
Crypto Corner
Editors: Peter Gutmann, pgut001@cs.auckland.ac.nz
David Naccache, david.naccache@ens.fr
Charles C. Palmer, ccpalmer@us.ibm.com

cryptanalysis methods examine only
cryptosystems’ theoretical founda-
tions—calculating how much effort
is needed to factorize a given 1,024-
bit RSA modulus, for example, falls
under this category. But even
though such questions are impor-
tant, they never accurately reflect the
strength of real systems in practice.
In reality, an adversary can observe
several different channels of infor-
mation in addition to a cryptosys-
tem’s inputs, outputs, and public
parameters. In other words, a flesh-
and-blood adversary can gather
much more information than the fa-
mous theoretical adversary, Eve.

Moreover, none of us are as lucky
as Alice or Bob, who have the luxury
of using the theoretical Turing ma-
chines described in textbooks. In-
stead, we use real devices, such as
computers, smart cards, and cell
phones, all of which reveal valuable
information to adversaries, simply
by letting them observe physical
characteristics such as execution
time,1 power consumption,2 and
electromagnetic dissipation.3 We call
these information channels side chan-
nels, and they’re clearly not among
the input and output channels that
Eve is used to observing.

This installment of Crypto Cor-
ner looks at some specific new side
channels that are enabled by the very

sophisticated ingredients of modern
microprocessor architectures.

Side-channel
cryptanalysis
Early side-channel studies initially
focused mainly on smart cards.
Compared to general computer sys-
tems, smart-card architectures are
quite simple and thus an easy target
for side-channel attacks. The secu-
rity community thought these at-
tacks couldn’t be applied to general
computer systems, but a timing at-
tack on a Web server in 2003
changed this perspective.4 Re-
searchers showed that such an attack
could even compromise remote sys-
tems over a network, which is very
different from applying side-channel
attacks on smart cards that are physi-
cally in your possession. Improve-
ments on the original remote timing
attack made it even more practical.5

Recent studies on side-channel
analysis have led to a new area, micro-
architectural analysis, which studies
the effects of common processor
components on cryptosystem secu-
rity. Researchers realized that
microprocessor component func-
tionalities generate easily observable,
data-dependent effects—a crypto al-
gorithm’s execution, for example,
leaves “footprints” on the persistent
state of data caches, instruction

caches, and branch prediction units.
These easy-to-see footprints depend
on the operations performed during
execution as well the data used in
them, so an adversary could break a
cryptosystem simply by running in
parallel a so-called spy process to trace
the footprints during or after the al-
gorithm’s execution. It’s important
to note that spy processes run in full
isolation and can’t directly read any
data from the cryptosystem, but
nevertheless, leaked footprints can
lead to dramatic security breaches.

We’ve seen many examples of such
micro-architectural attacks on widely
used cryptosystems such as AES6,7 and
RSA.8,9 Initial studies on cache attacks
weren’t really oriented around spy
processes, but the rise of spy-oriented
cache attacks in 2005 resulted in a
whole new paradigm. Let’s look more
closely at how these attacks work.

The birth of micro-
architectural analysis
A cache is a small storage area that a
CPU uses to reduce average memory
access time. By acting as a buffer be-
tween the main memory and the
processor core, it provides the proces-
sor with fast and easy access to the
most frequently used data (including
instructions) without frequent exter-
nal bus accesses. When the processor
needs to read a location in main
memory, it first checks to see if the
data is already in the cache. If the
data’s there (a cache hit), the processor
immediately uses it rather than ac-
cessing the main memory, which has
a significantly longer latency; other-
wise, it reads the data from the mem-
ory and stores a copy in the cache (a
cache miss). When the AES process
encrypts or decrypts a block of data,

ONUR

ACIİÇMEZ AND

JEAN-PIERRE

SEIFERT

Samsung
Electronics
R&D Center

ÇETİN KAYA

KOÇ

Oregon State
University

C
ryptanalysis is the study of the methods used to

obtain the meaning of encrypted information in

a cryptosystem (typically, by finding a secret

key)—in nontechnical terms, it’s also called

“code breaking” or “cracking the code.” However, conventional

Micro-Architectural
Cryptanalysis

62 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY

Crypto Corner

for example, it writes those parts of
the lookup tables accessed during ex-
ecution into cache.

However, this functionality also
enables adversaries to launch different
kinds of cache-based attacks on cryp-
tosystems. Let’s look at a simplified
example on AES. An adversary runs a
spy process that reads a large amount
of data from private memory (from a
large array, for instance). As a result of
this read operation, the cache con-
tains only some data from the spy’s
memory, if the array is big enough;
from this point forward, the spy
process releases the CPU, which
might continue or start an AES oper-
ation. The CPU writes those parts of
the lookup tables touched during the
encryption into the cache, which
overwrites some of the spy’s data.
Touched parts of the AES lookup ta-
bles stay in the cache even after the
AES process finishes its execution—
in other words, the cache contains the
AES execution’s footprints after its
termination. If the adversary runs the
spy process shortly after the AES ter-
minates, the spy can trace these foot-
prints—it simply reads its own private
memory, but this time, it also mea-
sures the time it takes to read each
small portion of the array. Because it
takes more time to read the portions
overwritten during AES execution,
the spy process can determine which
parts of the cache the AES modified.
This information also reveals which
parts of the lookup tables were ac-
cessed during encryption. If the ad-
versary can gather this kind of
information from several executions
of AES, it’s extremely easy to find the
secret key used in the cipher.

