
Parameter Space for the Architecture of
FFT-Based Montgomery Modular Multiplication
Donald Donglong Chen, Student Member, IEEE, Gavin Xiaoxu Yao, Ray C.C. Cheung,Member, IEEE,

Derek Pao,Member, IEEE, and Çetin Kaya Koç, Fellow, IEEE

Abstract—Modular multiplication is the core operation in public-key cryptographic algorithms such as RSA and the Diffie-Hellman

algorithm. The efficiency of the modular multiplier plays a crucial role in the performance of these cryptographic methods. In this paper,

improvements to FFT-based Montgomery Modular Multiplication (FFTM3) using carry-save arithmetic and pre-computation techniques

are presented. Moreover, pseudo-Fermat number transform is used to enrich the supported operand sizes for the FFTM3. The

asymptotic complexity of our method is Oðl log l log log lÞ, which is the same as the Sch€onhage-Strassen multiplication algorithm

(SSA). A systematic procedure to select suitable parameter set for the FFTM3 is provided. Prototypes of the improved FFTM3 multiplier

with appropriate parameter sets are implemented on Xilinx Virtex-6 FPGA. Our method can perform 3,100-bit and 4,124-bit modular

multiplications in 6.74 and 7.78 ms, respectively. It offers better computation latency and area-latency product compared to the

state-of-the-art methods for operand size of 3,072-bit and above.

Index Terms—Sch€onhage-Strassen algorithm, number theoretic transform (NTT), Montgomery modular multiplication, parallel computation,

field-programmable gate array (FPGA)

Ç

1 INTRODUCTION

THE multiplication of large integers is one of the core
operations in public key cryptography. In order to pro-

vide the required cryptographic strength, the operand size
has been growing continuously. During the earlier days of
the RSA algorithm [1], the researchers believed that 512-bit
size was sufficient; a few years of research in factoring RSA
moduli immediately brought the key size to 1,024 bits. Cur-
rently many implementations already increase their key
size to 2,048 bit, for example, the root keys issued by Veri-
sign for SSL, while NIST [2] recommends 3,072-bit keys for
protection beyond the year 2030.1 Therefore, using RSA to
provide long term protection, 3,072-bit or even larger inte-
ger modular multiplications need to be performed. Conse-
quently, high-performance long integer modular multiplier
is in demand for practical use of the RSA.

1.1 State of the Arts

Montgomery modular multiplication (MMM) [3] algorithm
is the most popular algorithm to perform modular multipli-
cations to date. It has been extensively studied, and several

variants of MMM have been proposed for both hardware
and software platforms [4], [5], [6], [7], [8], [9], [10], [11].
To compute xy modn using the original MMM, three
l-bit multiplications dominate the computation time (l is
the bitlength of n) [3]. This indicates the acceleration of
multiplication will benefit the performance of MMM
significantly.

The asymptotic complexities of multiplication algorithms
from the schoolbook method to the F€urer method are listed
in Table 1. The GMP library [16] provides efficient software
implementations for most of these algorithms. However, it
only focuses on software. There are many hardware realiza-
tions of these multiplication algorithms: the schoolbook [4],
[5], [9], [10] and Karatsuba methods [12], [17], [18], but few
on Sch€onhage-Strassen algorithm (SSA) [7].

Saldamlı and Koç [19] proposed an algorithm to perform
the whole MMM in spectral domain. However, their spec-
tral modular algorithm is derived from the digit-serial vari-
ant of MMM [20], and as its name indicated, such algorithm
is essentially sequential, thus not friendly to massively par-
allel computation.

McLaughlin [21] proposed a new framework for a
modified version of MMM which the multiplications
are suitable to perform in spectral (frequency) domain.
The new version of MMM have lower multiplication time
than the original version MMM. Moreover, by using
cyclic convolution and negacyclic convolution to compute
the multiplication, the framework could avoid doubling
the length of transforms.

The FFT-based Montgomery product reduction (FMPR)
algorithm, which performs only the multiplication of
MMM in spectral domain was proposed by David et al.
[7]. The FFT/IFFT and component-wise multiplication in
FMPR algorithm are suitable for a parallel hardware
design.

1. This estimation is based on the general number field sieve attack,
the fastest known attack on RSA. If there are significant breakthroughs
in cryptanalysis, one may need either longer keys or change of
algorithms.

� D. Chen, G. Yao, R. Cheung, and D. Pao are with the Department of
Electronic Engineering, City University of Hong Kong, Hong Kong.
E-mail: {donald.chen, gavin.yao}@my.cityu.edu.hk, {r.cheung, d.pao}
@cityu.edu.hk.

� Ç.K. Koç is with the Department of Computer Science, University of
California Santa Barbara, Santa Barbara, CA. E-mail: koc@cs.ucsb.edu.

Manuscript received 5 Aug. 2014; revised 30 Jan. 2015; accepted 16 Feb. 2015.
Date of publication 26 Mar. 2015; date of current version 16 Dec. 2015.
Recommended for acceptance by P. Tang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2417553

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016 147

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1.2 Our Contributions

Themotivation of this paper is to provide a systematic param-
eter selection method for the FFT-based MMM, explore the
arithmetic as well as the hardware improvements for it, and
compare the performance when the FFT technique and the
othermultiplication algorithms are used inMMM.

Notice that there is still no hardware realizations on
McLaughlin’s improved MMM, in order to have a fair com-
parison and focus on the performance gain by using the
FFT technique versus other multiplication methods, we tar-
get on the improvements and implementation for the FMPR
algorithm in this paper and left the McLaughlin’s algorithm
algorithm as the future work.

There are several places in the FMPR algorithm that can
be improved to achieve a better performance and a higher
computation resources utilization. First, in FMPR, long
accumulation is required in IFFT, which is the bottleneck
for a parallel hardware design. Second, the long carry-chain
in the time domain addition is not suitable for a high fre-
quency hardware design. Most importantly, the gap of the
supported operand size between two FMPRs becomes
larger and larger when the FFT length increased. This
implies that one may have to use the parameter set which
has much larger operand size than the actual need. This will
cause a waste of computation resources.

Improved from the FMPR algorithm [7], we interleave
the multiplication and addition in spectral domain, while
performing the reduction and division in time domain dur-
ing the computation of Montgomery modular multiplica-
tion. We rename it as FFT-based Montgomery modular
multiplication (FFTM3) to distinguish the differences. The
main contributions of this paper are as follows:

� Non-least positive (NLP) form and carry-save tech-
nique are used in our work to translate the long accu-
mulation into short carry-save addition, which make
a parallel accumulation design feasible;

� Pseudo-Fermat number transform [22] is exploited to
enrich the supported operand sizes of FFTM3;

� In order to facilitate the usage of FFTM3 to different

applications. The parameter specifications for FFTM3

are analyzed; A systematic parameter selection
method is proposed for the efficient selection of
parameters for a targeted operand size modular
multiplication;

� Pipelined architectures are designed for FFTM3

and the implementation results from 1,024-bit to

15,484-bit are provided. To compute one 4,096-bit

modular multiplication, our FFTM3 could have a
2.43 times speedup when compared with the state of
the art Montgomery multiplier in [10].

The rest of this paper is organized as follows. Section 2
recaps the mathematical backgrounds. In Section 3, the
FFTM3 algorithm is revisited. The parameter set specifica-
tions are analyzed in Section 4. Section 5 provides further

improvements for the FFTM3 algorithm. Section 6 proposes
the efficient parameter sets selection method for a targeted

operand size FFTM3. In Section 7, the hardware architecture
design is described in detail. Section 8 provides the FPGA
implementation results and the comparison with other
works. Section 9 concludes this paper.

2 BACKGROUNDS

This section provides the mathematical background about
the Sch€onhage-Strassen algorithm and the Montgomery
modular multiplication. For the ease of reference, the sym-
bols in this paper with their definitions are summarized in
Table 2.

2.1 Number Theoretic Transform (NTT)

Let an integer x ¼Ps�1
i¼0 xib

i :¼ ðxs�1; . . . ; x1; x0Þb be the
representation in the radix-b positional number system.
Then x can be also represented as a (s� 1)-degree polyno-

mial: xðtÞ ¼ xs�1ts�1 þ � � �x1tþ x0 and therefore, x ¼ xðbÞ.
In computer arithmetic, b is usually a power of 2, i.e.,
b ¼ 2m. These m-bit coefficients are also known as words.

For instance, x ¼ 155 ¼ ð2123Þ4 can be represented by a
radix-4 polynomial as:

xðtÞ ¼ 2t3 þ 1t2 þ 2tþ 3: (1)

In polynomial representations, the multiplication is the
linear convolution of the coefficients. Computing z ¼ x � y is
equivalent to:

zi ¼ linear convðxðtÞ; yðtÞÞi :¼
Xs�1
j¼0

xði�jÞ � yj (2)

TABLE 1
Multiplication Algorithms and Their

Bit-Level Complexity

Algorithm Complexity

Schoolbook Oðl2Þ
Karatsuba [12] Oðllog 3=log 2Þ � Oðl1:585Þ
3-way Toom-Cook [13] Oðllog 5=log 3Þ � Oðl1:465Þ
k-way Toom-Cook [13] Oðllog ð2k�1Þ=log kÞ$
Sch€onhage-Strassen [14] Oðl � log l � log log lÞ
F€urer [15] Oðl � log l � 2Oðlog �lÞÞ{
$
k represents the number of parts the operands are divided to.{log �l

represents the iterated logarithm operation.

