomposition method for the Type 1 optimal
normal basis in GFð2kÞ computes all product terms cr for

r ¼ 0; 1; . . . ; k� 1 using k2 AND gates, k2 � 1 XOR gates,
and TA þ ½1þ log 2ðkÞ�TX delay.

Proof. The common term s is computed using

s ¼ a0 a1 � � � ak�1½ � mm
b0
b1
..
.

bk�1

2
6664

3
7775 :
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According to Theorem 2, the mm matrix has exactly k 1s
with the indices in L, and all other terms are zero. This
implies that we compute s using a linear sum which con-
tains k terms:

s ¼
Xk�1

i¼0

aibiþmmod k :

The computation of s is accomplished using a binary tree
of XOR gates with k leaves; the number of XOR gates to
compute s is k� 1, while the delay (the depth of tree) is
log 2ðkÞTX . The s-tree is illustrated in Fig. 1.

On the other hand, a single tr term is computed using

tr ¼ a0 a1 � � � ak�1½ � nnr

b0
b1
..
.

bk�1

2
6664

3
7775:

Also according to Theorem 2, the row r of the nnr matrix is
zero, while every other row has a single 1 in it. This
implies that we compute tr using a sum which contains
k� 1 terms:

Xk�1

i¼0
i6¼r

api bi ¼ ap0b0 þ � � � þ apr�1
br�1 þ aprþ1

brþ1 þ � � � apk�1
bk�1;

where p is a permutation of the indices f0; 1; . . . ;
r� 1; rþ 1; . . . ; k� 1g. We create k identical binary trees
of XOR gates, each of which has k� 1 leaves, as shown
in Fig. 1, named as tr-trees. The computation of a single
tr term requires k� 2 XOR gates and log 2ðk� 1ÞTX

delay. The parallel computation of all tr terms for
r ¼ 0; 1; . . . ; k� 1 requires kðk� 2Þ XOR gates.

Once s and tr for all i ¼ 0; 1; . . . ; k� 1 are computed,
the computation of a single product term cr requires one
XOR gate and all product terms cr for i ¼ 0; 1; . . . ; k� 1
require k XOR gates. However we only need one TX

delay for this computation. Therefore, the total number
of gates and the required delay are found as:

1) The computation of s requires k� 1 XOR gates
and log 2ðkÞTX delay.

2) The computation of tr for all r ¼ 0; 1; . . . ; k� 1
requires kðk� 2Þ XOR gates and log 2ðk� 1ÞTX

delay.
3) However, we should note that, as illustrated in

Fig. 1, the computation of s and tr values are inde-
pendent of one another. By arranging the s-tree
and tr-trees in parallel, we find the critical path
length as log 2ðkÞTX.

4) The computation of cr for all r ¼ 0; 1; . . . ; k� 1
requires k XOR gates and a single TX delay.

Thus we find that the total number of the XOR
gates required by the matrix decomposition method
as k� 1þ kðk� 2Þ þ k ¼ k2 � 1, while the total delay is
TA þ ½1þ log 2ðkÞ�TX . tu

9 DECOMPOSITION FOR TYPE 2A BASES IN GFð2kÞ
We now analyze the complexity of the decomposition algo-
rithm for Type 2a bases. We will first derive the �� matrix

for the field GFð25Þ, which has Type 2a basis since
p ¼ 2kþ 1 ¼ 11 is prime and 2 is primitive mod 11. Theo-
rem 1 states that the basis element b can be written as

b ¼ g þ g�1 such that g is the 11th root of identity. Our
objective is to discover how the ��r matrices can be addi-
tively decomposed. The ��matrix is given as

�� ¼

b2 b3 b5 b9 b17

b3 b4 b6 b10 b18

b5 b6 b8 b12 b20

b9 b10 b12 b16 b24

b17 b18 b20 b24 b32

2
66664

3
77775:

In order to obtain the ��r matrices we need to express all
powers of b in the �� matrix in terms of the powers of 2
powers of b. First we start with the diagonal entries of the ��
matrix which already contains powers of 2 powers of b. We

have br ¼ b2r for r ¼ 0; 1; 2; 3; 4, and also b32 ¼ b ¼ b0.

