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The design of multiplication units that are reusable and scalable is of interest for 
cryptographic applications, where the operand size in bits is usually large, and may 
significantly change depending on the required level of security or the specific 
cryptosystem (e.g., RSA or Elliptic Curve). The use of the Montgomery multiplication 
(MM) method combined with techniques for time and space scheduling generates efficient 
and general solutions in this arena. MM has proven to be useful in both GF(p) and GF(2m), 
and opened up the door for unified architectures designed to accommodate both fields. The 
scalable design does not rely on particular characteristics of the fields, it is adjustable for 
the silicon area available, and it does not limit the precision of the operands (variable 
precision). This way, the design lasts longer. This paper presents a generalization of the 
concept of scalable and unified architectures for multiplication in GF(p) and GF(2m). A 
design framework is initially presented, and followed by a design example of a radix-8 
processing element for a scalable and unified MM architecture. Experimental results show 
the potential of this method. 

 
 

X.1. INTRODUCTION 

Arithmetic operations in prime and binary extension fields, GF(p) and GF(2m), are 
extensively used in cryptographic algorithms such as RSA [1], Diffie-Hellman key 
exchange [2], the Government Digital Signature Standard [3], and elliptic curve 
cryptography [4, 5]. Field multiplication is the most important of these operations since it is 
the most frequently used and the most time critical operation of all. 

The Montgomery multiplication algorithm [6] was initially proposed as an efficient 
method to perform modular multiplication in prime fields. It was shown in [7] that 
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Montgomery multiplication can also be used in GF(2m), when elements are represented in 
the standard basis and the irreducible polynomial for the field is taken arbitrarily. Based on 
the similarities between the operations used in the Montgomery multiplication algorithm in 
these fields, the authors have proposed a radix-2 multiplier that operates in both fields 
(radix-2 unified architecture [8]). 

Variants of the Montgomery multiplication algorithm [9, 10, 11] try to extract more 
performance from software-based implementations on specific processors or arithmetic 
coprocessors. Hardware implementations for this algorithm targeted to fixed-precision 
operands were proposed in [11, 9, 12] and implementations using high radices have also 
been investigated in [9, 13, 14, 15].  

A scalable Montgomery multiplier design methodology for GF(p) was introduced for 
hardware implementations in [16, 17] and a radix-2 unified architecture for GF(p) and 
GF(2m), using the same architecture, was proposed in [8].  

We call an arithmetic unit scalable when it can be reused or replicated in order to 
generate long-precision results independently of the data path precision for which the unit 
was originally designed. Designers often select a fixed maximum operand precision in 
order to obtain an efficient modular multiplier implementation [14, 18, 19]. This type of 
multiplier limits the size (degree) of the finite field which means that it cannot be used in a 
field of higher degree.  

Other designs are able to work on a larger field using operations on a smaller field, 
supported by the concept of composite fields of the type GF(2m.n). Attacks based on Weil 
descent can compromise the security of these designs since such attacks were shown to be 
effective on elliptic curve discrete logarithm problem built over certain composite 
extensions [20]. Hence, curve parameters should be carefully selected to avoid potential 
security weaknesses in this case. Another way to avoid redesigning the system hardware 
when more precision is needed consists in using software solutions over conventional fixed-
precision multipliers in general-purpose processor architectures. However, software 
solutions are inefficient because only a low level of parallelism can be achieved with the 
pipelined data path structure of these architectures.  

Prime and binary extension fields have dissimilar properties but elements of either field 
are represented using almost the same computer data structures. More than that, basic 
arithmetic operations in both fields are only slightly different, pointing to the fact that a 
design methodology may be established to define unified architectures. Modular 
multiplication can be performed in several different ways [19], however, Montgomery 
Multiplication algorithm is very suitable for hardware implementation of modular 
multiplication in GF(p) and GF(2m), as discussed in [7]. It is desirable that a unified 
module have only a small amount of extra area and a small penalty in terms of delay, when 
compared to dedicated designs for each field type.  

