
Chapter X

A DESIGN FRAMEWORK FOR SCALABLE AND

UNIFIED MULTIPLIERS IN GF(p) AND GF(2m)

ALEXANDRE F. TENCA1, ERKAY SAVA�2 and ÇETIN K. KOÇ1
1. School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97330, USA

{tenca, koc}@ece.orst.edu, www.eecs.oregonstate.edu
2. Faculty of Engineering and Natural Sciences

Sabanci University
Istanbul, TR-34956, TURKEY

erkays@sabanciuniv.edu, people.sabanciuniv.edu/erkays

The design of multiplication units that are reusable and scalable is of interest for
cryptographic applications, where the operand size in bits is usually large, and may
significantly change depending on the required level of security or the specific
cryptosystem (e.g., RSA or Elliptic Curve). The use of the Montgomery multiplication
(MM) method combined with techniques for time and space scheduling generates efficient
and general solutions in this arena. MM has proven to be useful in both GF(p) and GF(2m),
and opened up the door for unified architectures designed to accommodate both fields. The
scalable design does not rely on particular characteristics of the fields, it is adjustable for
the silicon area available, and it does not limit the precision of the operands (variable
precision). This way, the design lasts longer. This paper presents a generalization of the
concept of scalable and unified architectures for multiplication in GF(p) and GF(2m). A
design framework is initially presented, and followed by a design example of a radix-8
processing element for a scalable and unified MM architecture. Experimental results show
the potential of this method.

X.1. INTRODUCTION

Arithmetic operations in prime and binary extension fields, GF(p) and GF(2m), are
extensively used in cryptographic algorithms such as RSA [1], Diffie-Hellman key
exchange [2], the Government Digital Signature Standard [3], and elliptic curve
cryptography [4, 5]. Field multiplication is the most important of these operations since it is
the most frequently used and the most time critical operation of all.

The Montgomery multiplication algorithm [6] was initially proposed as an efficient
method to perform modular multiplication in prime fields. It was shown in [7] that

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

Montgomery multiplication can also be used in GF(2m), when elements are represented in
the standard basis and the irreducible polynomial for the field is taken arbitrarily. Based on
the similarities between the operations used in the Montgomery multiplication algorithm in
these fields, the authors have proposed a radix-2 multiplier that operates in both fields
(radix-2 unified architecture [8]).

Variants of the Montgomery multiplication algorithm [9, 10, 11] try to extract more
performance from software-based implementations on specific processors or arithmetic
coprocessors. Hardware implementations for this algorithm targeted to fixed-precision
operands were proposed in [11, 9, 12] and implementations using high radices have also
been investigated in [9, 13, 14, 15].

A scalable Montgomery multiplier design methodology for GF(p) was introduced for
hardware implementations in [16, 17] and a radix-2 unified architecture for GF(p) and
GF(2m), using the same architecture, was proposed in [8].

We call an arithmetic unit scalable when it can be reused or replicated in order to
generate long-precision results independently of the data path precision for which the unit
was originally designed. Designers often select a fixed maximum operand precision in
order to obtain an efficient modular multiplier implementation [14, 18, 19]. This type of
multiplier limits the size (degree) of the finite field which means that it cannot be used in a
field of higher degree.

Other designs are able to work on a larger field using operations on a smaller field,
supported by the concept of composite fields of the type GF(2m.n). Attacks based on Weil
descent can compromise the security of these designs since such attacks were shown to be
effective on elliptic curve discrete logarithm problem built over certain composite
extensions [20]. Hence, curve parameters should be carefully selected to avoid potential
security weaknesses in this case. Another way to avoid redesigning the system hardware
when more precision is needed consists in using software solutions over conventional fixed-
precision multipliers in general-purpose processor architectures. However, software
solutions are inefficient because only a low level of parallelism can be achieved with the
pipelined data path structure of these architectures.

Prime and binary extension fields have dissimilar properties but elements of either field
are represented using almost the same computer data structures. More than that, basic
arithmetic operations in both fields are only slightly different, pointing to the fact that a
design methodology may be established to define unified architectures. Modular
multiplication can be performed in several different ways [19], however, Montgomery
Multiplication algorithm is very suitable for hardware implementation of modular
multiplication in GF(p) and GF(2m), as discussed in [7]. It is desirable that a unified
module have only a small amount of extra area and a small penalty in terms of delay, when
compared to dedicated designs for each field type.

This paper extends the idea of scalable and unified architectures to higher radices,
provides general mathematical foundations, presents typical hardware requirements, and
discuss major design trade offs. The proposed generalization of the hardware algorithm is
important to collect under the same framework the radix-2 word-level MM hardware
algorithm for GF(p) [17], the radix-2 unified architecture [8], and the radix-8 scalable
architecture for GF(p) [21].

The resulting design methodology generates arithmetic modules that accept any
modulus or operand length. Other designs take advantage of specific length of moduli or
fields, or certain types of polynomials in order to get optimized results [22]. However,

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

designs optimized for specific input parameters are only interesting for reconfigurable
systems, since security levels may need to be changed for several reasons (e.g. the key size
for RSA is increasing in order to provide a compatible level of security).

Section 2 discusses the word-level MM algorithms for both prime and binary fields,
shows the relationship between them, and presents a generalized word-based and unified
algorithm. The hardware implementation issues and some possible solutions are covered in
Section 3. A scalable and unified multiplier design based on radix-8 is presented in
Section 4, followed by analysis, experimental results, and conclusion.