In this example, we don’t have to
assume that these processes run on a
simultaneous multithreading (SMT)
processor; SMT architectures exe-
cute multiple processes simultane-
ously by special hardware support,
thus on SMT architectures, the ad-
versary can observe cipher execution
“on the fly.” Here, the spy process
runs simultaneously with the cipher
process (as opposed to running after

the cipher process terminates), so an
adversary can analyze, for example,
each individual AES round and de-
termine which parts of the cache
were modified in each round instead
of during the entire AES execution.

Clearly, this approach provides
finer-grained information to the ad-
versary and makes it much easier to
break the cipher. Information from
fewer than 15 executions is enough
for SMT-based attacks to break 128-
bit AES.7 Furthermore, the recent in-
troduction of a new attack type that
seems impossible to launch on non-
SMT microprocessors has demon-
strated the severity of the security
weaknesses in SMT functionalities.10

Unleashing the
power of spies
Pure software-based side-channel
attacks, including data cache attacks,
rely on statistical methods and re-
quire many computational measure-
ments under the same key. In late
2006, a new and very powerful at-
tack type—simple branch predic-
tion—attracted significant attention
immediately after its introduction.9

This spy-oriented attack has the
power to extract almost all the key
bits from a single RSA execution by
accurately revealing the crypto-
system’s execution path. A recent
manuscript introduced another
related micro-architectural attack
type—instruction cache analysis—
that also reveals a process’s execution
path by simply observing a single ex-
ecution.8 The successful extraction
of enough information from a single
execution rendered many already
deployed side-channel mitigations
totally useless.

Branch prediction attacks9,11 and
instruction cache attacks8 differ from
basic data cache attacks, but they rely
on many of the same principles.
These attacks try to determine a
cryptosystem’s execution path instead
of data access patterns, which are the
focus of data cache attacks. The exe-
cution paths of public-key cryptosys-
tems such as RSA usually depend on

the key’s secret parameters. There-
fore, once adversaries obtain the exe-
cution path, they can reconstruct the
private key from this information.
Another novel application of execu-
tion path observation attacks is its ap-
plication to the binary extended
Euclidean algorithm (BEEA), which
is frequently used for RSA key setup
and certain real-world RSA side-
channel protections.12

The instruction cache is a dedi-
cated cache inside a CPU that stores
the instructions of recently executed
code sections. In instruction cache at-
tacks, the spy process executes
dummy instructions to overwrite the
instruction cache, which is funda-
mentally different from reading a large
array to overwrite the data cache,
which is what happens in data cache
attacks. Similar to the basic cache at-
tack method we described in the pre-
vious section, an adversary can run
such a spy process to execute dummy
instructions in parallel with a cipher
execution and thereby trace the ci-
pher’s footprints. In instruction cache
attacks, these footprints reveal which
instructions were executed inside the
cipher process—in other words, they
also reveal the cipher’s execution path.

The branch prediction mecha-
nism is a very crucial part of all gen-
eral-purpose microprocessors. To
complete at least one instruction per
clock cycle, those highly pipelined
microprocessors must guess the most
probable execution path before the
actual and final retirement of a con-
ditional branch and thus specula-
tively feed the pipeline with the next
instruction. However, if the specula-
tively executed instruction flow
turns out to be wrong, the execution
suffers from a misprediction delay be-
cause the CPU must flush the entire
pipeline and resume execution from
the correct instruction after the cur-
rent branch instruction.

Of the different types of branch
prediction attacks, the most powerful
is the simple branch prediction attack
(SBPA).9 SBPA targets the branch
target buffer (BTB), which is inside a

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 63

Crypto Corner

branch prediction unit (BPU). The
BTB stores data related to recently
executed branches; similar to a cache
miss, if the CPU can’t find the corre-
sponding data inside the BTB, the
branch’s execution takes longer. An
adversary can exploit this fact by run-
ning a spy process that observes the
changes inside the BTB during the
cryptosystem’s execution. To achieve
this functionality, the spy process
must execute specialized sequences
of several conditional branches and
measure the overall time.

M icro-architectural analysis of
cryptosystem implementations

is a promising and interesting new se-
curity research direction that will con-
tinue to grow. Because simple branch
prediction attacks and instruction
cache attacks can extract almost all the
RSA key bits by observing a single
RSA operation, they’re quite danger-
ous for real-world crypto implemen-
tations, such as OpenSSL, which runs
on more than 60 percent of the
world’s server installations. However,
the actual threat of micro-architec-
tural analysis isn’t limited just to cryp-
tographic algorithms: all the pure
software attacks mentioned here allow
a totally unprivileged process to com-
promise the security of microprocessor-
based computing environments.