TABLE 2
Notation List

Notation Definition

xðtÞ Polynomial representation of x in time domain
XðkÞ Representation of xðtÞ in spectral domain

Notation Definition Remark

b Radix of the representation
m Bitlength of the word (word size) b ¼ 2m

q Ring size for NTT q ¼ 2v þ 1
v The constant to construct q
t, d Numbers to construct v v ¼ 2t or v ¼ d2t

d Length of the NTT d ¼ 2s
v Primitive d-th root of unity in Zq vd ¼ 1mod q
n Modulus of the MMM n is odd
l Bitlength of n
r A power of 2 greater than 4n r ¼ bs ¼ 2ms

s Number of radix-bwords in n l � sm

148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

for all 0 � i < 2s� 1. The coefficient will be set to 0 if its
index j or ði� jÞ is out of ½0; sÞ.

Similar to the discrete Fourier transform (DFT), the num-
ber theoretic transform provides a special domain where
the component-wise multiplication is equivalent to the con-
volution in the normal representation [23]. Inherited from
DFT, we call the transformed domain as spectral domain and
the normal space as time domain.

NTT is defined over a finite ring Zq ¼ Z=qZ [23]. Let XðkÞ
be the polynomial in spectral domain, and xi;Xi be the ith
coefficients of xðtÞ and XðkÞ. Let v be a primitive dth root of
unity in Zq. Let xðtÞ and XðkÞ be polynomials of degree less
than d, where d 2 N. The length-d NTT and its inverse
(INTT) are defined as:

Xi ¼ NTTðxðtÞÞi :¼
Xd�1
j¼0

xjv
ij mod q (3)

xi ¼ INTTðXðkÞÞi :¼ d�1
Xd�1
j¼0

Xjv
�ij mod q; (4)

where i ¼ 0; 1; . . . ; d� 1, and d � d�1 � 1mod q.
Pollard [23] proved that the fast Fourier transform (FFT)

is also available to NTT. To compute all the coefficients, (3)
or (4) is with word-level complexity of Oðd2Þ, while FFT
Oðd log dÞ[24]. The jth stage decimation-in-time equation for
an FFT is as follows ð0 � j � log2 d� 1Þ:

Xk ¼ x2k þ x2kþ1vPjk mod q
Xkþd2

¼ x2k � x2kþ1vPjk mod q;

(
(5)

where Pjk ¼ b k2jc 	 2j, k ¼ 0; 1; . . . ; d2� 1. The operations are
denoted as FFTðxðtÞÞ and IFFTðXðkÞÞ.

Let XðkÞ ¼ FFTðxðtÞÞ; Y ðkÞ ¼ FFTðyðtÞÞ and
 be com-
ponent-wise multiplication. Then the cyclic convolution can
be computed as follows:

cyclic convðxðtÞ; yðtÞÞi :¼
Xd�1
j¼0

xði�jÞmod d � yj

¼ IFFTðXðkÞ
 Y ðkÞÞi:
(6)

Note that the component-wise multiplication XðkÞ
 Y ðkÞ is
with the word-level complexity of OðdÞ.

Not every length-d NTT in Zq supports cyclic convolu-
tions. Nussbaumer [25] proved that the cyclic convolution is
available if and only if d divides p� 1 for every prime factor
p of q.

2.2 Sch€onhage-Strassen Algorithm

The basic idea of SSA is to perform the multiplication in
spectral domain by using FFT and IFFT for transforms. The
data flow of SSA is shown in Fig. 1. Since the word-level
complexity of FFT and IFFT is Oðd log dÞ and it is OðdÞ for
multiplication, the entire complexity is sub-quadratic.

In order to accelerate the operations in SSA, the parame-
ters to construct the ring Zq are of special form:

� q is a Fermat number of form 2v þ 1, where v is a
power of 2

� v is a power of 2
� d is a power of 2.
Since q is in the form 2v þ 1, which 2v � �1mod q, fast

modular reduction arithmetic is available. Let ðxb�1xb�2 . . .
x1x0Þ2v be the radix-2v representation of x. Then

x �
Xb�1
i¼0

xi � ð�1Þi mod q: (7)

The choice of v ensures that a multiplication by the power
of v can be simply achieved by shift operation. The selection
of d as a power of 2 makes the radix-2 FFT structure
available.

The selection of q, v and d above also makes sure that d�1

is also a power of 2; Since vd ¼ 2d log 2 v ¼ 1mod q, then,

d�1 ¼ 2�log 2 d ¼ 2d log 2 v2�log 2 d ¼ 2d log 2 v�log 2 d mod q:

Since both v and d are powers of 2, d�1 is a power of 2.
Note that the linear convolution (2) is slightly different to

the cyclic convolution (6). In order to make the cyclic convo-
lution equivalent to the linear convolution, s should satisfy
s � d=2. Also, to avoid overflow, the size of ring Zq should
be greater than the largest coefficient of the product, i.e.

q > sb2. Therefore, when s ¼ d=2 and b is the largest power

of 2 that satisfies sb2 < q, ring Zq provides the largest
dynamic range for SSA.

2.3 Montgomery Modular Multiplication

Montgomery modular multiplication [3] is an efficient
modular algorithm when the modulus n is without
specific form. By adding constraints on the parameters,
Walter [26] proposed the MMM without conditional
subtraction algorithm and it is given in Algorithm 1. In
MMM, r is typically a power of 2 for the ease of
computation.

Algorithm 1. Montgomery Modular Multiplication
Without Conditional Subtraction [26]

Copirme integers n and r; r > 4n; x � x0rmodn; x < 2n, y � y0r
modn, y < 2n, n0 � �n�1 mod r.

Input: x, y, n, n0, and r
Output: z � xyr�1 ¼ x0y0rmodn, z < 2n

1: g x � y
2: m ðgmod rÞn0mod r
3: z ðgþmnÞ=r
4: return z

3 FFT-BASED MMM ALGORITHM

The FFT-based Montgomery product reduction algorithm in
[7] is based on the original MMM. In order to avoid the
conditional subtraction, SSA is applied to the MMM
without conditional subtraction as shown in Algorithm 1.

Fig. 1. Data flow of Sch€onhage-Strassen algorithm.

CHEN ET AL.: PARAMETER SPACE FOR THE ARCHITECTURE OF FFT-BASED MONTGOMERY MODULAR MULTIPLICATION 149

Furthermore, as shown in Algorithm 2, the addition in
MMM is also performed in spectral domain and the benefits
are three-fold.

� The l-bit time domain addition is transformed to a
number of independent (vþ 2)-bit additions in spec-
tral domain. The l-bit long carry chain is divided
into (vþ 2)-bit ones.

� Compared with the original algorithm, no further
transform (FFT/IFFT) is required.

� The (vþ 2)-bit addition is performed following the
component-wise multiplication, which is more suit-
able for a pipelined architecture design.

Algorithm 2. FFT-Based Montgomery Modular
Multiplication

x, y, n, and n0 are as required by Algorithm 1. Suppose that there
exists a length-d NTT for a primitive root of unity v in Zq. Let
s ¼ d=2, r ¼ bs > 4n. Let xðtÞ, yðtÞ, nðtÞ, and n0ðtÞ be the time
domain polynomial of x, y, n, and n0, which satisfy xðbÞ ¼ x,
yðbÞ ¼ y, nðbÞ ¼ n, and n0ðbÞ ¼ n0. XðkÞ, Y ðkÞ, NðkÞ, and N 0ðkÞ
are the spectral domain polynomials of xðtÞ, yðtÞ, nðtÞ, and n0ðtÞ,
respectively.

Input:XðkÞ, Y ðkÞ, NðkÞ, N 0ðkÞ, q and r
Output: ZðkÞ ¼ FFTðzðtÞÞwhere z ¼ xyr�1 modn

1: GðkÞ XðkÞ
 Y ðkÞmod q
2: g IFFTðGðkÞÞ
3: h gmod r
4: HðkÞ FFTðhÞ
5: MðkÞ HðkÞ
N 0ðkÞmod q
6: m IFFTðMðkÞÞ
7: m mmod r
8: MðkÞ FFTðmÞ
9: KðkÞ MðkÞ
NðkÞmod q
10: ZðkÞ KðkÞ þGðkÞmod q
11: z IFFTðKðkÞÞ
12: z z=r
13: ZðkÞ FFTðzÞ
14: return ZðkÞ

The FFTM3 is less complex than three separated SSA
multiplications. Specifically, there are six FFT/IFFT in

FFTM3 instead of nine in three SSA multiplications. This is
because in modular exponentiation, N 0ðkÞ and NðkÞ are pre-
computed and can be reused. Also, by using the MSB-first
square-and-multiply algorithm in exponentiation, the com-
putation is either square or multiplication by a fixed num-
ber, thus, only one input needs FFT.