This paper extends the idea of scalable and unified architectures to higher radices, 
provides general mathematical foundations, presents typical hardware requirements, and 
discuss major design trade offs. The proposed generalization of the hardware algorithm is 
important to collect under the same framework the radix-2 word-level MM hardware 
algorithm for GF(p) [17], the radix-2 unified architecture [8], and the radix-8 scalable 
architecture for GF(p) [21].  

The resulting design methodology generates arithmetic modules that accept any 
modulus or operand length. Other designs take advantage of specific length of moduli or 
fields, or certain types of polynomials in order to get optimized results [22]. However, 
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designs optimized for specific input parameters are only interesting for reconfigurable 
systems, since security levels may need to be changed for several reasons (e.g. the key size 
for RSA is increasing in order to provide a compatible level of security).  

Section 2 discusses the word-level MM algorithms for both prime and binary fields, 
shows the relationship between them, and presents a generalized word-based and unified 
algorithm. The hardware implementation issues and some possible solutions are covered in 
Section 3. A scalable and unified multiplier design based on radix-8 is presented in 
Section 4, followed by analysis, experimental results, and conclusion. 

 
 

X.2. MONTGOMERY MULTIPLICATION IN GF(p) AND GF(2m) 

For integers p, R, A, and B, the Montgomery multiplication of A and B, modulo p is 
represented as: 
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and when p and R are relatively prime, the result is an integer given as 

pRBABAMonMult mod..),( 1−=  where R=2m, A < p, B < p, and p < R. The algorithm 
works for any p provided that gcd(p, R) = 1, which is always true when p is odd. 
Moreover, we consider that p is a prime number, thus multiplication is performed in the 
field defined by this prime number. It is common to have p in the range [2m-2, 2m]. 

The Montgomery multiplication relies on a special representation of finite field 
elements. A field element A can be transformed into another element in the same field 
using the formula, )(mod. pRAA = , which is called the Montgomery image of the 
element, or which is said to be in the Montgomery domain. Given two elements in the 
Montgomery domain, A  and B , the Montgomery multiplication computes 

)(mod. pRCC = , which is the image of )(mod. pBAC = . The operations needed to 
transform elements between these two representations use MonMult as follows:  

 
)2()(mod)(mod),( 122 pARpRARRAMonMultA === −   

 
)3()(mod)1,( 1 pRRAAMonMultA −⋅⋅==   

 
where R2 (mod p) is pre-computed and saved for multiple use. 

It was shown in [23] that there is a gain in using MonMult for even a small 
number of multiplications. Its advantage, however, is exposed for computationally 
intensive tasks, such as modular exponentiation and elliptic curve point operations, 
where a large number of modular multiplications has to be performed. Other modular 
operations, such as field addition and inversion (required for Elliptic Curve 
Cryptography), can be also performed in the Montgomery domain. Algorithms for 
Montgomery inversion are presented in [24] and [25]. Furthermore, it is possible to 
design cryptosystems in which all calculations are done in Montgomery domain and 
permanently eliminate the operations to transform data. 
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X.2.1 MULTIPLICATION IN GF(p) 

The word-level algorithm for Montgomery multiplication in the prime field GF(p) 
is described as: 

 
Inputs:  kandppppBaaaA uu ),,,...,(,),,,...,( 011011 −− ==  
Output:  ]1,0[),,...,( 011 −∈= − pcccC u  
Step 1:   0=C  
Step 2:   for i = 0 to u – 1 
Step 3:   )(C BaC i+=  
Step 4:    kk pcq 2mod)2( 1

00
−−=  

Step 5:   qpCC +=   
Step 6:    kCC 2/=  
Step 7:   if pC ≥ then pCC −=  

 
where m-bit operands are represented by digits in radix 2k, � �kmu /= . Observe that q 
is computed in such a way that 0c , the least-significant (LS) radix-2k digit of the 
partial result (step 5), is equal to zero. The value 1

0
−p corresponds to the least-

significant radix-k word of p-1, the inverse of p. In other words, p. p-1 = 1. Note that 
when k=1, 11

0 =−p  (since p is prime), and q=c0, which reduces to the radix-2 
algorithm presented in [8]. Also observe that 

 
)4(2mod)2)(mod)2(()2mod)2(()2(mod 1
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1
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therefore, the k least-significant bits of C are going to be all zeros after the operation in 
Step 5,  which is a required condition to perform the right shift operation in Step 6. 