X.2. MONTGOMERY MULTIPLICATION IN GF(p) AND GF(2m)

For integers p, R, A, and B, the Montgomery multiplication of A and B, modulo p is
represented as:

)1()(mod
)mod))mod(((

),(
1

p
R

pRRpBABA
BAMonMult

⋅−⋅⋅+⋅
=

−

and when p and R are relatively prime, the result is an integer given as

pRBABAMonMult mod..),(1−= where R=2m, A < p, B < p, and p < R. The algorithm
works for any p provided that gcd(p, R) = 1, which is always true when p is odd.
Moreover, we consider that p is a prime number, thus multiplication is performed in the
field defined by this prime number. It is common to have p in the range [2m-2, 2m].

The Montgomery multiplication relies on a special representation of finite field
elements. A field element A can be transformed into another element in the same field
using the formula,)(mod. pRAA = , which is called the Montgomery image of the
element, or which is said to be in the Montgomery domain. Given two elements in the
Montgomery domain, A and B , the Montgomery multiplication computes

)(mod. pRCC = , which is the image of)(mod. pBAC = . The operations needed to
transform elements between these two representations use MonMult as follows:

)2()(mod)(mod),(122 pARpRARRAMonMultA === −

)3()(mod)1,(1 pRRAAMonMultA −⋅⋅==

where R2 (mod p) is pre-computed and saved for multiple use.

It was shown in [23] that there is a gain in using MonMult for even a small
number of multiplications. Its advantage, however, is exposed for computationally
intensive tasks, such as modular exponentiation and elliptic curve point operations,
where a large number of modular multiplications has to be performed. Other modular
operations, such as field addition and inversion (required for Elliptic Curve
Cryptography), can be also performed in the Montgomery domain. Algorithms for
Montgomery inversion are presented in [24] and [25]. Furthermore, it is possible to
design cryptosystems in which all calculations are done in Montgomery domain and
permanently eliminate the operations to transform data.

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

X.2.1 MULTIPLICATION IN GF(p)

The word-level algorithm for Montgomery multiplication in the prime field GF(p)
is described as:

Inputs: kandppppBaaaA uu),,,...,(,),,,...,(011011 −− ==
Output:]1,0[),,...,(011 −∈= − pcccC u
Step 1: 0=C
Step 2: for i = 0 to u – 1
Step 3:)(C BaC i+=
Step 4: kk pcq 2mod)2(1

00
−−=

Step 5: qpCC +=
Step 6: kCC 2/=
Step 7: if pC ≥ then pCC −=

where m-bit operands are represented by digits in radix 2k, � �kmu /= . Observe that q
is computed in such a way that 0c , the least-significant (LS) radix-2k digit of the
partial result (step 5), is equal to zero. The value 1

0
−p corresponds to the least-

significant radix-k word of p-1, the inverse of p. In other words, p. p-1 = 1. Note that
when k=1, 11

0 =−p (since p is prime), and q=c0, which reduces to the radix-2
algorithm presented in [8]. Also observe that

)4(2mod)2)(mod)2(()2mod)2(()2(mod 1

00
1

00
kkkkkk Cppcppcqp −=−≡−≡ −−

therefore, the k least-significant bits of C are going to be all zeros after the operation in
Step 5, which is a required condition to perform the right shift operation in Step 6.

The final reduction in Step 7 may be avoided if the range of the input operands and
the output are relaxed, as discussed in [28].

X.2.2 MULTIPLICATION IN GF(2m)

For the binary extension field GF(2m), the field elements are represented by
polynomials of degree (m-1) over GF(2) rather than integer numbers. Given two
polynomials A(x) and B(x)∈GF(2m), the Montgomery multiplication is defined as

)5())((mod)()()(xpxxBxAxC m−⋅⋅=

where the result C(x) is a polynomial and p(x) is the irreducible field polynomial of
degree m. Notice that R=2m is replaced by xm which is, in fact, represented exactly the
same way in the computer as the integer 2m, a bit-vector formed by a 1 followed by m
zeros. Furthermore, the elements of binary extension fields are represented using the
same data structures of the prime field. The elements of GF(7) and those of
GF(23) with an irreducible polynomial p(x) = x3 + x + 1 are represented
in the computer by the following sets of 3-bit vectors:

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

GF(7) = {000, 001, 010, 011, 100, 101, 110} (6)

GF(23) = {000, 001, 010, 011, 110, 111, 101} (7)

Only the arithmetic operations acting on field elements differ. The image of a

polynomial, A(x), in Montgomery domain is given as))((mod)()(xpxxAxA m⋅= .
Similarly, before performing Montgomery multiplication, the operands must be
transformed into the Montgomery domain and the result may be transformed back into
the standard polynomial representation using the pre-computed variable x2m mod p(x),
similarly to what was done in the GF(p) case as shown in Equations (2) and (3).

The word-level algorithm for Montgomery multiplication in GF(2m) is given as:

Inputs: mkxpxBxA ,),(),(),(
Output:)(xC
Step 1: mxC 0)(=
Step 2: for i = 0 to u – 1
Step 3:)()()()(xBxaxCxC i+=
Step 4: k

o xxpxcq mod)()(1
0

−=
Step 5:)()()(xqpxCxC +=
Step 6: kxxCxC /)()(=

where 0m represents an all-zero m-bit vector, � �kmu /= , and 1)(.)(0

1
0 =− xpxp . Each

input operand, A(x) for example, is represented by smaller polynomials ai(x) of degree
k-1, such that:

)8()()(
1

0
�

−

=

=
u

i

ik
i xxaxA

At the binary level, this polynomial manipulation corresponds to splitting the bit-

vector that represents the polynomial A(x) into blocks of k bits, which are equivalent to
radix-2k digits. The multiplications in the MM algorithm in GF(2m) (ai(x)B(x)) are
polynomial multiplications where operations on the coefficients are performed in
GF(2) or modulo 2 (without reduction). The extra subtraction operation in Step 7 of
the algorithm for multiplication in GF(p) is not required in the algorithm for GF(2m),
as shown in [7]. Also, the addition operation in the binary field corresponds to a
bitwise modulo-2 addition while the addition in GF(p) requires carry manipulation. A
detailed explanation is given in [7].