4 PARAMETER SPECIFICATIONS AND FLEXIBLE
OPERAND SIZE FFTM3

4.1 Parameter Specifications for FFTM3

By carefully selecting r ¼ bs ¼ 2ms, modulo-r and division-
by-r operations can be simply performed by words selec-
tion. The MMM algorithm without conditional subtraction
requires that 4n < r, therefore, the operand size of n should
satisfies l � ms� 2.

Furthermore, according to (2), the maximum value of the
coefficient after convolution (component-wise multiplica-
tion in spectral domain) is sb2. The addition in Step 10

doubles the size of the coefficients, thus, to avoid overflow,
the parameters need to satisfy s � d=2 and

q > 2sb2 ¼ s � 22mþ1:
In order to utilize the regular radix-2 FFT/IFFT, one

choice for q are Fermat numbers in the form 2v þ 1 which

v ¼ 2t . It is proved in [25] that when 22
t þ 1 is composite

(t � 5), one can always define NTT modulo q ¼ 22
t þ 1 of

length d ¼ 2tþ1�i with root v ¼ 22
i
where i 2 Z. This deduc-

tion indicates that for a fixed Fermat number, a smaller root
v is accompanied by a longer length d, which enables a
larger operand size.

The parameter specifications for FFTM3 are summarized
as follows:

1) q is number of form 22
t þ 1.

2) d ¼ 2tþ1�i with v ¼ 22
i
for integer i.

3) The greatest b ¼ 2m such that 2sb2 ¼ s � 22mþ1 < q
where s ¼ d=2.

4) l ¼ ms� 2, where l is themaximumoperand size of n.
The sequence of the specifications also reflects the

parameter selection procedure, and it starts from the selec-
tion of t. Following the above parameter specifications, we

carefully select six parameter sets for FFTM3 with operand
size range from 926-bit to 7,678-bit, and it is shown in
Table 3.

4.2 Flexible Operand Size FFTM3

As shown in Table 3, the operand sizes which can be chosen
for modular multiplication cover the main key length
requirement nowadays [2], [27]. However, the gap between
each operand sizes become larger and larger when the val-
ues of q and d increase.

This implies that one may have to use the parameter set
which has a much larger operand size than the actual
needed one. For example, for key size 2,048-bit which is rec-
ommended for RSA by NIST, one has to perform modular
multiplication by using the 3,838-bit parameter set (which is
1,790-bit larger than the required operand size) from Table 3.
Therefore, the construction of parameter sets whose
operand sizes are closed to the target size is preferred.

As discussed in the previous section, given a fixed d, ring
Zq can provide the largest dynamic range if the largest m

which satisfied q > 22mþ1s is selected. This indicates if the
value of q is more flexible when given a fixed s, the operand
size lwill be more various. In order to meet this requirement,
we introduce the pseudo-Fermat number q which is of the

form 2d2
t þ 1 [22]. The Fermat or pseudo-Fermat number q

and its relationship with root and NTT length are listed in
Table 4.

TABLE 3
Parameter Set Selection for FFTM3

Bits
l

Ring
Zq

NTT length
d

Root
v

Word size
m

Words
s

926 264 þ 1 64 4 29 32
1,790 264 þ 1 128 2 28 64
3,838 2128 þ 1 128 4 60 64
7,678 2128 þ 1 256 2 60 128

150 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

After the introduction of pseudo-Fermat number trans-
form, the number of parameter sets one can obtain for a tar-
get operand size is increased. It can be observed that the
introduction of variable d enriches the value of q, which
makes the selection of parameter sets more flexible.

5 FURTHER IMPROVEMENTS FOR FFTM3

The transform from normal positional system to polynomial
representation is trivial; however, the reverse transform
needs long accumulation. A pipelined addition design [28]
could speedup the accumulation process, however, the com-
putation is still in serial. In this section, the non-least-positive
form and the carry-save arithmetic (CSA) are introduced to
parallelize this long serial accumulation. Moreover, their
effects to the FFTM3 algorithm are also discussed.

5.1 NLP Form and Carry-Save Arithmetics

In Section 2, all the words in the positional system or the
coefficients in the polynomial satisfy that 0 � xi < b. In this
case the representation is in its least-positive (LP) form. Note
that for a given value, its LP form representation is unique.

However, the words or the coefficients do not necessarily
fall into the range of ½0; bÞ. When there are words or coeffi-
cients out of this range, the representation is in its NLP form.
Note that such NLP representation is not unique. Taking
the same example, x ¼ ð2123Þ4 can be written in an NLP
polynomial and it represents the same value as (1):

xNLPðtÞ ¼ 3t3 � 5t2 þ 10tþ 3: (8)

The NLP form representation can be transformed to LP
form by carry propagation, where the quotients bxi=bc are
considered as carries. The direction of propagation is from
the lowest degree word to the highest degree one.

If NLP form is tolerable in the FFTM3 computation, then
one could use CSA to control the carry propagation length
in the large size addition. In long integer operations, the
carry should be passed from the least significant bit all
through to the most significant bit. This carry propagation
chain is usually the longest data path, i.e., the bottleneck of
the performance improvement. Using the CSA can mini-
mize the propagation length effectively, and hence, improve
the performance.

Specifically, we need to accumulate the coefficients and
generate the normal positional integer after IFFT. We still
use italic zðtÞ and zi to denote the polynomial in time
domain and its ith coefficient after IFFT, while using

boldface z and zi to denote the normal positional integer
and its ith word after the accumulation. That is:

z ¼ zðbÞ ¼ zd�1bd�1 þ � � � þ z1bþ z0: (9)

Let B be the number of segments which a coefficient is
divided. Thus the bit-width of coefficient and B satisfy
vþ 2 < Bm (B � 2). One can chop zi into B� 1 m-bit and
one (vþ 2� ðB� 1Þm)-bit segments. We take B ¼ 3 as an
example here (the most frequently appear case) and chop zi
into zi0; zi1; zi2. The accumulation of (9) can be performed as
Fig. 2 to get the LP form representation of z. As the carries
require to be propagated from z00 to zðd�1Þ2, the data depen-

dency limits the computation in serial.
On the other hand, if NLP form polynomial is tolerable in

the FFTM3, we can use carry-save adders to minimize the
long carry propagation. Fig. 3 depicts the parallel carry-save
addition for the computation of the time domain NLP coeffi-
cients. Since the largest value of zi is the sum of two m-bit
segments zi0, zði�1Þ1 and one (vþ 2� 2m)-bit segment zði�2Þ2,
the carry value is at most 2. Thus, only two more bits are
needed to store the carry ci for each word. In this way, the
additions are independent, and can be performed in paral-
lel. Compared with the serial accumulation process, the
carry-save accumulation2 can achieve a speedup by a factor
up to s.

Note that carry look ahead framework (CLA) can be used
after CSA to transform the NLP form result to LP form.
However, more hardware resources are required to build
this framework, especially in our case where the word size
m is usually not small. As it will be shown in the later sub-
section that using NLP form only has limited affects on

FFTM3, CLA is not applied in our design for a resource
saving design.

TABLE 4
Relationship between Fermat or Pseudo-Fermat Ring q,

NTT length d, and the Root v

Ring Zq NTT length d Root v

2d2
t þ 1, d � 2,

2tþ1 2d
d power of 2, t � 2

22
t þ 1, t > 0 2tþ1 2

22
t þ 1, t � 2 2tþ2 22

t�2ð22t�1 � 1Þ
2d2

t þ 1, d � 2,
2tþ1 2d

d not power of 2, t � 2

Fig. 2. Computation of the time domain coefficients using serial adders.
Bold type zi is used to represent the output coefficient.

2. The CSA proposed here leaves the output in carry-stored
representation

CHEN ET AL.: PARAMETER SPACE FOR THE ARCHITECTURE OF FFT-BASED MONTGOMERY MODULAR MULTIPLICATION 151

5.2 Relieving the Computation Efforts for
the Zero Coefficients

It is worth to note that the zero coefficients can be elimi-
nated from the accumulation process to speedup the com-
putation; in modulo-r operation, the higher s coefficients
are not necessarily generated. Similarly, in division-by-r,
only the higher sþ 1 coefficients are needed. Therefore, half
of the accumulation time can be further saved, and Steps 3,
7 and 12 of Algorithm 2 can be computed during the IFFT
operations.

5.3 Modulo-r Operation

The modulo-r results for LP form and NLP formmay be dif-
ferent. Taking polynomials (1) and (8) as an example, let r

be b2 ¼ 16, then the two modulo-r residues are:

zLP ¼ xLPðbÞmod r ¼ 2bþ 3 ¼ 11;

zNLP ¼ xNLPðbÞmod r ¼ 10bþ 3 ¼ 43:

Though the two results are congruent modulo-r, the residue
of NLP form polynomial is still in NLP form.

In order to make the NLP form result close to the least-
positive residue, the carry of zs�1 can be dropped, hence,
the maximum value for zs�1 is 2m � 1. As the carry cs�2 from
zs�2 is at most 2, the maximum value of zs�1 is 2m þ 1 after
carry propagation. Therefore, the value of NLP residue is

at most ð2m þ 1Þbs�1 þ bs�1 � 1 < ð2m þ 2Þ � bs�1 < 2r. This
means the NLP residue equals to either the LP residue or
the LP residue plus r.