The final reduction in Step 7 may be avoided if the range of the input operands and 
the output are relaxed, as discussed in [28]. 

 
 

X.2.2 MULTIPLICATION IN GF(2m) 

For the binary extension field GF(2m), the field elements are represented by 
polynomials of degree (m-1) over GF(2) rather than integer numbers. Given two 
polynomials A(x) and B(x)∈GF(2m), the Montgomery multiplication is defined as  

 
)5())((mod)()()( xpxxBxAxC m−⋅⋅=  

 
where the result C(x) is a polynomial and p(x) is the irreducible field polynomial of 
degree m. Notice that R=2m is replaced by xm which is, in fact, represented exactly the 
same way in the computer as the integer 2m, a bit-vector formed by a 1 followed by m 
zeros. Furthermore, the elements of binary extension fields are represented using the 
same data structures of the prime field. The elements of GF(7) and those of  
GF(23) with an irreducible polynomial p(x) = x3 + x + 1 are represented  
in the computer by the following sets of 3-bit vectors:  
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GF(7) = {000, 001, 010, 011, 100, 101, 110}        (6)  
 

GF(23) = {000, 001, 010, 011, 110, 111, 101}       (7) 
 
Only the arithmetic operations acting on field elements differ. The image of a 

polynomial, A(x), in Montgomery domain is given as ))((mod)()( xpxxAxA m⋅= . 
Similarly, before performing Montgomery multiplication, the operands must be 
transformed into the Montgomery domain and the result may be transformed back into 
the standard polynomial representation using the pre-computed variable x2m mod p(x), 
similarly to what was done in the GF(p) case as shown in Equations (2) and (3).  

The word-level algorithm for Montgomery multiplication in GF(2m) is given as: 
 

Inputs:  mkxpxBxA ,),(),(),(  
Output:  )(xC  
Step 1:   mxC 0)( =  
Step 2:   for i = 0 to u – 1 
Step 3:   )()()()( xBxaxCxC i+=  
Step 4:    k

o xxpxcq mod)()( 1
0

−=  
Step 5:   )()()( xqpxCxC +=   
Step 6:    kxxCxC /)()( =  

 
where 0m represents an all-zero m-bit vector, � �kmu /= , and 1)(.)( 0

1
0 =− xpxp . Each 

input operand, A(x) for example, is represented by smaller polynomials ai(x) of degree 
k-1, such that:  
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At the binary level, this polynomial manipulation corresponds to splitting the bit-

vector that represents the polynomial A(x) into blocks of k bits, which are equivalent to 
radix-2k digits. The multiplications in the MM algorithm in GF(2m) (ai(x)B(x)) are 
polynomial multiplications where operations on the coefficients are performed in 
GF(2) or modulo 2 (without reduction). The extra subtraction operation in Step 7 of 
the algorithm for multiplication in GF(p) is not required in the algorithm for GF(2m), 
as shown in [7]. Also, the addition operation in the binary field corresponds to a 
bitwise modulo-2 addition while the addition in GF(p) requires carry manipulation. A 
detailed explanation is given in [7].  

 
 

X.2.3 UNIFIED ARCHITECTURE REQUIREMENTS 

The similarities between the two algorithms are evident. The only operations that 
appear to be different are those in Step 4 of each algorithm, but even them can be 
shown to be equivalent. The operation )2( 1

0
−− pk  corresponds to the change of sign, in 

two's complement system, of a value represented by a bit-vector consisting of the least-
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significant k bits of 1−p . However, addition and subtraction in GF(2m) are 
indistinguishable from each other, and the change of sign is not required. In other 
words, given three elements a, b, and c in GF(2m), such that a+b=c, it is also true that 
a-b = c. Thus, Step 4 is equivalent in both algorithms.  