X.2.3 UNIFIED ARCHITECTURE REQUIREMENTS

The similarities between the two algorithms are evident. The only operations that
appear to be different are those in Step 4 of each algorithm, but even them can be
shown to be equivalent. The operation)2(1

0
−− pk corresponds to the change of sign, in

two's complement system, of a value represented by a bit-vector consisting of the least-

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

significant k bits of 1−p . However, addition and subtraction in GF(2m) are
indistinguishable from each other, and the change of sign is not required. In other
words, given three elements a, b, and c in GF(2m), such that a+b=c, it is also true that
a-b = c. Thus, Step 4 is equivalent in both algorithms.

The computation of 1
0
−p can be avoided when k is small. The discussion in [7] only

considers this situation when A is scanned bit-by-bit (k=1). In the case presented here
we are interested in finding the value q without computing 1

0
−p such that qp is a

multiple of p that forces the k least-significant bits of C to zero (Step 5 of each
iteration).

There are some basic requirements that must be satisfied to obtain a unified
architecture. The observations from the previous algorithms and conditions show that
the unified Montgomery multiplier can perform multiplication in both fields if:

• it has an adder module that performs addition with or without carry
propagation. Using this adder and a compatible representation of integer values
or polynomials (polynomial base used in this work), the system is capable of
performing integer multiplication or polynomial multiplication depending on the
field.

• the computation of q is efficiently done. The design may use table lookup,
reduced logic, or use pre-computed constants. The calculation of q will be in
the critical path and paying attention to this design problem is important to
obtain a fast final implementation.

Besides these computational requirements, the system must be designed in such a
way that (i) there are not too many resources that are specialized for a particular field
and (ii) the critical path delay of the unified design is very close to the critical path of
individual designs specialized for each case. The radix-2 implementation proposed
earlier [8] does not provide good results for the last requirement since the critical path
for addition in GF(p) is almost twice as long as the path required for addition in
GF(2m). For higher radices, these two requirements are more feasible. We show how
this is accomplished in the discussions that follow.

Polynomial multiplication defined for GF(2m) is more complicated than the
operation presented in the algorithm shown in this paper. The multiplication algorithm
for GF(2m) considers a polynomial multiplication without reduction, which turns out to
be only slightly different than the regular multiplication in the algorithm for GF(p). As
an example, consider two polynomials 01

2
2)(axaxaxA ++= and

01
2

2)(bxbxbxB ++= in GF(23). The multiplication operation defined for the
algorithm is given as:

)9()()(2

210 xbAxbAbAxBxA ⋅⋅⊕⋅⋅⊕⋅=⋅

or in general for 01
1

1 ...)(axaxaxA m
m +++= −

− and 01
1

1 ...)(bxbxbxB m
m +++= −

− in
GF(2m) as:

)10()()()(
1

0

j
m

j
j xbxAxBxA �

−

=

⋅⋅=⋅

and the addition (�) in GF(2m) is executed as a bitwise XOR of the bit vectors that
represent j

j xbxA ⋅⋅)(. The operation jxxA ⋅)(is equivalent to shifting the bit vector

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

that represents the polynomial)(xA , j bit positions to the left. Since bj is either 0 or 1
(an element in GF(2)), the operation with this bit will result in 0 or jxxA ⋅)(. Thus,
the multiples of)(xA are generated using XOR operations instead of additions, as
done in GF(p), and we go back to the same fundamental problem of modifying the
addition process only. A dual field adder can be designed and consistently used to
generate small polynomial or integer multiplications, depending on the field being used.

The algorithms presented in this section contain operations that require full-
precision arithmetic modules; thus limiting the designs to a fixed degree. Although
operand A is scanned digit-by-digit, the operations involving B and C are done using
full precision. In order to design a scalable architecture, we use modules that can
manipulate the operands as multi-precision numbers.

X.2.4 MULTI-PRECISION UNIFIED MONTGOMERY MULTIPLICATION
ALGORITHM FOR GF(p) AND GF(2m)

The use of small-precision words instead of full-precision operands alleviates the
broadcast problem in the circuit implementation and also makes the design very
modular. In addition, a multi-precision algorithm allows the creation of processing
units that can be reused in time or space, providing the main building blocks for the
design to be scalable multiplier architectures.

Consider that the m-bit operands B and p are represented with w-bit words (i.e.,
radix-2w digits). The exact number of words depends on C, since C in GF(p) can be as
big as 2p-1 and p requires m bits, thus, the number of words is computed as

� �wme /)1(+= . A multi-precision addition process may be used to manipulate these
words (similar to [16, 17]). The multi-precision unified Montgomery Multiplication
algorithm is as follows:

Inputs: fieldandkwpBA ,,,,,
Output:]1,1[−∈ pC
Step 1a: 0=C
Step 1b: 0=spill
Step 2: 10 −= utoifor
Step 3: 000)()|(cbacspill i Φ=
Step 4:),,(00 fieldpcfq =
Step 5a:)|()()|(000 cspillpqcspill Φ⋅=
Step 5b: 11 −= etojfor
Step 5c:)()()|(jjjij pqspillcbacspill ⋅ΦΦΦ⋅=
Step 6a: Wrccc jjj mod/)|(11 −− =
Step 6b: Wrcspillc ee mod/)|(11 −− =
Step 6c: 0=ec
Step 7: perform modular reduction if field is GF(p)

The algorithm scans operand B (multiplicand) and the modulus p using radix-2w

digits, and scans operand A (multiplier) using radix-2k digits (as shown in the previous

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

section). It is a generalization of the work presented in [8]. The digit vectors involved
in multiplication operations are),,...,,0(011 pppp e−= ,),,...,,0(011 bbbB e−= ,

),,...,,0(011 cccC e−= , and),,...,(011 aaaA u−= , where pi , bi, and ci are radix-2k digits, ai
is a radix-2k digit, and � �wmu /= .