Following the above derivation, if the result in Step 4 of
Algorithm 2 is hþ r instead of h, m in Step 6 would be
ðhþ rÞn0 instead of hn0. However, this additional rn0 will be
eliminated by modulo-r operation in Step 7.

Similarly, if the result in Step 7 is mþ r instead of m, the
value of z in Step 10 would be tþ ðmþ rÞn ¼ ðtþmnÞ þ rn,
hence, the result in Step 12 would be ðtþmnÞ=r þ
n ¼ zþ n, which has a difference of n from the least-positive
result. Nevertheless, since z � zþ nmodn, as long as there
is enough dynamic range, the NLP result will not affect the
following operations.

5.4 Division-by-r Operation

For the division-by-r operation of NLP form polynomial,
error correction may be needed. Denote � the result of the
modulo-rNLP residue divided by r, then one can first select
all words except the lowest s ones, and then add � to get the
corrected quotient.

Still take r ¼ b2 ¼ 16 and polynomial (8) as example:

� ¼ bðxNLPðbÞmod rÞ=rc ¼ b43=16c ¼ 2;

bx=rc ¼ xNLPðbÞ=rþ � ¼ 3b� 5þ 2 ¼ 9:

Note that � might not be equal to bxs�1=bc because the
carry from lower words may affect this value. Therefore,
compute � is troublesome: one needs to first propagate the
carries from the lowest word to the ðs� 1Þth word, which is
still a serial operation.

In order to speedup the computation, we developed a
fast method to compute � in FFTM3 without serial accumu-
lation. Note that the division-by-r operation only appears in
Step 12 of Algorithm 2, and the input z ¼ zðbÞ of Step 12,
i.e., the output of Step 11, satisfies the following fact:

Fact 1. MMM algorithm guarantees that ðgþmnÞ is divis-
ible by r, thus, if the polynomial is in LP form, coefficients
zs�1; zs�2; . . . ; z0 of z should all be zeros in Step 11 of
Algorithm 2.

Thanks to Fact 1, we can use the following computation
to determine � (still taking B ¼ 3 as an example, the method
for other B values are similar):

ðcs�1; zs�1Þ zðs�1Þ0 þ zðs�2Þ1 þ zðs�3Þ2: (10)

If the inputs of IFFT accumulation are all positive or zero,
then � is determined by the condition of zs�1:

� If zs�1 ¼ 0, the lower words must all be zero in order
to satisfy Fact 1. Therefore, � ¼ cs�1.

� If zs�1 > 0, the lower words must send a carry c0 so
that zs�1 þ c0 ¼ b ¼ 2m in order to satisfy Fact 1. In
this situation, � ¼ cs�1 þ 1

The above computation can be further simplified by only
using the two most significant bits of segments zðs�1Þ0 and
zðs�2Þ1. As long as zðs�3Þ2 is within ðm� 2Þ bits, the carry-in

from the lower bits of zs�1 could only be 0, 1, or 2, the two
highest bits can already absorb this carry-in. Therefore,

� ¼ b4zðs�1Þ0=bc þ b4zðs�2Þ1=bc
4

� �
: (11)

In hardware realization, using only a few gates one can
produce the � value.

5.5 Modulo-q Operation

Note that modulo-q reduction is in great demand in FFTM3,
hence a fast computation can speedup the whole system
significantly. Again, NLP form can be utilized. Recall
Equation (7), normally, one needs a correction step after

computing
P

xi � ð�1Þi to ensure the result in the range

½0; 2v�. To enable fast computation, the result
P

xi � ð�1Þi is
used directly without the correction step.

Although
P

xi � ð�1Þi is probably not in range ½0; 2v þ 1Þ,
this NLP value is tolerable for the operations in Zq. For

Fig. 3. Computation of the time domain coefficients using parallel
adders. Bold type zi is used to represent the output coefficient.

152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

jxj < 22v, x0 � x1 is in range ½�2v þ 1; 2v � 1�. Thus, the resi-
due only needs vþ 1 bits for storage including a sign bit.
Since x0 � x1 can be performed by a subtractor in only
one cycle, this method is applied to most of the modulo-
q cases in the system. The overhead is that the following
operators should support signed arithmetics, and there-
fore, 2’s complement representation is preferred. Again,
using the NLP form can save the correction step with
negligible overhead.

Before performing division by r, the signed coeffi-
cients should be corrected to positive by performing
Equation (7) again (cf. Section 5.4). Therefore, the data

range in the entire FFTM3 system is ½�2v þ 1; 2v�, and the
data width is vþ 2 bits.

5.6 FFTM3 Algorithm Modification

Using NLP form and carry-save accumulation will affect the
parameter specification of FFTM3. Specifically, employing
NLP form will increase two more bits for each coefficient,
and these ðmþ 2Þ-bit coefficients will be taken into the
following component-wise multiplication. Thus the 3rd
parameter specification in Section 4 is revised to:

3) The greatest b ¼ 2m such that s � 22ðmþ2Þþ1 < q.
Considering the inputs boundary, g ¼ xy < rn is

required in MMM [3], [26]. Originally, x; y < 2n, but the
NLP form introduces one more n range (cf. Section 5.3), so

x; y < 3n hence t ¼ xy < 9n2 < rn should be satisfied. Con-
sequently, r > 9n. To provide a conservative boundary, the
4th parameter specification is revised to:

4) l ¼ ms� 4, where l is the maximum operand size of n.

When employing NLP form and carry-save accumula-
tion, one could change the parameters in Table 3 according
to the above specifications.

6 EFFICIENT PARAMETER SELECTION METHOD

FOR A TARGETED OPERAND SIZE

After the introduction of Pseudo-Fermat number transform,
the number of parameter set which can support the same
operand size MMM will increase. Different parameter sets
can be used tomeet different design requirements. For exam-
ple, if a compact design is required, the selection of small v

would be a good choice. If a low area-latency product FFTM3

is the target, then a reasonable selection of d and v is required.
In order to achieve a better trade-off between area usage and

latency, analyzing and comparing the complexity of FFTM3

are preferred in the parameter set selection.

6.1 Area Complexity Evaluation of FFTM3

The computation of FFTM3 using Fermat and Pseudo-
Fermat number transform includes component-wise multi-
plication, FFT and IFFT. Four basic operations, namely
multiplication, addition/subtraction, shift, and modular
reduction constitute these computations. The direct evalua-

tion of area complexity of FFTM3 would be the comparison
of the number of these four operations.

The computational requirements of FFTM3 by using
Fermat and Pseudo-Fermat number transform are listed in

Table 5. The area complexity of FFTM3 is equal to the prod-
uct of equivalent operation complexity and number

TABLE 5
Computational Requirement of FFTM3 Using Fermat or Pseudo-Fermat Number Transform

Operation Basic operation Equivalent operation Number of equivalent operation

Component-wise (vþ 2)-bit MUL - d
multiplication (2vþ 2)-bit MR b2vþ2v c v-bit A/S 2d

FFT, v 6¼ ffiffiffi
2
p (vþ 2)-bit A/S (vþ 2)-bit A/S d log 2 d

(vþ 3)-bit MR bvþ3v c v-bit A/S d log 2 d

(vþ 2þ ðd2� 1Þlog 2 v)-bit SH &MR bðvþ2þðd2�1Þlog 2 vÞ
v c v-bit A/S

d
2 log 2d

IFFT, v 6¼ ffiffiffi
2
p (vþ 2)-bit A/S (vþ 2)-bit A/S d log 2 dþ d

(vþ 3)-bit MR bvþ3v c v-bit A/S d log 2 dþ d

(vþ 2þ ðd2� 1Þ log 2 v)-bit SH &MR bðvþ2þðd2�1Þlog 2vÞ
v c v-bit A/S

d
2 log 2d

dvþ2
m
e-input m-bit A/S bvþ2

m
c m-bit A/S d

2 þ 1

FFT, v ¼ ffiffiffi
2
p

(vþ 2)-bit A/S (vþ 2)-bit A/S d log 2 dþ d
2

(vþ 3)-bit MR bvþ3v c v-bit A/S d log 2 dþ d
2

(vþ 2þ dþ3v
4 � 1)-bit SH &MR bvþ2þ

dþ3v
4 �1

v c v-bit A/S
d
2

(vþ 2þ dþv
4 � 1)-bit SH &MR bvþ2þ

dþv
4 �1

v c v-bit A/S
d
2

(vþ 2þ d
2� 2)-bit SH &MR bðvþ2þðd2�1Þlog 2 vÞ

v c v-bit A/S
d
2 ðlog 2 d� 1Þ

IFFT, v ¼ ffiffiffi
2
p

(vþ 2)-bit A/S (vþ 2)-bit A/S d log 2 dþ 3d
2

(vþ 3)-bit MR bvþ3v c v-bit A/S d log 2 dþ 3d
2

(vþ 2þ dþ3v
4 � 1)-bit SH &MR bvþ2þ

dþ3v
4 �1

v c v-bit A/S
d
2

(vþ 2þ dþv
4 � 1)-bit SH &MR bvþ2þ

dþv
4 �1

v c v-bit A/S
d
2

(vþ 2þ d
2� 2)-bit SH &MR bðvþ2þðd2�1Þlog 2 vÞ

v c v-bit A/S
d
2 ðlog 2 d� 1Þ

dvþ2
m
e-input m-bit A/S bvþ2

m
c m-bit A/S d

2 þ 1

MUL, MR, SH, A/S represent multiplication, modular q reduction, shift, and 2-input addition or subtraction, respectively.