The computation of 1
0
−p  can be avoided when k is small. The discussion in [7] only 

considers this situation when A is scanned bit-by-bit (k=1). In the case presented here 
we are interested in finding the value q without computing 1

0
−p  such that qp is a 

multiple of p that forces the k least-significant bits of C to zero (Step 5 of each 
iteration). 

There are some basic requirements that must be satisfied to obtain a unified 
architecture. The observations from the previous algorithms and conditions show that 
the unified Montgomery multiplier can perform multiplication in both fields if: 

• it has an adder module that performs addition with or without carry 
propagation. Using this adder and a compatible representation of integer values 
or polynomials (polynomial base used in this work), the system is capable of 
performing integer multiplication or polynomial multiplication depending on the 
field.  

• the computation of q is efficiently done. The design may use table lookup, 
reduced logic, or use pre-computed constants. The calculation of q will be in 
the critical path and paying attention to this design problem is important to 
obtain a fast final implementation. 

Besides these computational requirements, the system must be designed in such a 
way that (i) there are not too many resources that are specialized for a particular field 
and (ii) the critical path delay of the unified design is very close to the critical path of 
individual designs specialized for each case. The radix-2 implementation proposed 
earlier [8] does not provide good results for the last requirement since the critical path 
for addition in GF(p) is almost twice as long as the path required for addition in 
GF(2m). For higher radices, these two requirements are more feasible. We show how 
this is accomplished in the discussions that follow. 

Polynomial multiplication defined for GF(2m) is more complicated than the 
operation presented in the algorithm shown in this paper. The multiplication algorithm 
for GF(2m) considers a polynomial multiplication without reduction, which turns out to 
be only slightly different than the regular multiplication in the algorithm for GF(p). As 
an example, consider two polynomials 01

2
2)( axaxaxA ++= and 

01
2

2)( bxbxbxB ++=  in GF(23). The multiplication operation defined for the 
algorithm is given as: 

 
)9()()( 2

210 xbAxbAbAxBxA ⋅⋅⊕⋅⋅⊕⋅=⋅  
 

or in general for 01
1

1 ...)( axaxaxA m
m +++= −

−  and 01
1

1 ...)( bxbxbxB m
m +++= −

−  in 
GF(2m) as: 

 

)10()()()(
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j
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j xbxAxBxA �

−

=
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and the addition ( � ) in GF(2m) is executed as a bitwise XOR of the bit vectors that 
represent j

j xbxA ⋅⋅)( . The operation jxxA ⋅)(  is equivalent to shifting the bit vector 
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that represents the polynomial )(xA , j bit positions to the left. Since bj is either 0 or 1 
(an element in GF(2)), the operation with this bit will result in 0 or jxxA ⋅)( . Thus, 
the multiples of )(xA  are generated using XOR operations instead of additions, as 
done in GF(p), and we go back to the same fundamental problem of modifying the 
addition process only. A dual field adder can be designed and consistently used to 
generate small polynomial or integer multiplications, depending on the field being used. 

The algorithms presented in this section contain operations that require full-
precision arithmetic modules; thus limiting the designs to a fixed degree. Although 
operand A is scanned digit-by-digit, the operations involving B and C are done using 
full precision. In order to design a scalable architecture, we use modules that can 
manipulate the operands as multi-precision numbers.  

 
 

X.2.4 MULTI-PRECISION UNIFIED MONTGOMERY MULTIPLICATION 
ALGORITHM FOR GF(p) AND GF(2m) 

The use of small-precision words instead of full-precision operands alleviates the 
broadcast problem in the circuit implementation and also makes the design very 
modular. In addition, a multi-precision algorithm allows the creation of processing 
units that can be reused in time or space, providing the main building blocks for the 
design to be scalable multiplier architectures.  