Moreover we should also note that b0 ¼ b ¼ g þ g�1, and

Fig. 1. The matrix decomposition method for Type 1 basis.
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br ¼ b2r ¼ ðg þ g�1Þ2r ¼ g2r þ g�2r

for r ¼ 0; 1; 2; 3; 4. Next we obtain the normal expansions of
the off-diagonal entries which contain the products of two

basis elements b2
i � b2j for i; j ¼ 0; 1; 2; 3; 4 and i 6¼ j. For

example, the term b21 � b23 ¼ b10 is written

b2 � b8 ¼ ðg2 þ g�2Þðg8 þ g�8Þ;
¼ g10 þ g�10 þ g6 þ g�6 ;

which contains 10;�10; 6;�6 powers of g. We need to
express these powers of g in terms of the powers of 2

powers of g, and thus obtain a normal expansion for b10. In
order to accomplish this, we will use Theorem 1. The gen-
eral form an off-diagonal product term is written as

b2iþ2j ¼ g2
iþ2j þ g�2i�2j þ g2i�2j þ g�2iþ2j ;

for 0 � i; j � 4 and i 6¼ j. By enumerating i and j, we obtain

the set of integers of the form 	2i 	 2j as

	f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 14; 15; 17; 18; 20; 24g :

In other words, we need the above powers of g in order to
express all b powers found in the �� matrix in the normal
basis. Referring to the properties of the Type 2a basis in The-
orem 1, we make the following observations:

� p ¼ 2kþ 1 ¼ 11 is prime.
� g is 11th root of identity, implying that if

u ¼ v ðmod 11Þ then gu ¼ gv. Therefore, the above set
is reduced mod 11, and we only need the powers of
g from the set Z�

11 ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g.
� 2 is primitive mod 11, that is, the powers of 2 gener-

ates the set Z�
11. Since 210 ¼ 1 ðmod 11Þ and 25 ¼ �1

ðmod 11Þ, which implies that 2u with u > 5 can be

written as 2u ¼ 2vþ5 ¼ 2v � 25 ¼ �2v.
Thus, we can list elements of Z�

11 as

20 21 22 23 24 25 26 27 28 29

1 2 4 8 5 10 9 7 3 6
20 21 22 23 24 �1 �21 �22 �23 �24

Thus, any u 2 Z�
11 can be written as u ¼ 	2v ðmod 11Þ for a

v 2 f0; 1; 2; 3; 4g. This implies that we can write gu ¼ g	2v

for any u 2 Z�
11 and v 2 f0; 1; 2; 3; 4g. All g equalities needed

in the ��matrix are listed in Table 3 below.
Thus, given the equalities g10 ¼ g�1 and g6 ¼ g�24 , we

obtain the normal expansion of the product b10 as

b2 � b8 ¼ g10 þ g�10 þ g6 þ g�6

¼ g�1 þ g þ g�24 þ g2
4

¼ b0 þ b4 :

The other powers of b can be obtained using similar deriva-
tions. We omit these derivations, and write the �� matrix for

GFð25Þ below:

�� ¼

b2 b3 b5 b9 b17

b3 b4 b6 b10 b18

b5 b6 b8 b12 b20

b9 b10 b12 b16 b24

b17 b18 b20 b24 b32

2
6666664

3
7777775
;

¼

b1 b0 þ b3 b4 þ b3 b1 þ b2 b4 þ b2

b0 þ b3 b2 b4 þ b1 b0 þ b4 b2 þ b3

b4 þ b3 b4 þ b1 b3 b0 þ b2 b0 þ b1

b1 þ b2 b0 þ b4 b0 þ b2 b4 b1 þ b3

b4 þ b2 b2 þ b3 b0 þ b1 b1 þ b3 b0

2
6666664

3
7777775
:

(8)

We observe that the ��matrix for GFð25Þ does not have any 11
entries, and therefore, the intersection of all ��r matrices is a
zero matrix. Unfortunately, a decomposition as in the Type
1 case (which was of the form ��r ¼ mmþ nnr) is not possible.
However, we will show that another decomposition exists.