The recent efforts in building
trusted computing platforms increase
the significance of these threats. Such
attacks can function even in the pres-
ence of sophisticated security mecha-
nisms such as memory protection,
sandboxing, or even virtualization be-
cause they exploit deep processor in-
gredients below the trust architecture
boundary. It’s therefore necessary to
carefully consider every piece of a
platform, from the highest level all the
way down to the deepest ingredients,
to achieve the goal of really secure and
trusted platforms and to avoid build-
ing a fortress on sand.

Unfortunately, trusted comput-
ing efforts address only architectural
boundaries and provide no micro-

architectural confinement of critical
information. Initiatives that enable a
simple CPU integration of crypto
accelerators, such as AMD’s Tor-
renza and TPM chips, are definitely a
promising and effective first step to
increase the strengths of the systems
against micro-architectural attacks.
However, we have to do a lot more to
completely overcome these threats.
In particular, reconsidering the
micro-architectural designs would
be a very positive approach.

References
1. P.C. Kocher, “Timing Attacks on

Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,”
Advances in Cryptology (CRYPTO
96), LNCS 1109, N. Koblitz, ed.,
Springer-Verlag, 1996, pp. 104–113.

2. P.C. Kocher, J. Jaffe, and B. Jun,
“Differential Power Analysis,”
Advances in Cryptology (CRYPTO
99), LNCS 1666, M. Wiener, ed.,
Springer-Verlag, 1999, pp. 388–397.

3. K. Gandolfi, C. Mourtel, and F.
Olivier, “Electromagnetic Analysis:
Concrete Results,” Cryptographic
Hardware and Embedded Systems
(CHES 01), LNCS 2162, Ç.K. Koç,
D. Naccache, and C. Paar, eds.,
Springer-Verlag, 2001, pp. 251–261.

4. D. Brumley and D. Boneh, “Remote
Timing Attacks are Practical,” Proc.
12th Usenix Security Symp., Usenix
Assoc., 2003, pp. 1–14.

5. O. Ac�içmez, W. Schindler, and
Ç.K. Koç, “Improving Brumley and
Boneh Timing Attack on Unpro-
tected SSL Implementations,” Proc.
12th ACM Conf. Computer and
Comm. Security (ACM-CCS 05), C.
Meadows and P. Syverson, eds.,
ACM Press, 2005, pp. 139–146.

6. O. Ac�içmez, W. Schindler, and
Ç.K. Koç, “Cache-Based Remote
Timing Attack on the AES,” Cryp-
tographers’ Track at the RSA Conf.
(CT-RSA 07), LNCS 4377, M.
Abe, ed., Springer-Verlag, 2007,
pp. 271–286.

7. M. Neve and J.-P. Seifert, “Ad-
vances on Access-Driven Cache
Attacks on AES,” to be published

in Selected Areas of Cryptography
(SAC 06), 2007.

8. O. Ac�içmez, “Yet Another Micro-
Architectural Attack: Exploiting I-
Cache,” Cryptology ePrint Archive,
report 2007/164, May 2007.

9. O. Ac�içmez, Ç.K. Koç, and J.-P.
Seifert, “On the Power of Simple
Branch Prediction Analysis,” to be
published in ACM Symp. Inform-
Ation, Computer and Comm. Secu-
rity (ASIACCS 07), 2007.

10. O. Ac�içmez and J.-P. Seifert,
“Cheap Hardware Parallelism
Implies Cheap Security,” to be
published in Fault Diagnosis and Tol-
erance in Cryptography (FDCT 07),
IEEE CS Press, 2007.

11. O. Ac�içmez, Ç.K. Koç, and J.-P.
Seifert, “Predicting Secret Keys via
Branch Prediction,” Cryptographers’
Track at the RSA Conf. (CT-RSA
07), LNCS 4377, M. Abe, ed.,
Springer-Verlag, 2007, pp. 225–242.

12. O. Ac�içmez, S. Gueron, and J.-P.
Seifert, “New Branch Prediction
Vulnerabilities in OpenSSL and
Necessary Software Countermea-
sures,” Cryptology ePrint Archive,
report 2007/039, Feb. 2007.

Onur Ac�içmez is a research scientist at
Samsung.His technical interests include
trusted computing, side-channel analysis,
implementation aspects of security tech-
nologies, and computer and information
security in general. Ac�içmez has a PhD in
electrical engineering and computer sci-
ence from Oregon State University. Con-
tact him at onur.aciicmez@gmail.com.

Jean-Pierre Seifert is a principal engineer
at Samsung. His technical interests
include all aspects of computer and infor-
mation security in general. Seifert has a
PhD in mathematics from the Johan-
Wolfgang Goethe University and is a BIT-
professor at Bolzano, Innsbruck, and
Trento. Contact him at jeanpierre
seifert@yahoo.com.

Çetin Kaya Koç is a professor at Oregon
State University. His technical interests
include computer architectures and
embedded systems, cryptographic engi-
neering, and information security. Koç has
a PhD in electrical and computer engi-
neering from the University of California,
Santa Barbara. He is a fellow of the IEEE.
Contact him at koc@cryptocode.net.

64 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