Consider that the m-bit operands B and p are represented with w-bit words (i.e., 
radix-2w digits). The exact number of words depends on C, since C in GF(p) can be as 
big as 2p-1 and p requires m bits, thus, the number of words is computed as 

� �wme /)1( += . A multi-precision addition process may be used to manipulate these 
words (similar to [16, 17]). The multi-precision unified Montgomery Multiplication 
algorithm is as follows: 

 
Inputs:   fieldandkwpBA ,,,,,  
Output:  ]1,1[ −∈ pC  
Step 1a:  0=C  
Step 1b:  0=spill  
Step 2:   10 −= utoifor  
Step 3:    000 )()|( cbacspill i Φ=  
Step 4:    ),,( 00 fieldpcfq =  
Step 5a:    )|()()|( 000 cspillpqcspill Φ⋅=  
Step 5b:   11 −= etojfor  
Step 5c:    )()()|( jjjij pqspillcbacspill ⋅ΦΦΦ⋅=  
Step 6a:    Wrccc jjj mod/)|( 11 −− =  
Step 6b:   Wrcspillc ee mod/)|( 11 −− =  
Step 6c:   0=ec  
Step 7:   perform modular reduction if field is GF(p) 

 
The algorithm scans operand B (multiplicand) and the modulus p using radix-2w 

digits, and scans operand A (multiplier) using radix-2k digits (as shown in the previous 
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section). It is a generalization of the work presented in [8]. The digit vectors involved 
in multiplication operations are ),,...,,0( 011 pppp e−= , ),,...,,0( 011 bbbB e−= , 

),,...,,0( 011 cccC e−= , and ),,...,( 011 aaaA u−= , where pi , bi, and ci are radix-2k digits, ai 
is a radix-2k digit, and � �wmu /= . 

For simplicity, the polynomial notation )(xA  is equivalent to the integer notation 
that uses only A. The addition operation has different implementations in GF(p) and 
GF(2m) and for this reason it is represented by the Φ  operator. The spill variable 
consists of the carry-out digits from the multi-digit addition plus the bits that exceed 
the word size in the digit multiplication. The range for this variable is discussed later. 
The concatenation of two elements x and y (digits or digit-vectors) is represented as 
(x|y).  

The values of W and R depend on the field. For GF(p), W=2w and r=2k. For 
GF(2m), W=xw and r=xk. At the binary level these values are represented the same 
way. Observe also that C has m+1 bits to accommodate the partial result in GF(p), 
and in GF(2m) the irreducible polynomial is represented with m+1 bits. Step 7 is 
needed only in GF(p) and for this reason it is not considered in further detail in this 
work.  

The function ),,( 00 fieldpcf  uses only the k least-significant bits of c0 and p0. For 
GF(p), rpcfieldpcf k mod))2((),,( 1

0000
−−⋅= , and for GF(2m) it corresponds to 

rpc mod)( 1
00
−⋅ .  

The “ ⋅ ” operator corresponds to the multiplication presented in the previous 
section, now restricted to the multiplication of a digit in radix 2k (ai or q) by a digit in 
radix 2w (p0 or bj). The condition that kw ≥ must be imposed since we want to perform 
the computation of q (Steps 3 and 4) in one clock cycle. If kw < , more than one word 
will be required to obtain enough information to compute q. 

 

 
Figure 1 - Alignment of words in the multi-precision computation 

 
 

X.2.5 ALGORITHM DETAILS AND OPTIMIZATIONS 

The presented algorithm is a valid multi-precision version of the full-precision 
algorithm. The multiplication aibj generates a (k+w)-bit vector. The LS bit of this 
vector is aligned with cj, which means that aibj is shifted j.w bits to the left. Since the 
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product has more than w bits, the most-significant k bits are kept in the spill variable. 
Observe in Figure 1 that the spill must store the values that go across word boundaries 
(groups of w bits) including the carries from previous additions (carry). The value for 
the addition carry is computed as:  

 
122)12(2)12(3 −+⋅≤−+−+ wwkw carrycarry  

)11(
12

)12(2)12(2
−

−+−≥ w

kw

carry  

 
which leads to the conclusion that carry has a maximum value of 3, when w is much 
larger than k, and maximum of 4 when w = k (recall that wk ≤ ). Hence, spill is in the 
range [0,2(2k-1)+4]. 