Theorem 4. The diagonal entries of the �� matrix for the field

GFð2kÞ with a Type 2a basis contain one basis element, while
all other entries are the sum of two basis elements.

Proof. The normal element b of the field GFð2kÞ with a Type

2a basis is given as b ¼ g þ g�1 where p ¼ 2kþ 1 is
prime, 2 is primitive mod p, and g is the primitive pth
root of identity.

First we observe that all diagonal elements are of the
form b2r for r ¼ 0; 1; . . . ; k� 1, therefore, each contains a

single basis element b2r ¼ br for r ¼ 1; 2; . . . ; k� 1 and

b2k ¼ b ¼ b0 for r ¼ k. Moreover br ¼ b2r ¼ g2r þ g�2r

for r ¼ 0; 1; . . . ; k� 1.
Now consider the ði; jÞ element of the �� for 0 � i; j �

k� 1 and i 6¼ j. This element b2
iþ2j is a product and can

be written as

b2i � b2j ¼ ðg2i þ g�2iÞðg2j þ g�2jÞ
¼ g2iþ2j þ g�ð2iþ2jÞ þ g2i�2j þ g�ð2i�2jÞ :

Since gp is the identity, the powers of g above can be
reduced mod p, and therefore, we can write

b2iþ2j ¼ gu1 þ g�u1 þ gu2 þ g�u2 ; (9)

such that u1 ¼ 2i þ 2j ðmod pÞ and u2 ¼ 2i � 2j ðmod pÞ,
where 0 � i; j � k� 1 and i 6¼ j. Now we will prove that

TABLE 3
The Powers of g Equalities

u u ðmod 11Þ u ¼ 	2v ðmod 11Þ g expansion

3 3 3 ¼ �23 g3 ¼ g�23

5 5 5 ¼ 24 g5 ¼ g24

6 6 6 ¼ �24 g6 ¼ g�24

7 7 7 ¼ �22 g7 ¼ g�22

9 9 9 ¼ �21 g9 ¼ g�2

10 10 10 ¼ �20 g10 ¼ g�1

12 1 1 ¼ 20 g12 ¼ g
14 3 3 ¼ �23 g14 ¼ g�23

15 4 4 ¼ 22 g15 ¼ g22

17 6 6 ¼ �24 g17 ¼ g�24

18 7 7 ¼ �22 g7 ¼ g�22

20 9 9 ¼ �21 g20 ¼ g�2

24 2 2 ¼ 21 g24 ¼ g2
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any integer u 2 Z�
p ¼ f1; 2; . . . ; p� 1g can be uniquely

written as u ¼ 	2v ðmod pÞ for some v 2 Zk ¼ f0; 1; . . . ;
k� 1g. Since p ¼ 2kþ 1 prime and 2 is primitive mod p,

we have 22k ¼ 1 ðmod pÞ and 2k ¼ �1 ðmod pÞ. Thus, we
can generate all elements ofZ�

p using powers of 2, and fur-

thermore, using the identity 2k ¼ �1 ðmod pÞwe obtain

Z�
p ¼ f20; 21; 22; . . . ; 2k�1; 2k; 2kþ1; 2kþ2; . . . ; 22k�1g
¼ f20; 21; 22; . . . ; 2k�1;�1;�21;�22; . . . ;�2k�1g:

This implies that any u 2 Z�
p can be written as

u ¼ 	2v ðmod pÞ with v 2 Zk. Thus, we conclude that

gu ¼ g	2v , and write Eqn. (9) as

b2
iþ2j ¼ g2v1 þ g�2v1 þ g2v2 þ g�2v2 :

Therefore, every off-diagonal element of the �� matrix
constructed using Type 2a normal basis of the field