For simplicity, the polynomial notation)(xA is equivalent to the integer notation
that uses only A. The addition operation has different implementations in GF(p) and
GF(2m) and for this reason it is represented by the Φ operator. The spill variable
consists of the carry-out digits from the multi-digit addition plus the bits that exceed
the word size in the digit multiplication. The range for this variable is discussed later.
The concatenation of two elements x and y (digits or digit-vectors) is represented as
(x|y).

The values of W and R depend on the field. For GF(p), W=2w and r=2k. For
GF(2m), W=xw and r=xk. At the binary level these values are represented the same
way. Observe also that C has m+1 bits to accommodate the partial result in GF(p),
and in GF(2m) the irreducible polynomial is represented with m+1 bits. Step 7 is
needed only in GF(p) and for this reason it is not considered in further detail in this
work.

The function),,(00 fieldpcf uses only the k least-significant bits of c0 and p0. For
GF(p), rpcfieldpcf k mod))2((),,(1

0000
−−⋅= , and for GF(2m) it corresponds to

rpc mod)(1
00
−⋅ .

The “ ⋅ ” operator corresponds to the multiplication presented in the previous
section, now restricted to the multiplication of a digit in radix 2k (ai or q) by a digit in
radix 2w (p0 or bj). The condition that kw ≥ must be imposed since we want to perform
the computation of q (Steps 3 and 4) in one clock cycle. If kw < , more than one word
will be required to obtain enough information to compute q.

Figure 1 - Alignment of words in the multi-precision computation

X.2.5 ALGORITHM DETAILS AND OPTIMIZATIONS

The presented algorithm is a valid multi-precision version of the full-precision
algorithm. The multiplication aibj generates a (k+w)-bit vector. The LS bit of this
vector is aligned with cj, which means that aibj is shifted j.w bits to the left. Since the

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

product has more than w bits, the most-significant k bits are kept in the spill variable.
Observe in Figure 1 that the spill must store the values that go across word boundaries
(groups of w bits) including the carries from previous additions (carry). The value for
the addition carry is computed as:

122)12(2)12(3 −+⋅≤−+−+ wwkw carrycarry

)11(
12

)12(2)12(2
−

−+−≥ w

kw

carry

which leads to the conclusion that carry has a maximum value of 3, when w is much
larger than k, and maximum of 4 when w = k (recall that wk ≤). Hence, spill is in the
range [0,2(2k-1)+4].

Once the LS k bits of cj are computed, the new value of cj-1 (shifted k bit positions
to the right) is generated (Step 6a). Step 6b can be removed if we add one extra zero
digit to p and B, and extend the loop in Step 5b by one more iteration. For that, as it
was already indicated in the previous section, p and B must be represented using
vectors with e+1 words (radix-2w digits). This modification is attractive to reduce the
control complexity of hardware operations.

As suggested in [16,17], the representation of partial results in Carry-Save (CS)
form is beneficial because addition is executed in a fixed time, independent of the
precision of the operands. In GF(p), CS notation is used in all intermediate steps to
represent C as two vectors (CC, CS), such that the value C is obtaining adding the two
vectors, which means: CSCCC += . The final result is converted to non-redundant
(conventional) representation before it is passes by the final reduction step (Step 7).
When operating in GF(2m) the carries are all zeros, since the Φ operator is equivalent
to modulo-2 addition of the bit operands. In this case, only the sum vector (CS)
contains the result and the carry vector (CC) is zero. The hardware resources used to
add the carry vector can be used in the unified architecture to add another bit-vector.
This point is made clear later.

X.3. THE ARCHITECTURE

The algorithm states that one digit of the multiplier A is scanned in each i-iteration.
After the LS word of the intermediate value of C is determined for digit a0 (least-
significant digit of A), which takes two j-iterations, the computation using a1 can start.
In other words, once the inner loop finishes the execution for j=1 in the ith iteration of
the outer loop, the (i+1)th iteration of outer loop can immediately start its execution.
Therefore, the level of concurrency that can be reached in Montgomery multiplication
algorithms (in any field) is very high [16, 17, 8]. The best architecture to reach high
throughput consists in several Processing Elements (PEs) in a pipeline organization,
each PE computing one i-iteration of the algorithm. In order to enable for a flexible
architecture, the number of PEs may be less than the number of digits in A. Each j-
iteration is computed in one clock cycle. Other researchers already proposed systolic
implementations of the Montgomery multiplication algorithm, but these architectures

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

use a huge amount of hardware and do not have the same characteristics of scalability
and unification that is part of the proposed architecture.

At the beginning of each PE's computation cycle (iteration), the PE receives the LS
word of the inputs. Based on these words and the selected field it determines the value
q and consequently the multiple of p to be used throughout the computation cycle
(steps 3 and 4). Each i-iteration is computed by a PE for e+1 clock cycles. In case the
first PE in the pipeline is still working on one iteration when the last PE in the pipeline
started to generate its output, the data generated by the last PE are stored in a buffer,
waiting for the first PE to finish its job. If there is at least � �2/)1(+e PEs, the pipeline
will be always working and the buffer won't be necessary. In the worst case (i.e. only
one PE in the pipeline), an e-word buffer must be used to hold words of the
intermediate result (cj).

A timing diagram for the multiplication of 7-bit operands is shown in Figure 2 for
the word size w=k=1 and 3 PEs. Dots mark the time slots where a PE (stage) is busy.
Note that there is a delay of 2 clock cycles between the stage that computes the
iteration for ai and the stage for ai+1. At clock cycles 7 and 15, the first PE in the
pipeline can not engage in a new computation and thus the data produced by the last
PE in the pipeline needs to be stored in a buffer for 3 clock cycles. At clock cycles 10
and 19, the first PE becomes available and computation proceeds. Hence, we need a
buffer to hold 6 bits of the partial sum (C) while the first PE is busy.