Once the LS k bits of cj are computed, the new value of cj-1 (shifted k bit positions 
to the right) is generated (Step 6a). Step 6b can be removed if we add one extra zero 
digit to p and B, and extend the loop in Step 5b by one more iteration. For that, as it 
was already indicated in the previous section, p and B must be represented using 
vectors with e+1 words (radix-2w digits). This modification is attractive to reduce the 
control complexity of hardware operations. 

As suggested in [16,17], the representation of partial results in Carry-Save (CS) 
form is beneficial because addition is executed in a fixed time, independent of the 
precision of the operands. In GF(p), CS notation is used in all intermediate steps to 
represent C as two vectors (CC, CS), such that the value C is obtaining adding the two 
vectors, which means: CSCCC += . The final result is converted to non-redundant 
(conventional) representation before it is passes by the final reduction step (Step 7). 
When operating in GF(2m) the carries are all zeros, since the Φ  operator is equivalent 
to modulo-2 addition of the bit operands. In this case, only the sum vector (CS) 
contains the result and the carry vector (CC) is zero. The hardware resources used to 
add the carry vector can be used in the unified architecture to add another bit-vector. 
This point is made clear later. 

 
 

X.3. THE ARCHITECTURE 

The algorithm states that one digit of the multiplier A is scanned in each i-iteration. 
After the LS word of the intermediate value of C is determined for digit a0 (least-
significant digit of A), which takes two j-iterations, the computation using a1 can start. 
In other words, once the inner loop finishes the execution for j=1 in the ith iteration of 
the outer loop, the (i+1)th iteration of outer loop can immediately start its execution. 
Therefore, the level of concurrency that can be reached in Montgomery multiplication 
algorithms (in any field) is very high [16, 17, 8]. The best architecture to reach high 
throughput consists in several Processing Elements (PEs) in a pipeline organization, 
each PE computing one i-iteration of the algorithm. In order to enable for a flexible 
architecture, the number of PEs may be less than the number of digits in A. Each j-
iteration is computed in one clock cycle. Other researchers already proposed systolic 
implementations of the Montgomery multiplication algorithm, but these architectures 
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use a huge amount of hardware and do not have the same characteristics of scalability 
and unification that is part of the proposed architecture. 

At the beginning of each PE's computation cycle (iteration), the PE receives the LS 
word of the inputs. Based on these words and the selected field it determines the value 
q and consequently the multiple of p to be used throughout the computation cycle 
(steps 3 and 4). Each i-iteration is computed by a PE for e+1 clock cycles. In case the 
first PE in the pipeline is still working on one iteration when the last PE in the pipeline 
started to generate its output, the data generated by the last PE are stored in a buffer, 
waiting for the first PE to finish its job. If there is at least � �2/)1( +e  PEs, the pipeline 
will be always working and the buffer won't be necessary. In the worst case (i.e. only 
one PE in the pipeline), an e-word buffer must be used to hold words of the 
intermediate result (cj). 

A timing diagram for the multiplication of 7-bit operands is shown in Figure 2 for 
the word size w=k=1 and 3 PEs. Dots mark the time slots where a PE (stage) is busy. 
Note that there is a delay of 2 clock cycles between the stage that computes the 
iteration for ai and the stage for ai+1. At clock cycles 7 and 15, the first PE in the 
pipeline can not engage in a new computation and thus the data produced by the last 
PE in the pipeline needs to be stored in a buffer for 3 clock cycles. At clock cycles 10 
and 19, the first PE becomes available and computation proceeds. Hence, we need a 
buffer to hold 6 bits of the partial sum (C) while the first PE is busy.  
 