GFð2kÞ contains the sum of 2 basis elements. tu
In order to decompose ��r matrices, we will first separate

the diagonal entries and place each of them in different
matrices for each r, which we denote as mmr. As the off-diago-
nal entries are concerned, we notice that the �� matrix is
symmetric, implying these pairs of elements appear in two
different (and symmetrical) locations. For example, b0 þ b1
is in the locations ð2; 4Þ and ð4; 2Þ of the �� matrix for GFð25Þ.
Since ��0 and ��1 matrices respectively hold the coefficients of
the basis elements b0 and b1, these matrices would have 1s
in the same locations ð2; 4Þ and ð4; 2Þ, and thus, their inter-
section would be a nonzero matrix. Furthermore, b0 is cou-
pled with every other br, the intersection of ��0 with ��r for
r ¼ 1; 2; . . . ; k� 1 would all be nonzero matrices. These
observations suggest a decomposition of the ��r matrices, as
expressed in the following theorem.

Theorem 5. The ��r matrix for the field GFð2kÞ with a Type 2a
basis can be written as the sum of k matrices such that

��r ¼ mmr þ
Xk�1

i¼0
i6¼r

nnri ;

where each mmr matrix has a single 1 in location
ðk� 1; k� 1Þ for r ¼ 0 and ðr� 1; r� 1Þ for
r ¼ 1; 2; . . . ; k� 1. Furthermore, each nnri matrix is sym-
metric and contains only two 1s.

Proof. The mmr matrix contains only the diagonal entries of ��r

matrix. As illustrated for GFð25Þ in Eqn. (8) the diagonal
entries of the �� matrix has the basis elements br for
r ¼ 1; 2; . . . ; k� 1; 0,

b1 b0 þ b3 b4 þ b3 b1 þ b2 b4 þ b2
b0 þ b3 b2 b4 þ b1 b0 þ b4 b2 þ b3
b4 þ b3 b4 þ b1 b3 b0 þ b2 b0 þ b1
b1 þ b2 b0 þ b4 b0 þ b2 b4 b1 þ b3
b4 þ b2 b2 þ b3 b0 þ b1 b1 þ b3 b0

2
66664

3
77775 :

Therefore, the diagonal of the ��r matrix has a single 1,
and thus, the entire mmr matrix has only 1 in it; all remain-
ing elements are 0. The mm0 matrix has a 1 in the location

ðk� 1; k� 1Þwhile mmr has a 1 in the location ðr� 1; r� 1Þ
for r ¼ 1; 2; . . . ; k� 1. We obtain the ��r matrices as

��0 ��1 ��2

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 0

0 0 1 0 1

2
6666664

3
7777775

1 0 0 1 0

0 0 1 0 0

0 1 0 0 1

1 0 0 0 1

0 0 1 1 0

2
6666664

3
7777775

0 0 0 1 1

0 1 0 0 1

0 0 0 1 0

1 0 1 0 0

1 1 0 0 0

2
6666664

3
7777775

��3 ��4

0 1 1 0 0

1 0 0 0 1

1 0 1 0 0

0 0 0 0 1

0 1 0 1 0

2
6666664

3
7777775

0 0 1 0 1

0 0 1 1 0

1 1 0 0 0

0 1 0 1 0

1 0 0 0 0

2
6666664

3
7777775
:

Furthermore, we obtain the mmr matrices as follows:

mm0 mm1 mm2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

2
66664

3
77775

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775

mm3 mm4

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

2
66664

3
77775:

We denote the matrix as nnri as the intersection of the ��r

and ��i matrices as

nnri ¼ ��r

\
��i for r 6¼ i :

The sum bu þ bv of a pair of basis elements bu and bv

appears in exactly two locations in the �� matrix, and
thus, the intersection of ��r and ��i, i.e., the nnri matrix con-
tains only two 1 s, and all other elements are zero. For

example, nn0i matrices for GFð25Þ are obtained as

nn01 nn02

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

2
6666664

3
7777775

nn03 nn04

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

2
6666664

3
7777775
:

Therefore, the ��r matrix of GFð2kÞ decomposes into k
matrices mmr and nnri for i ¼ 0; 1; . . . ; r� 1; rþ 1; . . . ; k� 1
such that the mmr matrix contains a single 1, and all nnri
matrices contain 2 1s. tu
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The space complexity of the multiplication using decom-
position method is analyzed in the following theorem.