CHEN ET AL.: PARAMETER SPACE FOR THE ARCHITECTURE OF FFT-BASED MONTGOMERY MODULAR MULTIPLICATION 153

of equivalent operation. The bit-level operation com-
plexity for addition and subtraction is OðlÞ. In terms of mul-
tiplication, the complexity is determined according to the
used multiplication algorithm as shown in Table 1.

In Table 5, when v 6¼ ffiffiffi
2
p

, according to Equation (5), the

value of Pjk is in range ½0; d2� 1�, thus the shift operation is

range from vþ 1 to vþ 1þ ðd2� 1Þlog 2v. Compared with

FFT, IFFT has to deal with multiplication by d�1 and accu-

mulation. For a fixed parameter set, the value of d�1 is
also fixed. Thus the shift and modular reduction can be
hardcoded as subtraction (modular reduction) on the des-
ignated bits.

When v ¼ ffiffiffi
2
p ¼ 2

1
2, the multiplication by vPjk can be

decomposed into two conditions. If Pjk is even, multiply by

vPjk can be simply accomplished by shift operation. If Pjk is
odd, as being pointed out by Nussbaumer [25] thatffiffiffi
2
p � 2v=4ð2v=2 � 1Þmod q, multiply by vPjk will become two
shifts and one subtraction as follows:

2
Pjk
2 ¼ 2

Pjk�1
2 þ 1

2 ¼ 2
Pjk�1

2 � 2v
4ð2v

2 � 1Þ
¼ 2

2ðPjk�1Þ þ 3v

4 � 2
2ðPjk�1Þ þ v

4 ðmod qÞ:
(12)

Note that modular reduction are required following the
shift and subtraction, the multiplication by vPjk would
become two shifts, one subtraction, and three modular

reductions. Because the maximum value of Pjk is d
2� 1, the

maximum value of vPjk would become

2
2ðd
2
�1�1Þþ3v

4 � 2
2ðd
2
�1�1Þþv

4 ¼ 2
dþ3v
4 �1 � 2

dþv
4 �1:

Carefully examining Equation (5) one can observe that
odd Pjk only appear when j ¼ 0 (stage 0 of FFT/IFFT). Thus

the multiplication by odd Pjk only appears d
4 times in each

FFT/IFFT. This indicates that using v ¼ ffiffiffi
2
p

would not
increase too much workload for the computation, but are
able to double the maximum operand size of the parameter
set within a fixed q.

6.2 Efficient Parameter Set Selection method for
FFTM3

Given a target operand size l, the word size m can be found
after the confirmation of d. With these informations, the
smallest q can be calculated. The parameter selection
method for a target operand size l is shown below.

1) Select power of 2 number d from 2 to lþ 4;
2) Let s ¼ d=2, calculate m ¼ dlþ4s e þ 2;
3) Determine t1, t2 by t1 ¼ log2 d� 1 and t2 ¼

log2 d� 2, respectively;
4) Calculate vmin ¼ 2mþ log2 sþ 1 due to q ¼ 2v þ 1 >

s22mþ1 ¼ 22mþlog2 sþ1;
5) For the positive ti (i ¼ 1; 2), compute di ¼ dvmin

2ti e.
Discard the d2 parameter set if d2 6¼ 1;

6) For the existent di (i ¼ 1; 2), resize vi ¼ di2
ti , qi ¼

2vi þ 1;
7) For the existent di (i ¼ 1; 2), determine w1 ¼ 2d1 and

w2 ¼ 22
t2�2ð22t2�1 � 1Þ.

8) Store the existent parameter sets (d; s;m ¼ m� 2;
qi ¼ 2vi þ 1;vi; l ¼ ms� 4) for i ¼ 1; 2. If d2 ¼ 1 stop
the selection process, else go to Step 1.

The selection process is terminated when d2 ¼ 1. This is
because after d2 is fixed equal to 1, with the increasing of d,
vwill be larger than the value in the previous parameter set.
Therefore, the complexity for these new parameter sets
will not be lower than the previous set. Hence, they can be
eliminated from the comparison.

By using the proposed method, one could select the
parameter set by comparing the area complexity. When the
smallest area-latency product is the target, the cycle number
and the clock period are also needed to be concerned. In
this case, the comparison would be carried out on the prod-
uct of area complexity, cycle number, and clock

period.

7 PIPELINED ARCHITECTURE FOR FFTM3

In FFTM3 algorithm, the same computation pattern (compo-
nent-wise multiplication, IFFT, mod/div, and FFT) repeats
for three times. Thus, a cost-effective architecture can be
designed to perform this patten by reusing this architecture
for three times. Furthermore, since the dataflows of FFT and
IFFT are similar, they can share the same computation

resources. The top level architecture of FFTM3 is shown in
Fig. 4. The multiplier and FFT/IFFT modules are working

in pipelined. Different operand sizes of FFTM3 range from
1,024-bit to 15,484-bit are designed.

Considering the component-wise multiplication in
FFTM3, SSA method can be applied recursively when the
multiplier’s operand size is large enough. However, when
the operand size is small, the schoolbook method or Karat-
suba algorithm is simpler and more efficient. This idea was
also noted by [29] that the optimal multiplication algorithm
might use different method in different level of computation.

In this work, Karatsuba’s method [12], [18] is used to
build the ðvþ 2Þ-bit multiplier. The architecture of the
Karatsuba multiplier is shown in Fig. 5. In order to compute
a 2g-bit multiplication, one only needs two g-bit and
one ðg þ 1Þ-bit multiplications instead of four g-bit

Fig. 4. The top level architecture of FFTM3. shift_ctrl signals control the
bit shift operation of FFT/IFFT. Transf_Mode select the transformation
mode between FFT and IFFT.

154 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

multiplications. One can also apply Karatsuba multiplica-
tion recursively using divide-and-conquer approach.

7.1 Architecture for FFT/IFFT

FFT/IFFT is quite mature in signal processing area [30].
However, to our knowledge, there are only a few research
works on the architectures for NTT [31], [32], [33], and they
are either area-consuming or slow. Thus the design of num-
ber theoretic FFT/IFFT architecture which fits for FFTM3 is
required.

In practice, area and speed trade-off are needed to be
concerned in the design of the FFT/IFFT module. There are
two extreme cases which are either a single butterfly struc-
ture, or unlooping all the stages to build the whole butterfly
network. However, the former one is too slow, while
the later one consumes too much hardware resources,
and the long wire routing of such a large design will drag
down the operating frequency.

In order to balance the scenarios mentioned above, a
length-4 sub-stage FFT/IFFT architecture is designed as
shown in the shadowed area in Fig. 6. This sub-stage mod-
ule can pipeline the intra-stage operations, and be reused

for the whole FFT/IFFT computation. The length-4 sub-
stage FFT/IFFT architecture is shown in Fig. 7.

As can be seen in Fig. 7, the length-4 sub-stage FFT/IFFT
module has two butterfly structures which can handle four
coefficients at each cycle. The shift operators are responsible
for multiplying vPjk to x2kþ1 in Equation (5). According to
the stage number of FFT/IFFT and the coefficient order,
shift operators can perform the corresponding multiplica-
tion operation.

In terms of IFFT, the coefficients should be multiplied by

d�1 and added up after the last stage butterfly computation.

The multiplication by d�1 is performed by shift operation

because d�1 is a power of 2 (cf. Section 2.2). In our design,
parallel adders are used for a fast carry-save accumulation
as shown in Fig. 3. Since there are two coefficients output
from IFFT in each cycle, two B-input m-bit adders

(B ¼ dvþ2
m
e) are designed to work in parallel.

The � is needed to correct the division-by-r result. Still
taking B ¼ 3 as an example, in Equation (11), the carry-in
for the two highest bits could only be 0, 1, or 2, and the sum
with carry-in should be a multiple of 4 to satisfy Fact 1.
Therefore, b4zðs�1Þ0=bc þ b4zðs�2Þ1=bc cannot be 1 or 5. Let a1,

Fig. 5. Proposed architecture of the 2g-bit Karatsuba multiplier.

Fig. 6. Example architecture of a length-8 constant geometry FFT.
The shadow area is used as the primitive for the sub-stage FFT/IFFT
architecture design.

Fig. 7. Detailed architecture of our FFT/IFFT module. Registers are existed between each two operators, we omitted them in this figure for simplicity.
shift_ctrlX signals control the bit shift operation of the shift operators. Transf_Mode select different data path to finish FFT and IFFT computation.
The operators in dash line bounding box are for the FFTM3 which v ¼ 22

t�2 ð22t�1 � 1Þ.