Figure 2 - An example of pipelined computation for 7-bit operands which illustrates the
situation of data buffering and w=1, radix-2 design

Every time data pass through the pipeline with s PEs we call it a pipeline cycle.

The multiplication requires � �su / pipeline cycles. Considering the previous example,
3 pipeline cycles are needed and, as a consequence, the last two pipeline stages
perform extra computation. Recall that)(mod2 pBAC m−⋅⋅= is the definition of the
Montgomery multiplication where m is the number of bits considered for the modulus
and operands. When this extra computation is considered, the hardware is in fact
calculating)(mod2 pBAC kn−⋅⋅= where � �ssun /= corresponds to the number of PEs
that worked on the data during the multiplication, and mkn ≥ . It is always possible to
rearrange the Montgomery settings according to this new Montgomery exponent,
namely knR 2= (or knxR = in GF(2m) case).

The total computation time, T (clock cycles) is given by:

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

)12(
)1(2)1(

2)1(12

�
�
�

��
�

�

−++��

�
		

�

≤+−+��

�
		

�

=
otherwisese

ks
m

seifes
ks
m

T

where � �ksm / corresponds to the number of pipeline cycles, s is the number of PEs in
the pipeline (pipeline stages), and)(log2 rk = (radix-r system). Notice that the first line
of the formula gives the execution time in clock cycles when there is sufficient number
of PEs while the second line corresponds to the case when the data must be buffered
for a while before entering the pipeline again. In [17] it is discussed how the utilization
of PEs is affected by different conditions, such as the number of PEs in the pipeline
and the operands' size.

An example of the pipeline organization with s PEs is shown in Figure 3. The
pipeline of several PEs is called a kernel, because it is the main computational part of
the whole multiplier. The multiplier digits (ai), provided serially to the PEs, are not
used again in later stages and can be discarded. Therefore, a simple shift register
would be sufficient to store A. The content of the memory elements that hold p and B
cannot be destroyed and for this reason a circular register is used. The queue element
(FIFO) to store C has its maximum capacity determined by the number of pipeline
stages (s) and the number of words (e) in operand A. An estimate of the maximum
required length of the queue is given as:

()

)13(
1

2)1()1(21

�
�
� >+−−+

=
otherwise

seifse
L

The proposed organization has some degrees of freedom and the evaluation of the

best design configurations can be found in [26]. Since we intend to design a fully
scalable architecture and we do not want to have the multiplier registers as a limiting
factor in the design, one can extend the capacity of these registers using external
memory for the excessive words. In this case the length of the registers no longer
depends on the precision or the number of PEs. The LS operand words are brought
from memory to the registers first and the remaining words are stored in the memory
and transferred to the multiplier when needed. However, when the memory transfer
rate is not sufficient, the pipeline must be stalled while the data is loaded. This
condition would not be ideal but it would still be better than forbidding a particular
computation based on a limited capacity of registers in the system.

The task of loading the long-precision registers must be handled by another part of
the system that interfaces with the user or host system, and is beyond the scope of this
work. The modular reduction of the result (Step 7) must also be done by another
module [21]. As mentioned before, the reduction step can be avoided when the range
for input operands is relaxed [27, 28].

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

Figure 3 - Pipeline organization with s PEs

X.3.1 PROCESSING ELEMENT

The block diagram of a processing element (PE) for the general unified multiplier
architecture is shown in Figure 4. The blocks represent the major arithmetic functions
performed by a PE. For simplicity, Figure 4 shows the data buses' widths for non-
redundant numbers. Redundant number representation implies more bits per bus. Gray
boxes represent registers.

Figure 4 - Processing element

The Digit Multiplier DM1 generates the multiples ji ba ⋅ required in the algorithm

steps 3 and 5c. The Φ operation is implemented by two layers of multi-precision

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

dual-field adders. The main structure of the multi-precision dual-field adder
(MPDFA) is shown in Figure 5. It makes use of a basic component called dual-field
adder and registers to propagate information from one word operation to another. A
carry-ripple adder design is shown in the multi-precision dual-field adder for
simplicity. Other types of adder may be used. The design shown in Section 4 uses a
Carry-Save adder structure. The Dual-field adder performs bit-wise addition with or
without carry, depending on the field. A dual-field full-adder component (3-2 adder)
was presented in [8] in a radix-2 version of the unified multiplier. We propose another
design alternative in Section 4.2.

Figure 5 - Multi-Precision non-redundant Dual-Field Adder

Digit multiplier DM2 generates the multiples jpq ⋅ (Step 5c), based on the value

q generated by f block (Step 4). Steps 6a and 6b of the hardware algorithm are
implemented by proper wiring and registers, as shown at the bottom of Figure 4.

Function f is used only at the beginning of the PEs computation, and it lies in the
critical path of this design. A retiming strategy [21] may be used to reduce the impact
of f in the design, as shown in Figure 6. For simplicity, the bus widths are not shown.
In this case, a few LS bits of the LS operand words coming to the PE are required in
order to obtain enough information to feed function f. The other bits are computed in a
second sub-stage. The MP adders A and B work on words of incoming operands in
different algorithm steps. While MP adder A is computing the LS bits of word i+1,
MP adder B is computing the most-significant bits of word i. Therefore, carry bits are
passed between them to perform the multi-precision addition, as shown in the figure.
More details about this operation are presented in [21]. This approach adds one extra
cycle to the overall pipeline structure, but provides a significant reduction in the
critical path. Function f may be moved to the second sub-stage, if such modification
results in a reduced critical path delay.