Theorem 6. The decomposition method for the Type 2a optimal
normal basis in GFð2kÞ computes all product terms cr for

r ¼ 0; 1; . . . ; k� 1 using k2 AND gates, 1:5kðk� 1Þ XOR
gates, and a total delay of TA þ ½1þ log 2ðkÞ�TX .

Proof. According to Theorem 5, the ��r matrix can be written
as the sum of kmatrices as

��r ¼ mmr þ
Xk�1

i¼0
i6¼r

nnri :

The computation of the product term cr is accomplished
using

cr ¼ a0 a1 � � � ak�1½ � mmr þ
Xk�1

i¼0
i6¼r

nnri

0
B@

1
CA

b0
b1
..
.

bk�1

2
6664

3
7775 :

For brevity, we will denote the input vectors by aaT and bb,
and break the above product computation into the sum
of kmatrix-vector products as

cr ¼ aaT mmr bbþ
Xk�1

i¼0
i6¼r

aaT nnri bb
� � ¼ sr þ

Xk�1

i¼0
i6¼r

tri : (10)

The individual components of the above sum, sr and tri,
are defined as

sr ¼ aaT mmr bb ;

tri ¼ aaT nnri bb ;

for 0 � i � k� 1 and i 6¼ r. Once the terms sr and tri are
computed we can obtain the product cr using Eqn. (10).
Steps of the computation of all cr terms are described
below and illustrated in Fig. 2.

1) The computation of sr does not require any XOR
gates. The matrix mmr has a single 1 in it; the

location is ðk� 1; k� 1Þ for r ¼ 0 and ðr� 1; r� 1Þ
for all other r ¼ 1; 2; . . . ; k� 1. Therefore,
s0 ¼ ak�1 bk�1 and sr ¼ ar�1br�1 for
r ¼ 1; 2; . . . ; k� 1. There is no delay involved,
either, the selection logic works by routing the
logic signals.

2) The nnri has only two 1s and it is also symmetric. If
the ðu; vÞ element of the nnri matrix is 1, then so is
ðv; uÞ element, while all the other elements are zero.
This gives the value of tri as aubv þ avbu. Therefore,
the computation of a single tri requires 1 XOR gate
and TX delay. Furthermore, we have nnri ¼ nnir, and
thus, tri ¼ tir. This implies that we only need to
compute half of the tir terms due to the symmetry.
For example, for k ¼ 5 the following terms need to
be computed: t0i for i ¼ 1; 2; 3; 4; t1i for i ¼ 2; 3; 4;

t2i for i ¼ 3; 4; finally t34. For GFð2kÞ the number of
terms that need to be computed is

ðk� 1Þ þ ðk� 2Þ þ � � � þ 1 ¼ kðk� 1Þ=2 ;

which gives the total number of XOR gates for
computing all tri terms as 0:5kðk� 1Þ, while the
delay is still equal to one TX.

3) Having obtained all sr and tri values, we compute
cr using the summation Eqn. (10) which has k
terms. We arrange this summation using a binary
tree of XOR gates, which has k leaves. There is a
separate binary for each value of r ¼ 0; 1; . . . ;
k� 1; there are k inputs for each tree such that
sr; tri except trr term. The computation of a single
cr term requires k� 1 XOR gates and log 2ðkÞTX

units of delay, while all cr terms would require a
total of kðk� 1Þ XOR gates.