CHEN ET AL.: PARAMETER SPACE FOR THE ARCHITECTURE OF FFT-BASED MONTGOMERY MODULAR MULTIPLICATION 155

a0, b1, b0 be the two most significant bits of zðs�1Þ0 and zðs�2Þ1,
respectively, then the logic for � can be simplified as:

�½0� ¼ ða1 a0Þ _ ðb1 b0Þ _ ða1 b1Þ;
�½1� ¼ a1 ^ a0 ^ b1 ^ b0;

where ^;_; are and, or, xor operators, respectively.

7.2 Memory Management

The data-width in FFTM3 algorithm is ðvþ 2Þ-bit, and the
total size of the coefficients is ðvþ 2Þ � d bits, which is
quite a big size when v and d are large. Therefore, these
coefficients are stored in memory blocks rather than regis-
tered on the fly.

Simple dual-port RAMs (RAM), which have one dedi-
cated read port and one dedicated write port, are used
for coefficients storage. As the FFT/IFFT module has four
inputs, we employ four RAMs so that all the four inputs
for FFT/IFFT can be provided in one cycle. An example
of the coefficients storage situation for length-32 FFT/
IFFT case is depicted in Fig. 8. Every four successive coef-
ficients are distributed into the four RAMs in the same
address. Therefore, by using one address signal we can
read out all the needed coefficients for the parallel sub-
stage FFT/IFFT computation.

The write control is more complex because after each
stage of FFT/IFFT, the order of the coefficients is shuffled.
We call RAM0 and RAM1 the higher half RAMs, RAM2 and
RAM3 the lower half ones. The input/output sequence for a
length-32 FFT/IFFT is shown in Fig. 9. For instance, in Time
0, Coefficients 0-3 are fetched from RAMs 0–3. After i cycles,
the FFT/IFFT module finishes the processing. However, the
outputs are Coefficients x0, x1, x16 and x17. Note that Coeffi-
cients x0 and x16 belong to RAM 0 and Coefficients x1 and
x17 belong to RAM 1, a direct write back will produce write
collision. The similar situation also happens for the outputs
of other time slots.

To wire the coefficients back to the appropriate RAMs
without collision, the channel selector is designed as shown
in Fig. 10. In Time i þ 0, Coefficients x0-x1 pass through
while Coefficients x16-x17 are stored in the register. In Time
i þ 1, Coefficients x2-x3 are switched to the lower half out-
puts, and the Coefficients x16–x17 in the registers are
switched back to the higher half which connected to RAMs
0-1. At the same time, Coefficients x18-x19 arrive at the regis-
ters. One cycle later, they pass to the lower half outputs
along with Coefficients x4-x5 passing to the higher half. The
channel selector works so on, with one cycle overhead, four
coefficients which are shown as the bounding box in Fig. 9,
can be written to their corresponding RAMs.

When the pipeline depth of FFT/IFFT structure i is
smaller than d=8, a racing problem will occur. Take Fig. 9 as
an example. Coefficients x16-x17 will not read out of RAMs
until Time 4. However, the new Coefficients x16–x17 for next
stage will arrive at Time iþ 1, which is on or before Time 4

if i < 32
8 ¼ 4. Since the storage location for these coefficients

is overlapped, the storage of the new coefficients will over-
write the coefficients of current stage. In order to tackle this
problem without adding pipelined bubbles, one more set of
RAMs is appended and the ping-pong alternative storage
mechanism is employed.

One may argue that the in-place FFT algorithm can han-
dle the write collision. However, the in-place FFT algorithm
is not suitable to design a sub-stage architecture; each sub-
stage of in-place FFT has different butterfly network, the
circuit for the butterfly network switch is more complex
than the channel selector.

7.3 Cycle Requirement Analysis

By using the proposed architecture, the pipelined delay i of
FFT/IFFT module is 10 cycles. For each stage except the last
stage of FFT/IFFT, the cycle requirement from the input to

the output is 10þ d
4� d

8� 1 while outputting d coefficients

Fig. 8. An example of a length-32 FFT/IFFT coefficients storage situation
in BRAMs.

Fig. 9. Input and output orders of a length-32 FFT/IFFT sub-stage architecture. Four successive coefficients are inputed at each clock cycle. After i
clock cycles the coefficients will be outputted. Here i is also known as the pipeline depth for the FFT/IFFT architecture.

Fig. 10. Architecture of Channel Selector. At each cycle, only solid line or
dash line channels will output data. MUXs are used to select the chan-
nels of solid lines and dash lines. Control signals are omitted for
simplicity.

156 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

requires d=4 cycles. The cycle requirement for each stage of
FFT/IFFT (except the last stage) is the larger number
between these two. Therefore, when d < 72 the cycle

requirement equals to 10þ d
4� d

8� 1 while it is d=4 when

d � 72. Due to the fact that d is power of 2 number, the
condition will switch to d < 128 and d � 128.

In terms of the cycle requirement of the last stage ((log2 d

- 1)th stage) of IFFT, the multiplication by d�1 and the accu-
mulation consume four more cycles. Additionally, when

v ¼ 22
t�2ð22t�1 � 1Þ ¼ ffiffiffi

2
p

, three more cycles are required in
the last stage of FFT/IFFT. The cycle requirement of the

proposed FFTM3 architecture is summarized in Table 6.

TABLE 6
Cycle Requirement of the Proposed FFTM3 Architecture

d < 128 and v 6¼ ffiffiffi
2
p

d < 128 and v ¼ ffiffiffi
2
p

d � 128 and v 6¼ ffiffiffi
2
p

d � 128 and v ¼ ffiffiffi
2
p

Component-wise
multiplication

Base mult delayþ d� d
4þ 1

FFT
(log2 d - 1)-th stage 10þ d

4� d
16� 1 13þ d

4� d
16� 1 10þ d

4� d
16� 1 13þ d

4� d
16� 1

Other stages 10þ d
4� d

8� 1 10þ d
4� d

8� 1 d
4

d
4

IFFT
(log2 d - 1)-th stage 14þ d

4� d
16� 1 17þ d

4� d
16� 1 14þ d

4� d
16� 1 17þ d

4� d
16� 1

Other stages 10þ d
4� d

8� 1 10þ d
4� d

8� 1 d
4

d
4

Base mult delay means the cycle delay of the base multiplier.

TABLE 7
Virtex-6 Implementation Results and Comparisons of the FFTM3 Architecture

Maximun operand
size (bit)

v d m LUTs Slice DSP48 RAMB36 /
RAM18

Cycles Period
(ns)

Latency
(ms)

Area-latency product
Implemented : Theoretic
(LUTs 	 ms) : (107)

1,028 272 16 129 25,309 8,702 135 44/0 387 9.37 3.80 96,174 : 3.96
1,036 144 32 65 13,573 4,786 54 22/11 553 6.59 3.87 52,527 : 2.11
1,052 96 64 33 7,534 2,519 36 11/11 840 5.87 4.96 37,368 : 1.56
1,084 64 128 17 4,818 1,483 9 11/0 1,440 5.29 7.57 36,472 : 1.86

2,060 272 32 129 25,837 8,366 135 44/0 546 8.8 4.80 124,017 : 5.68
2,076 160 64 65 14,895 5,534 54 22/11 837 6.6 5.52 82,220 : 3.64
2,108 128 128 33 11,824 4,071 27 22/0 1,701 6.0 10.21 120,723 : 6.08
2,172 64 256 17 5,737 2,017 9 11/0 3,633 5.09 18.49 106,077 : 4.36

3,100 224 64 97 21,672 7,147 108 33/11 843 8.0 6.74 146,069 : 7.20
3,132 128 128 49 12,147 4,062 27 22/0 1,701 6.09 10.36 125,842 : 5.92
3,196 128 256 25 11,728 3,562 27 22/0 3,693 6.19 22.86 268,102 : 13.7
3,196 64 256 25 5,835 1,977 9 11/0 3,633 5.09 18.49 107,889 : 4.21

4,124 288 64 129 27,839 9,530 135 44/11 846 9.2 7.78 216,587 : 9.29
4,156 192 128 65 18,449 6,351 108 33/0 1,710 8.0 13.68 252,382 : 12.41
4,220 128 256 33 11,919 3,892 27 22/0 3,693 6.3 23.27 277,355: 13.21

7,740 256 128 121 30,230 9,281 81 44/0 1,713 8.60 14.73 445,287 : 16.75
15,484 256 256 121 30,405 9,425 81 44/0 3,654 8.77 32.05 974,480 : 36.27

TABLE 8
Virtex-II Implementation Results and Comparisons of the Modular Multipliers

Max. operand
size (bit)

Design LUT Slice Latency
(ms)

Area-latency product Area-latency product
improvement (%)

(LUT 	ms) (Slice 	ms)
1,024 [5] (5 to 2) - 10,332 10.08 - 104,146 26.2
1,024 [10] (radix-2, v ¼ 32) 5,310 - 10.09 53,577 - �36.7
1,084 Our design 5,843 5,310 14.48 84,606 76,888 -
2,048 [5] (5 to 2) - 20,986 22.76 - 477,641 48.5
2,048 [10] (radix-2, v ¼ 32) 10,587 - 20.68 218,939 - �15.5
2,076 Our design 18,200 17,297 14.23 258,986 246,136 -
3,072 [10] (radix-2, v ¼ 32) 15,197 - 30.94 470,195 - 34.2
3,196 Our design 7,210 5,820 42.91 309,381 249,736 -
4,096 [10] (radix-2, v ¼ 32) 19,621 - 41.85 821,138 - 18.08
4,124 Our design 38,972 37,086 17.26 672,656 640,104 -

CHEN ET AL.: PARAMETER SPACE FOR THE ARCHITECTURE OF FFT-BASED MONTGOMERY MODULAR MULTIPLICATION 157

8 IMPLEMENTATIONS AND COMPARISONS

The FFTM3 architectures are described in Verilog-HDL with
synthesis and place & route by Xilinx ISE 13.3. The pro-
posed architectures are implemented on a Xilinx Virtex-6
(xc6vlx130t-1) FPGA. In the Virtex-6 device, each DSP48E1
has a 18-bit signed multiplier, and we use it as the base mul-
tiplier to build the ðvþ 2Þ-bit Karatsuba pipelined multi-
plier. The base multipliers in DSP48E1s are pipelined with
the optimal stages in order to increase the frequency.