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

Figure 6 - Retimed Processing Element

X.4. EXAMPLE: A RADIX-8 UNIFIED PE DESIGN

In this section the general design framework presented in the previous sections are
applied in the design of a radix-8 PE (k=3). CS adders are used to obtain fast addition
at the PE level. The presentation of this example is instrumental to give the reader a
better idea of the several design aspects that must be decided in the process, and some
of the possible alternatives to get the best results out of the general case presented up
to now.

X.4.1 DIGIT MULTIPLIERS

The input digits ai are in the digit set D = {0, 1, 2, 3, 4, 5, 6, 7}. In GF(p) it is
more convenient to obtain the multiples aiB using signed basic multiples of the form
2kB, such that “hard”' products are generated using at most two basic multiples, such
as: 7B = 8B - B, 3B = 2B + B = 4B - B and so on. However, negative multiples cannot
be used to generate products in GF(2m). In this field, three values (4B, 2B, and B) must
be generated and then added to obtain all possible multiples aB, with Da ∈ .

Instead of combining the basic multiples at the digit multiplier level and delivering
only one bit-vector (as suggested in Section 3) we propose in this design to generate the
basic multiples and send them to the following multi-precision adder. This solution is

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

more attractive since the multi-precision adders can be optimized for the extra input
operands. Therefore, the proposed digit multiplier has 3 outputs: x, y, and z that
represent the basic multiples. Another output neg is used to complete the negation of a
multiple, when in GF(p). Output z has no meaning when working in GF(p) since
multiples of p in this field can be obtained with only two basic multiples (represented
by x and y). When working in GF(2m), all the output vectors are needed to transfer the
4x, 2x, and 1x multiples. The digit multiplier transfer then 2 multiples to the adder
when in GF(p) and 3 multiplies when in GF(2m). The fact that the value of z depends
on the field is considered in the design of the multi-precision adder.

The logic functions performed by the digit multiplier are shown in Table 1. The
notation B’ indicates bit complementation. It can be designed using a small logic gate
network and multiplexers. In the retimed PE organization, these muxes are split into
two parts, each part allocated in the first or second sub-stages. The control signals for
the muxes are passed from one sub-stage to another, after one clock cycle delay. Also
note that the digit multiplier must work on words of B. The same digit multiplier is
used to generate multiples of p.

ai GF(p) GF(2m)
 X Y z neg x y z neg

000 0 0 0 0 0 0 0 0
001 0 B 0 0 0 0 B 0
010 0 2B 0 0 0 2B 0 0
011 4B B’ 1 1 0 2B B 0
100 4B 0 0 0 4B 0 0 0
101 4B B 0 0 4B 0 B 0
110 4B 2B 0 0 4B 2B 0 0
111 8B B’ 1 1 4B 2B B 0

Table 1 - Function table for digit multiplication

X.4.2 4-INPUT DUAL-FIELD ADDERS

Considering the redundant representation of C (two bit-vectors in GF(p) and one
bit-vector in GF(2m)), and the multiples aiB and qM (three bit-vectors in GF(2m) and 2
bit-vectors in GF(p)), 4-input multi-precision adders must be used. They can be
designed using the dual-field adder proposed in [8], however, a better design can be
obtained when considering all 4 inputs together. The design of the 4-input Dual-Field
Adder is shown in Figure 7. It is similar to a 4-to-2 adder with the introduction of the
field information. In the radix-2 design [8], only one out of two XOR gates in the
critical path performs a valid operation in GF(2m), however, in radix 8, two out of
three XOR gates perform a valid operation in this field. This observation indicates that
the radix-8 design has a better resource utilization than the unified radix-2 design.

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

Figure 7 - 4-input Dual-Field Adder design

X.4.3 FUNCTION F

Depending on the field, different values of q are required based on the LS bits of c0
and p0 (Step 4). The values for radix 8, based on a non-redundant representation of the
LS bits of c0 and p0 is shown in Table 2.

Observe that there are several similarities between the two fields that could be used
to optimize the design of this table. Only two bits of p0 are enough to index the table
since the LS bit is always 1. The 3 LS bits of c0 are applied in non-redundant form.

LS bits LS bits of p0 in GF(p) LS bits of p0 in GF(2m)
c0 001 011 101 111 001 011 101 111

000 0 0 0 0 0 0 0 0
001 7 5 3 1 1 7 5 3
010 6 2 6 2 2 6 2 6
011 5 7 1 3 3 1 7 5
100 4 4 4 4 4 4 4 4
101 3 1 7 5 5 3 1 7
110 2 6 2 6 6 2 6 2
111 1 3 5 7 7 5 3 1

Table 2- Function f - generation of q

X.4.4 COMPLETE DESIGN

A block diagram for the radix-8 PE is shown in Figure 8. It puts together the digit
multipliers presented in Section 4.1, the multi-precision adders using 4-input dual-field
adders discussed in Section 4.2, and the function f presented in Section 4.3. Muxes are
used to select proper inputs for the multi-operand addition, according to the field.

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

Using these muxes we reduce the number of inputs in the multi-precision adder to
only 4. The use of the muxes is possible because output z of the digit multiplier is zero
when in GF(p) and carry bits are zeros in GF(2m).

Figure 8- Radix-8 Processing Element Block Diagram

X.5. EXPERIMENTAL RESULTS AND EVALUATION

The radix-8 unified design was described using VHDL and synthesized using
Mentor Graphics tools for a 0.5�m AMI CMOS technology (ADK library [29]). The
tool incorporates an estimate of wire delays and for this reason, an actual chip
implementation may show some small variation on the timing presented in this section.
Based on the highly modular design, the critical path of a PE defines the minimal clock
period that can be applied to the pipeline. Other components in the design, such as the
one responsible for final reduction, may be pipelined to match the PE critical path
delay. Table 3 shows the area (in equivalent gates, i.e. 2-input NAND gates) and delay
of some PE designs, using different word size (w). Observe that the word size is not
affecting the critical path because CS representation of intermediate results was used.