Therefore the total number of XOR gates is found as
1:5kðk� 1Þ, and the total delay is TA þ ½1þ log 2ðkÞ�TX . tu

10 DECOMPOSITION FOR TYPE 2B BASES

IN GFð2kÞ
The smallest field with the Type 2b basis is GFð23Þ. For
k ¼ 3, we have p ¼ 2kþ 1 ¼ 7 prime, p ¼ 3 ðmod 4Þ, and 2

Fig. 2. The matrix decomposition method for Type 2a and 2b bases.
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generates the quadratic residues in Z�
7. Furthermore, a basis

element bi ¼ b2i is equal to g2i þ g�2i for i ¼ 0; 1; 2, where g

is the seventh root of identity according to Theorem 1. We

can write g3 ¼ g�4, g5 ¼ g�2, and g6 ¼ g�1, and obtain the
products of the basis elements as

bb2 ¼ b3 ¼ g3 þ g�3 þ g þ g�1

¼ g�4 þ g4 þ g þ g�1

¼ b0 þ b2;

bb4 ¼ b5 ¼ g5 þ g�5 þ g3 þ g�3

¼ g�2 þ g2 þ g4 þ g�4

¼ b1 þ b2;

b2b4 ¼ b6 ¼ g6 þ g�6 þ g2 þ g�2

¼ g�1 þ g þ g2 þ g�2

¼ b0 þ b1:

Therefore, the ��matrix is obtained as

�� ¼
b2 b3 b5

b3 b4 b6

b5 b6 b8

2
4

3
5 ¼

b1 b0 þ b2 b1 þ b2

b0 þ b2 b2 b0 þ b1

b1 þ b2 b0 þ b1 b0

2
4

3
5 :

Similar to the Type 2a case, we see that the �� matrix for

GFð23Þ contains a single basis on the diagonal, while all off-
diagonal elements are equal to and the sum of two bases.
We prove that this property holds true for any k.

Theorem 7. The diagonal entries of the �� matrix for the field

GFð2kÞ with a Type 2b basis contain one basis element, while
all other entries are the sum of two basis elements.

Proof. All diagonal elements of the �� matrix are of the form

b2r , and therefore, each contains a single basis element

b2r ¼ br for 0 ¼ 1; 2; . . . ; k� 1. Furthermore, we have

b ¼ g þ g�1 where g is the p ¼ 2kþ 1 primitive root
of identity. A diagonal element is of the form

b2r ¼ g2r þ g�2r for r ¼ 0; 1; . . . ; k� 1.
Similar to the Type 2a case, an off-diagonal element is

given as b2iþ2j for i ¼ 1; 2; . . . ; j� 1; jþ 1; . . . ; k� 1,
which is equal to

b2
i � b2j ¼ g2iþ2j þ g�ð2iþ2jÞ þ g2

i�2j þ g�ð2i�2jÞ :

Since gp is the identity, the powers of g above are
reduced mod p, and therefore, we can write

b2iþ2j ¼ gu1 þ g�u1 þ gu2 þ g�u2 ; (11)

such that u1 ¼ 2i þ 2j ðmod pÞ and u2 ¼ 2i � 2j ðmod pÞ,
where 0 � i; j � k� 1 and i 6¼ j. Next we will prove
that any integer u 2 Z�

p ¼ f1; 2; . . . ; p� 1g can be

uniquely written as u ¼ 	2v ðmod pÞ for some v 2 Zk ¼
f0; 1; . . . ; k� 1g.

Theorem 1 states that for Type 2b basis, p ¼ 3 ðmod 4Þ
and 2 generates quadratic residues mod p. We use Qp to
denote the set of quadratic residues, which has ðp� 1Þ=2
elements. An element u 2 Z�

p is in Qp if there is a solution

x for the equation x2 ¼ u ðmod pÞ, otherwise u is a qua-
dratic nonresidue. The set of quadratic nonresidues,
denoted by Q0

p, consists of the remaining ðp� 1Þ=2

elements of Z�
p. For example, for k ¼ 11, p ¼ 23, these

two sets are given as

Q23 ¼ f1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18g ;

Q0
23 ¼ f5; 7; 10; 11; 14; 15; 17; 19; 20; 21; 22g :

The Euler criterion determines if u 2 Qp or u 2 Q0
p:

uðp�1Þ=2 ¼ 1 if u 2 Qp ;
�1 if u 2 Q0

p :

�

An important observation is that �1 2 Q0
p if

p ¼ 3 ðmod 4Þ, since

ð�1Þðp�1Þ=2 ¼ 1 if p ¼ 1 ðmod 4Þ ;
�1 if p ¼ 3 ðmod 4Þ :