The post-place-and-route results and comparisons are
listed in Table 7. In this paper, we targeted to find out the
parameter set which has the lowest area-latency product for
each targeted operand size FFTM3. The number of both
area-latency product complexity analysis and the real
implementation results are shown in Table 7. In terms of the
area-latency product complexity analysis, the number is cal-
culated by the product of area complexity (cf. Section 6.1),
cycle number (cf. Section 7.3), and clock period (cf.
Section 7.3). It can be found that complexity analysis
matches with the real implementation results.

In order to have a fair comparison with previous works,
we also implemented FFTM3 on a Xilinx Virtex-II-4 FPGA
using Xilinx ISE 10.1. We compare our work with the Mont-
gomery modular multiplication architectures from [5], [10]
in Table 8. The improvement on area-latency product is also
shown in Table 8.

In order to show the growth trend of the area-latency
product of MMM in [10] and FFTM3 intuitively, we
depicted the data in Fig. 11. As shown in Fig. 11, the growth

rate of FFTM3 is slower than that of the MMM in [10]. The

FFTM3 outperforms the MMM in [10] when the operand
size is large enough. Specifically, at 1,024-bit level, our
design has no advantage compared with the results in [10].
But when the operand size reach 3,196-bit and 4,124-bit, the
FFTMMMs have 34.2 and 18.1 percent improvement,
respectively, when compared with the 3,072-bit and 4,096-
bit MMM in [10];

The performance comparisons in terms of latency are
shown in Table 9. Compared with [10] and [11], our 4,156-
bit FFTM3 outperforms their 4,096-bit design by approxi-
mately 143 and 326 percent, respectively. The speedup

Fig. 11. Area-latency product comparison with [10].

TABLE 9
Latency Comparison of Hardware and Software Modular Multipliers

Max. oper.
size (bit)

Design Device LUT/Slice Cycle
red. (%)

Cycle Period
(ns)

Latency
(ms)

Speedup
(%)

1,024 [5] (5 to 2) Virtex-II-4 -/10,332 1,025 18.0 9.83 10.08 �9.0
1,024 [10] (radix-2, v ¼ 32) Virtex-II-4 5,310/- 1,056 20.5 9.55 10.09 �8.9
1,052 Our design Virtex-II-4 9,880/8,489 840 - 13.19 11.08 -

2,048 [5] (5 to 2) Virtex-II-4 -/20,986 2,050 59.2 11.10 22.76 59.9
2,048 [10] (radix-2, v ¼ 32) Virtex-II-4 10,587/- 2,112 60.4 9.79 20.68 45.3
2,076 Our design Virtex-II-4 18,200/17,297 837 - 17.00 14.23 -

3,072 [10] (radix-2, v ¼ 16) Virtex-II-4 16,331/- 3,264 74.2 9.55 31.17 85.2
3,072 [10] (radix-2, v ¼ 32) Virtex-II-4 15,197/- 3,168 73.4 9.76 30.94 83.8
3,100 Our design Virtex-II-4 26,746/25,578 843 - 19.96 16.83 -

4,096 [10] (radix-2, v ¼ 16) Virtex-II-4 21,139/- 4,352 80.6 9.69 42.20 144.5
4,096 [10] (radix-2, v ¼ 32) Virtex-II-4 19,621/- 4,224 80.0 9.91 41.85 142.5
4,124 Our design Virtex-II-4 38,972/37,086 846 - 20.40 17.26 -

1,024 [8] (3 Threads MMM) Intel Xeon X5650 -/- 9,654
$

95.6 0.376 3.63 40.2
1,024 [11] 90nm CMOS -/- 1,036

$
62.6 1.68 1.74 �32.8

1,028 Our design Virtex-6-3 25,143/8,706 387 - 6.69 2.59 -

2,048 [8] (4 Threads MMM) Intel Xeon X5650 -/- 13,138
$

95.8 0.376 4.94 35.3
2,048 [11] 90nm CMOS -/- 3,881

$
85.9 1.68 6.52 78.6

2,060 Our design Virtex-6-3 25,587/8,860 546 - 6.69 3.65 -

3,072 [8] (4 Threads MMM) Intel Xeon X5650 -/- 17,393
$

95.2 0.376 6.54 31.6
3,072 [11] 90nm CMOS -/- 8,708

$
90.3 1.68 14.63 94.4

3,100 Our design Virtex-6-3 21,349/6,788 843 - 5.89 4.97 -

4,096 [8] (6 Threads MMM) Intel Xeon X5650 -/- 23,191
$

96.4 0.376 8.72 43.4
4,096 [11] 90nm CMOS -/- 15,429

$
94.5 1.68 25.92 326.3

4,124 Our design Virtex-6-3 29,345/10,200 846 - 7.19 6.08 -

$
Estimated number calculated by the quotient of latency and period.

158 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

mainly comes from the low complexity of the FFTM3 algo-
rithm and the pipelined design, which reduce the computa-
tion clock cycles significantly.

We also compare our work with the software design in
Giorgi et al.’s work [8]. Note that Giorgi’s work aims at
low latency and the implementations are carried out on
two powerful Intel Xeon X5650 Westmere processors
which the operating frequency reaches 2.66 GHz. Since
our hardware design is targeted for small area-latency
product, parallelism is not fully exploited. However, our
design can still have a latency reduction of approximately
38 percent on average when compared with the fastest
MMM results in [8].

The latency growth rate of MMM [5], [8], [10], [11], and
FFTM3 are described in Fig. 12. As shown in Fig. 12, the
latency of these MMMs increase linearly. However, the

slope of our FFTM3 is smaller than the others, which implies

that the performance of FFTM3 will be more obvious for the
larger operand sizes.

9 CONCLUSIONS AND FUTURE WORKS

In this paper, the FFT-based Montgomery modular multipli-
cation algorithm is improved by using carry-save arithmetic
and pre-computation techniques. The pseudo-Fermat num-
ber transform is introduced to further enrich the supported
operand size of FFTM3. The parameter requirements of the

improved FFTM3 are analyzed, and a fast method for the
selection of targeted parameter sets is proposed. Further-
more, we have designed a hardware pipelined architecture

of the FFTM3 targeting for low area-latency product. The

results show that the proposed FFTM3 architecture outper-
forms the state of the arts for large operand sizes design.

Notice that McLaughlin’s algorithm [21] has a lower the-
oretic computation complexity than the FFTM3, which
might be a good candidate to speedup the large size modu-
lar multiplication. As the hardware performance of the
McLaughlin’s algorithm is still unknown, we conduct a pre-
liminary study on McLaughlin’s algorithm from hardware
design aspects as shown in the Appendix, which can be
found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TC.2015.2417553. We
also compare both the cycle requirement and the architec-

ture design between McLaughlin’s algorithm and FFTM3.
The comparisons reveal that when the design following

similar architectures, McLaughlin’s algorithm has advan-
tage over FFTM3 in terms of cycle number when the NTT
length is large enough. From the hardware design point of
view, McLaughlin’s algorithm has the serial accumulation
and a more complex dataflow, which could be the bottle-
neck for a parallel or compact architecture design. There-
fore, it is worthwhile to implement McLaughlin’s algorithm

and compare the results with FFTM3 to find out the perfor-
mance crosspoint for a more cost effective modular multi-
plier design.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive suggestions and comments on
our paper. Especially for the reviewer to point out the
future research direction on the hardware design for the
McLaughlin’s algorithm. This work was partly supported
by the Research Grant Council of the Hong Kong Special
Administrative Region, China (Projects No. CityU 123612,
CityU 111913), and Croucher Startup Allowance (Project
No. 9500015). Donald Donglong Chen is the corresponding
author.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[2] “Recommendation for key management,” NIST, Tech. Rep.
Special Publication 800-57, Part 1, Rev. 3, 2012.

[3] P. L. Montgomery, “Modular multiplication without trial
division,”Math. Comput., vol. 44, no. 170, pp. 519–521, 1985.

[4] A. Tenca and Ç. K. Koç, “A scalable architecture for modular
multiplication based on Montgomery’s algorithm,” IEEE Trans.
Comput., vol. 52, no. 9, pp. 1215–1221, Sep. 2003.