W Unified Architecture Only GF(p) [21]
 Area (gates) Critical Path (ns) Area (gates) Critical Path (ns)
8 1138 (14%) 9.84 999 8.32

16 1993 (12%) 9.84 1787 8.32
32 3646 (11%) 9.84 3280 8.32

Table 3 - Area/time values for PEs synthesized for 0.5�m AMI CMOS technology

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

An important parameter for evaluation consists in comparing a multiplier designed

only for GF(p) with the unified multiplier. The design proposed in [21] uses radix 8
and works in GF(p) only. The unified design was synthesized for the same technology,
using the same tools. The synthesis results are also shown in Table 3. The Table shows
that the increase in area from an architecture designed only for GF(p) to the unified
architecture is only 11% to 14%. The delay in the critical path increased by 18%, with
a consequent reduction of 15% in maximum clock frequency at which the system can
operate. It was expected to find that the unified architecture would be slower and more
area consuming then the non-unified one, and the results obtained from this analysis
show that it is not a big price to be paid for all the extra functionality provided by the
unified architecture.

Several kernel configurations may be obtained using different number of PEs or
varying the word size used by the PE. The total area of the kernel is linearly dependent
on the number of PEs. The total number of cycles to perform a modular multiplication
on n-bit operands will depend on the kernel configuration. Table 4 shows the number
of clock cycles to perform the operation for some typical n values and some chosen
kernel configurations (with approximately 30,000 gates). Observe that the hardware is
capable of executing in � 0.8 to 1.8 clock cycles/bit. A reconfigurable architecture
shown in [30] works at a speed of 1 clock cycle/bit. It is important to say that the
design in [30] has extended functionality (performs more than just multiplication) and
it has an estimated area (our estimate) for the data path (excluding registers and I/O
interface) of roughly 440,000 devices (110,000 gates). This reconfigurable processor
executes operations in GF(2m) at the same speed as the operations in GF(p), the same
way it is done in the proposed architecture. Multiplication in GF(2m) is done using
conventional methods (not Montgomery multiplication).

n Kernel configurations (w,s)
 (8,25) (16,15) (32,8) (64,4)

128 116 98 100 90
256 232 196 184 180
512 510 436 410 436
1024 1868 1546 1476 1554

Table 4 - Clock cycles to perform modular multiplication in GF(p) or GF(2m) (radix 8)

A comparison of the speed of a radix-2 unified design with a microprocessor-based

implementation of MM in GF(p) was presented in [8] and demonstrates that a radix-2
design can be almost 10 times faster than an ARM microprocessor at 80MHz when
performing multiplication. The proposed radix-8 design could be therefore almost 30
times faster when working at the same frequency. Notice that the proposed design can
work at much higher clock frequency.

Since the multiplier design for GF(p) is the most complex one, it establishes the
lower bound on the unified architecture complexity. It is clear that the unified design
will yield less performance than other specific hardware designs proposed for GF(2m)
multiplication only.

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

The choice of the radix impacts the design complexity and it is not the goal of this
work to investigate the effect of different radices in the system performance. The radix-
8 example was taken to allow a better presentation of the concepts. A fair comparison
between the radix-2 unified architecture in [8] and this radix-8 architecture would
require re-synthesizing the radix-2 design. Nevertheless, it was shown in [21] that the
radix-8 design for GF(p) has a better area/time factor than the radix-2 design for the
same scalable architecture.

Another question is related to the kernel configuration that provides the best
area/time relation. This problem has been investigated in [26]. The best configuration
depends on the operand precision for which the multiplier is used the most. For
example, if the multiplier is optimized for 1024-bit numbers, and a maximum area of
30,000 gates, the configuration that provides the best result is p=8 and w=32
(14.5�sec). For 256 bits, the configuration should be p=2 and w=128 (1.7�sec). Both
cases obtained trying to get the best time from the architecture using the given area.
Recall that even though we optimize the configuration for a given precision, other
values of precision are still possible. In general, optimizing the design for the largest
precision is the best choice. For example: the configuration p=8 and w=32 performs
multiplication on 256-bit operands in 1.8�secs, just slightly slower than the best
configuration of p=2 and w=128.

X.6. SUMMARY

This chapter presented a design framework to obtain scalable and unified modular
multipliers based on Montgomery multiplication algorithm. These multipliers are able
to work in both GF(p) and GF(2m). The advantage of this approach resides on the
flexibility of the proposed solution. The resulting designs allow the use of any modulus
value or any irreducible polynomial. This feature is important for cryptosystems using
ECC and RSA that require added security. The design is highly scalable allowing the
designer to create a system that fits a particular area and extract a good level of
performance from the available silicon. Any precision of the operands is allowed, up to
a maximum system memory capacity. The kernel itself is designed to handle an
unlimited precision of the operands.

Our experiments show that the speed of our design example using radix-8 digits is
very good with significantly less area than other approaches, and still offering a lot of
flexibility. Previous work on a radix-2 architecture shows that the unified design is
able to run almost 10 times faster than an optimized code on an ARM microprocessor.
The generalization of unified architectures for any radix, as proposed in this text,
opens the door to the investigation of the impact of other radices in the system
performance, and the exploration of several alternatives for the implementation of
system components, such as adders and digit multipliers.

References:
[1] J.-J. Quisquater and C. Couvreur, “Fast decipherment algorithm for RSA public-key

cryptosystem,” IEE Electronics Letters, vol. 18, no. 21, October 1982, pp. 905-907.

Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç

[2] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, November 1976, pp. 644-654.

[3] National Institute for Standards and Technology, “Digital signature standard (DSS),”
Federal Register, August 1991.

[4] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,
no. 177, January 1987, pp. 203-209.

[5] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
Boston, MA, 1993.