�

Another relevant property of quadratic residues is that if
u 2 Qp and v 2 Q0

p then the product uv 2 Q0
p. Particularly,

in our case, we can write �u 2 Q0
p if u 2 Qp, since

�1 2 Q0
p. Since Qp is generated by powers of 2, it follows

that

Qp ¼ f2v ðmod pÞ j v 2 Zkg :

We can generate Q0
p by multiplying every element of Qp

by �1, in other words,

Q0
p ¼ f�2v ðmod pÞ j v 2 Zkg :

Since Z�
p ¼ Qp

S
Q0

p, we can write

Z�
p ¼ f	2v ðmod pÞ j v 2 Zkg :

This implies that any u 2 Z�
p can be written as

u ¼ 	2v ðmod pÞ with v 2 Zk. Thus, we conclude that

gu ¼ g	2v , and write Eqn. (11) as

b2iþ2j ¼ g2v1 þ g�2v1 þ g2
v2 þ g�2v2 ;

Therefore, every off-diagonal element of the �� matrix
constructed using Type 2a normal basis of the field

GFð2kÞ contains the sum of two basis elements. tu
Therefore, the same complexity analysis for Type 2a

applies for Type 2b as well. The complexity of the multipli-
cation using decomposition method for the Type 2b bases is
the same as that of Type 2a bases.

Theorem 8. The matrix decomposition method for the Type 2b
optimal normal basis in GFð2kÞ computes all product terms cr
for r ¼ 0; 1; . . . ; k� 1 using k2 AND gates, 1:5kðk� 1Þ XOR
gates, and a total delay of TA þ ½1þ log 2ðkÞ�TX .

11 CONCLUSION

We introduced a matrix decomposition method and
described the underlying algorithms for normal basis multi-
plication in the field GFð2kÞwith Type 1 and Type 2 bases.

We developed the matrix decomposition method explic-
itly on small fields; for k ¼ 2 and k ¼ 4 for Type 1 basis, and
k ¼ 5 for Type 2a basis, k ¼ 3 for Type 2b basis. However,
we derived the space complexity results for general values
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of k for all three types of bases, as given in Theorems 3, 6,
and 8, respectively.

The decomposition algorithm computes all product terms
for the Type 1 basis using k2 � 1XOR gates, irrespective of the
irreducible polynomial generating the field. The previous
Massey-Omura multiplication algorithms [9], [11], [16]
accomplished the same bound using all-one-polynomials.
Furthermore, our matrix decomposition algorithm com-
putes all product terms for the Type 2a and 2b bases
using 1:5kðk� 1Þ XOR gates, whichmatches previous bounds
[10], [11].

The Type 1 normal basis multiplication algorithm given
in [11] is also based on a matrix decomposition in which the
�� matrix is decomposed into upper and lower triangular
matrices and a diagonal matrix. The XOR complexity of this

algorithm is given for all-one-polynomials as k2 � 1, how-
ever, an analysis for a general irreducible polynomial is not

given. Instead, it was shown that the algorithm for GFð25Þ
requires eight XOR gates. However, one has to note that
this is a straightforward decomposition which follows
directly the definition of symmetric matrices, and separates
the multiplication terms into three groups. Their algorithm
then rearranges the terms of this sum. In our approach how-
ever, we find an optimal decomposition with respect to the
chosen normal basis and the corresponding multiplication
matrix. After creating the optimal decomposition we are
able to create the circuit without any intermediate steps. For
the optimal normal basis, our results match the results in
[11], but we do not restrict our algorithm to all-one polyno-
mials, and we extend to arbitrary normal bases without
additional effort.

It is also interesting to note that the Mastrovito algo-
rithms, which work only for the polynomial basis, achieve
the k2 � 1 space complexity with irreducible trinomials [17],
[18], [19], [20]. Furthermore, the space complexity falls to

k2 � D for equally-spaced polynomials [21], [22], where D is
the distance factor; in other words, the irreducible polyno-
mial is of the form

pðxÞ ¼ xmD þ xðm�1ÞD þ � � � þ xD þ 1 :

In a highly special case of equally-spaced-trinomial

xk þ xk=2 þ 1, the space complexity becomes k2 � k=2 [21].