[5] C. McIvor, M. McLoone, and J. McCanny, “Modified Montgomery
modular multiplication and RSA exponentiation techniques,” in
Proc. IEE Proc.—Comput. Digital Techn., 2004, vol. 151, no. 6,
pp. 402–408.

[6] D. S. Phatak and T. Goff, “Fast modular reduction for large
wordlengths via one linear and one cyclic convolution,” in Proc.
Comput. Arithmetic, 2005, pp. 179–186.

[7] J. David, K. Kalach, and N. Tittley, “Hardware complexity of
modular multiplication and exponentiation,” IEEE Trans. Comput.,
vol. 56, no. 10, pp. 1308–1319, Oct. 2007.

[8] P. Giorgi, L. Imbert, and T. Izard, “Parallel modular multiplication
on multi-core processors,” in Proc. 21st IEEE Symp. Comput. Arith-
metic, Apr. 2013, pp. 135–142.

[9] M. Shieh and W. Lin, “Word-based Montgomery modular multi-
plication algorithm for low-latency scalable architectures,” IEEE
Trans. Comput., vol. 59, no. 8, pp. 1145–1151, Aug. 2010.

[10] M. Huang, K. Gaj, and T. El-Ghazawi, “New hardware architec-
tures for Montgomery modular multiplication algorithm,” IEEE
Trans. Comput., vol. 60, no. 7, pp. 923–936, Jul. 2011.

[11] W.-C. Lin, J.-H. Ye, and M.-D. Shieh, “Scalable Montgomery mod-
ular multiplication architecture with low-latency and low-mem-
ory bandwidth requirement,” IEEE Trans. Comput., vol. 63, no. 2,
pp. 475–483, Feb. 2014.

[12] A. Karatsuba and Y. Ofman,“Multiplication of multidigit numbers
on automata,” Soviet Phys. Doklady, vol. 7, no. 7, pp. 595–596, 1963.

[13] S. A. Cook, “On the minimum computation time of functions,”
Ph.D. dissertation, Dept. Math., Harvard Univ., Cambridge, MA,
USA, 1966.

[14] A. Sch€onhage and V. Strassen, “Schnelle multiplikation großer
zahlen,” Computing, vol. 7, pp. 281–292, 1971.

Fig. 12. Latency comparison with hardware and software implementa-
tions from [5], [8], [10], [11].

CHEN ET AL.: PARAMETER SPACE FOR THE ARCHITECTURE OF FFT-BASED MONTGOMERY MODULAR MULTIPLICATION 159

[15] M. F€urer, “Faster integer multiplication,” in Proc. 39th Annu. ACM
Symp. Theory Comput., 2007, pp. 57–66.

[16] T. Granlund and the GMP development team, “The GNU multi-
ple precision arithmetic library (GMP),” [Online]. Available:
www.gmplib.org, 2014.

[17] G. Chow, K. Eguro, W. Luk, and P. Leong, “A Karatsuba-based
Montgomery multiplier,” in Proc. Field Programmable Logic Appl.,
2010, pp. 434–437.

[18] M. K. Jaiswal and R. C. C. Cheung, “Area-efficient architectures
for large integer and quadruple precision floating point multi-
pliers,” in Proc. Field-Programmable Custom Comput. Mach., 2012,
pp. 25–28.

[19] G. Saldamlı and Ç. K. Koç, “Spectral modular exponentiation,” in
Proc. Comput. Arithmetic, 2007, pp. 123–132.

[20] Ç. K. Koç, T. Acar, and S. B. Kaliski, “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, vol. 16,
no. 3, pp. 26–33, Jun. 1996.

[21] P. B. Mclaughlin,“New frameworks for Montgomery’s modular
multiplication method,” Math. Comput., vol. 73, no. 246,
pp. 899–906, 2003.

[22] R. Creutzburg and M. Tasche, “Number-theoretic transforms of
prescribed length,”Math. Comput., vol. 47, pp. 693–701, 1986.

[23] J. M. Pollard, “The fast Fourier transform in a finite field,” Math.
Comput., vol. 25, pp. 365–374, 1971.

[24] J. Cooley and J. Turkey,“An algorithm for the machine computa-
tion of complex Fourier series,” Math. Comput., vol. 19, no. 90,
pp. 297–301, 1965.

[25] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algo-
rithms. New York, NY, USA: Springer, 1982.

[26] C. D. Walter,“Montgomery exponentiation needs no final sub-
tractions,” Electron. Lett., vol. 35, no. 21, pp. 1831–1832, 1999.

[27] N. Smart, “ECRYPT II yearly report on algorithms and keysizes
(2011–2012),” ECRYPT II, Tech. Rep. ICT-2007-216676, 2012.

[28] F. de Dinechin, H. D. Nguyen, and B. Pasca, “Pipelined FPGA
adders,” in Proc. Field Programmable Logic Appl., 2010, pp. 422–427.

[29] D. J. Bernstein. (2001). Multidigit multiplication for mathemati-
cians [Online]. Available: http://cr.yp.to/papers.html#m3

[30] Y.-N. Chang and K. Parhi, “An efficient pipelined FFT
architecture,” IEEE Trans. Circuits Syst. II: Analog Digital Signal
Process., vol. 50, no. 6, pp. 322–325, Jun. 2003.

[31] J. McClellan, “Hardware realization of a Fermat number trans-
form,” IEEE Trans. Acoust., Speech Signal Process., vol. 24, no. 3,
pp. 216–225, Jun. 1976.

[32] G. X. Yao, R. C. C. Cheung, Ç. K. Koç, and K. F. Man,
“Reconfigurable number theoretic transform architectures for
cryptographic applications,” in Proc. Field-Programmable Technol.,
2010, pp. 308–311.

[33] D. Chen, N. Mentens, F. Vercauteren, S. Roy, R. Cheung, D. Pao,
and I. Verbauwhede, “High-speed polynomial multiplication
architecture for ring-LWE and SHE cryptosystems,” IEEE Trans.
Circuits Syst. I: Regular Papers, vol. 62, no. 1, pp. 157–166, Jan. 2015.

Donald Donglong Chen received the BEng
degree in electronic and information engineering
from Wuhan University of Technology in 2011.
He is currently working toward the PhD degree at
the Department of Electronic Engineering, City
University of Hong Kong. His research interests
include cryptographic algorithm optimization in
hardware and high-speed digital system design,
especially in field programmable gate array
(FPGA). He is a student member of the IEEE.

Gavin Xiaoxu Yao received the bachelor’s
degree in control science and engineering from
the Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2009, and the PhD degree
in electronic engineering from the City University
of Hong Kong in 2014. His research interests
include hardware/algorithm codesign for public-
key cryptography, fast arithmetic using residue
number system, and field programmable gate
array (FPGA).

Ray C.C. Cheung received the BEng and MPhil
degrees in computer engineering and computer
science and engineering at the Chinese Univer-
sity of Hong Kong (CUHK), Hong Kong, in 1999
and 2001, respectively, and the PhD degree and
DIC in computing at Imperial College London,
London, United Kingdom, in 2007. After complet-
ing the PhD work, he received the Hong Kong
Croucher Foundation Fellowship for his postdoc-
toral study in the Electrical Engineering Depart-
ment, University of California, Los Angeles

(UCLA). In 2009, he worked as a visiting research fellow in the Depart-
ment of Electrical Engineering, Princeton University, Princeton, NJ. Cur-
rently, he is an assistant professor in the Department of Electronic
Engineering, City University of Hong Kong (CityU). He is the author of
more than 40 journal papers and more than 50 conference papers. His
research team, CityU Architecture Lab for Arithmetic and Security
(CALAS), focuses on the following research topics: reconfigurable
trusted computing, applied cryptography, and high-performance biomed-
ical VLSI designs. He is a member of the IEEE.

Derek Pao received the BSc(Eng) degree in
electrical engineering from the University of Hong
Kong, and the master’s and PhD degrees in com-
puter science from Concordia University, Can-
ada. He is an associate professor with the
Electronic Engineering Department, City Univer-
sity of Hong Kong. His research interests include
hardware architectures for network processing,
and high speed pattern matching for network and
system security. He is a member of the IEEE.

Çetin Kaya Koç received the PhD degree in
electrical & computer engineering from the Uni-
versity of California Santa Barbara in 1988. His
research interests are in cryptographic hardware
and embedded systems, secure hardware
design, side-channel attacks and countermeas-
ures, algorithms and architectures for computer
arithmetic and finite fields. He is the cofounder of
the Workshop on Cryptographic Hardware and
Embedded Systems, and the founding editor-in-
chief of the Journal of Cryptographic Engineering.

He has also been in the editorial boards of IEEE Transactions on
Computers (2003-2008) and IEEE Transactions on Mobile Comput-
ing (2003-2007). Furthermore, he was a guest coeditor of April 2003
& November 2008 issues of the IEEE Transactions on Computers.
He is the coauthor of the three books Cryptographic Algorithms on
Reconfigurable Hardware, Cryptographic Engineering, and Open
Problems in Mathematics and Computational Science, published by
Springer. In 2007, he was elected as an IEEE fellow for his contribu-
tions to cryptographic engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

160 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