[6] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of
Computation, vol. 44, no. 170, April 1985, pp. 519-521.

[7] Ç. K. Koç and T. Acar, “Montgomery multiplication in GF(2k),” Designs, Codes and
Cryptography, vol. 14, no. 1, April 1998, pp. 57-69.

[8] E. Sava�, A. F. Tenca, and Ç. K. Koç, “A scalable and unified multiplier architecture
for finite fields GF(p) and GF(2m),” Lecture Notes in Computer Science -
Cryptographic Hardware and Embedded System - CHES'2000, Ç. K. Koç and
Christof Paar, Eds. 2000, vol. 1965, pp. 277-292, Springer, Berlin, Germany.

[9] H. Orup, “Simplifying quotient determination in high-radix modular multiplication,”
12th Symposium on Computer Arithmetic, Knowles S and W. H. McAllister (Eds.),
Bath, England, July 1995, pp. 193-199, IEEE Computer Society Press.

[10] Ç. K. Koç, T. Acar, and B. S. Kaliski, “Analyzing and comparing Montgomery
multiplication algorithms,” IEEE Micro, vol. 16, no. 3, June 1996, pp. 26-33.

[11] A. Bernal and A. Guyot, “Design of a modular multiplier based on Montgomery's
algorithm,” 13th Conference on Design of Circuits and Integrated Systems, Madrid,
Spain, November 17-20 1998, pp. 680-685.

[12] S. E. Eldridge and C. D. Walter, “Hardware implementation of Montgomery's modular
multiplication algorithm,” IEEE Transactions on Computers, vol. 42, no. 6, June
1993, pp. 693-699.

[13] P. Kornerup, “High-radix modular multiplication for cryptosystems,” 11th Symposium
on Computer Arithmetic, E. Swartzlander, Jr., M. J. Irwin, and G. Jullien (Eds.),
Windsor, Ontario, June 29 - July 2 1993, pp. 277-283, IEEE Computer Society Press.

[14] A. Royo, J. Moran, and J. C. Lopez, “Design and implementation of a coprocessor for
cryptographic applications,” European Design and Test Conference, Paris, France,
March 17-20 1997, pp. 213-217.

[15] C. D. Walter, “Space/Time trade-offs for higher radix modular multiplication using
repeated addition,” IEEE Transactions on Computers, vol. 46, no. 2, February 1997,
pp. 139-141.

[16] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Modular Multiplication
Based on Montgomery's Algorithm,” IEEE Transactions on Computers, vol. 52, no. 9,
September 2003, pp. 1215-1221.

[17] A. F. Tenca and Ç. K. Koç, “A scalable architecture for Montgomery multiplication,”
Lecture Notes in Computer Science, 1999, vol. 1717 Workshop on Cryptographic
Hardware and Embedded Systems - CHES'99, pp. 94-108, Springer, Berlin,
Germany.

[18] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An implementation of elliptic curve
cryptosystems over F2

155,” IEEE Journal on Selected Areas in Communications,
vol. 11, no. 5, pp. 804-813, June 1993.

[19] D. Naccache and D. M'Raihi, “Cryptographic smart cards,” IEEE Micro, vol. 16,
no. 3, June 1996, pp. 14-24.

[20] M. Jacobson, A. J. Menezes, and A. Stein, “Solving elliptic curve discrete logarithm
problems using Weil descent,” CACR Technical Report CORR2001-31, University of
Waterloo, May 2001.

A design framework for scalable and unified multipliers in GF(p) and GF(2m)

[21] A. F. Tenca, G. Todorov, and Ç. K. Koç, “High-radix design of a scalable modular
multiplier,” Cryptographic Hardware and Embedded Systems - CHES'2001, Ç. K.
Koç, D. Naccache, and C. Paar (Eds.), Paris, France, May 2001, Lecture Notes in
Computer Science, No. 2162, pp. 185-201, Springer, Berlin, Germany.

[22] H. Wu, “Montgomery multiplier and squarer in GF(2m),” Cryptographic Hardware
and Embedded Systems, Ç. K. Koç and C. Paar (Eds.) 1999, Lecture Notes in
Computer Science, No. 1965, pp. 264-276, Springer, Berlin, Germany.

[23] J.-H. Oh and S.-J. Moon, “Modular multiplication method,” IEEE Proceedings,
vol. 145, no. 4, July 1998, pp. 317-318.

[24] B. S. Kaliski Jr., “The Montgomery inverse and its applications,” IEEE Transactions
on Computers, vol. 44, no. 8, August 1995, pp. 1064-1065.

[25] E. Sava� and Ç. K. Koç, “The Montgomery inversion - revisited,” IEEE Transactions
on Computers, vol. 49, no. 7, July 2000, pp. 763-766.

[26] B. Kurniawan, “ASIC design and implementation of a parallel exponentiation
algorithm using optimized scalable Montgomery multipliers,” M.S. thesis, Oregon
State University, Corvallis, Oregon, USA, 2002.

[27] G. Hachez and J.-J. Quisquater, “Montgomery exponentiation with no final
subtractions: improved results,” Lecture Notes in Computer Science - Cryptographic
Hardware and Embedded System - CHES'2000, Ç. K. Koç and C. Paar (Eds.), 2000,
vol. 1965, pp. 293-301, Springer, Berlin, Germany.

[28] C. D. Walter, “Montgomery exponentiation needs no final subtractions,” IEE
Electronics Letters, vol. 35, no. 21, October 1999, pp. 1831-1832.

[29] ASIC Design Kit. Mentor Graphics Co., “ADK documentation,” obtained from
http://www.mentor.com/partners/hep/AsicDesignKit/ASICindex.html.

[30] J. Goodman and A. P. Chandrakasan, “An energy-efficient reconfigurable public-key
cryptography processor,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11, 2001,
pp. 1808-1820.