This implies that the bound k2 � 1 is not very tight and there
may be more special cases in which the space complexity
falls further from that. However, it is highly likely that the
result of this paper provides the lower bound for optimal
normal bases, irrespective of the irreducible polynomial.
This remains to be proven.

Another promising direction for future work is to investi-
gate if we can reduce the space complexity for Gaussian
normal basis multiplication using our matrix decomposition
approach. Optimal normal bases do not exist for all k, how-
ever, non-optimal but still low complexity normal bases do
exist, and are called Gaussian normal bases [23], [24]. The

Type T of a Gaussian normal basis in GFð2kÞ is a positive
integer describing the structure and measuring the com-
plexity of the multiplication in the basis [3].

For a given k and T , there exists at most one Gaussian
normal basis of Type T . A Type T Gaussian normal basis

for a given field GFð2kÞ exists if and only if p ¼ Tkþ 1 is

prime and gcdðTk=m; kÞ ¼ 1 where m is the multiplicative
order of 2 in Z�

p. When T ¼ 1, the Gaussian normal basis

Type 1 is the same as the optimal normal basis Type 1, since
Part 1 conditions of Theorem 1 are satisfied: p ¼ kþ 1 is
prime, the multiplicative order of 2 in Z�

p is k ¼ p� 1, that is

2 is primitive, and thus gcdðTk=m; kÞ ¼ gcdðk=k; kÞ ¼ gcd
ð1; kÞ ¼ 1. Similarly, when T ¼ 2, the Gaussian normal basis
Type 2 is the same as the optimal normal basis Type 2a:
p ¼ 2kþ 1 is prime, the multiplicative order of 2 in Z�

p is

p� 1 ¼ 2k, that is 2 is primitive, and thus gcdðTk=m; kÞ ¼
gcdð2k=ð2kÞ; kÞ ¼ gcdð1; kÞ ¼ 1.

Our analysis of Type 2a basis in Section 9 showed that for
T ¼ 2, all rows of the ��r (except row 0) has two nonzero
entries. This fact was also stated in Remark 1 of [25]. Both
the Remark 1 in [25] and our analysis in Section 9 address
Type 2a only. However, we were also able to show in this
paper (in Section 10) that Type 2b bases have the same com-
plexity as Type 2a bases. We believe it is worthwhile to
investigate the complexity of the Gaussian normal basis
with even T ¼ 2N with properties p ¼ Tkþ 1 ¼ 2N þ 1
prime, the multiplicative order of 2 in Z�

p is m, and

gcdðTk=m; kÞ ¼ gcdð2Nk=m; kÞ ¼ 1. It was shown in [26]

that the Gaussian normal basis multipliers for GFð2kÞ for
odd k can bemore efficient in terms of space complexity. The
multiplication algorithms described in [26] require 16 or
27 percent fewer XOR gates than the standard parallel-input
parallel-output multiplier for k ¼ 163 and k ¼ 409, respec-
tively. These fields have important applications in the Ellip-
tic Curve Digital Signature Algorithm (ECDSA) of the NIST
standard FIPS 186-3 [27]. Moreover the algorithms in [26]
yield new elliptic curve point addition and doubling formu-
lations [28] which utilize a novel digit-level hybrid-double
Gaussian normal basismultiplier [29]. This shows the impor-
tance of the Gaussian normal basis multipliers; its applica-
tions in elliptic curve cryptographymake them highly useful
and new research in this direction highlyworthwhile.
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Çetin Kaya Koç received his PhD in Electrical &
Computer Engineering from University of Califor-
nia Santa Barbara. His research interests are in
electronic voting, cyber–physical security, crypto-
graphic hardware and embedded systems, elliptic
curve cryptography and finite fields, and deter-
ministic, hybrid and true random number genera-
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