Figure 2 - An example of pipelined computation for 7-bit operands which illustrates the 
situation of data buffering and w=1, radix-2 design 

 
Every time data pass through the pipeline with s PEs we call it a pipeline cycle. 

The multiplication requires � �su /  pipeline cycles. Considering the previous example, 
3 pipeline cycles are needed and, as a consequence, the last two pipeline stages 
perform extra computation. Recall that )(mod2 pBAC m−⋅⋅= is the definition of the 
Montgomery multiplication where m is the number of bits considered for the modulus 
and operands. When this extra computation is considered, the hardware is in fact 
calculating )(mod2 pBAC kn−⋅⋅= where � �ssun /=  corresponds to the number of PEs 
that worked on the data during the multiplication, and mkn ≥ . It is always possible to 
rearrange the Montgomery settings according to this new Montgomery exponent, 
namely knR 2= (or knxR =  in GF(2m) case). 

The total computation time, T (clock cycles) is given by: 
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where � �ksm /  corresponds to the number of pipeline cycles, s is the number of PEs in 
the pipeline (pipeline stages), and )(log2 rk = (radix-r system). Notice that the first line 
of the formula gives the execution time in clock cycles when there is sufficient number 
of PEs while the second line corresponds to the case when the data must be buffered 
for a while before entering the pipeline again. In [17] it is discussed how the utilization 
of PEs is affected by different conditions, such as the number of PEs in the pipeline 
and the operands' size. 

An example of the pipeline organization with s PEs is shown in Figure 3. The 
pipeline of several PEs is called a kernel, because it is the main computational part of 
the whole multiplier. The multiplier digits (ai), provided serially to the PEs, are not 
used again in later stages and can be discarded. Therefore, a simple shift register 
would be sufficient to store A. The content of the memory elements that hold p and B 
cannot be destroyed and for this reason a circular register is used. The queue element 
(FIFO) to store C has its maximum capacity determined by the number of pipeline 
stages (s) and the number of words (e) in operand A. An estimate of the maximum 
required length of the queue is given as: 
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The proposed organization has some degrees of freedom and the evaluation of the 

best design configurations can be found in [26]. Since we intend to design a fully 
scalable architecture and we do not want to have the multiplier registers as a limiting 
factor in the design, one can extend the capacity of these registers using external 
memory for the excessive words. In this case the length of the registers no longer 
depends on the precision or the number of PEs. The LS operand words are brought 
from memory to the registers first and the remaining words are stored in the memory 
and transferred to the multiplier when needed. However, when the memory transfer 
rate is not sufficient, the pipeline must be stalled while the data is loaded. This 
condition would not be ideal but it would still be better than forbidding a particular 
computation based on a limited capacity of registers in the system. 

The task of loading the long-precision registers must be handled by another part of 
the system that interfaces with the user or host system, and is beyond the scope of this 
work. The modular reduction of the result (Step 7) must also be done by another 
module [21]. As mentioned before, the reduction step can be avoided when the range 
for input operands is relaxed [27, 28]. 

 



Alexandre F. Tenca, Erkay Sava� and Çetin K. Koç 
 

 

 
Figure 3 - Pipeline organization with s PEs 

 
 

X.3.1 PROCESSING ELEMENT 

The block diagram of a processing element (PE) for the general unified multiplier 
architecture is shown in Figure 4. The blocks represent the major arithmetic functions 
performed by a PE. For simplicity, Figure 4 shows the data buses' widths for non-
redundant numbers. Redundant number representation implies more bits per bus. Gray 
boxes represent registers.  

 

 
Figure 4 - Processing element 

 
The Digit Multiplier DM1 generates the multiples ji ba ⋅ required in the algorithm 

steps 3 and 5c. The Φ  operation is implemented by two layers of multi-precision 
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dual-field adders. The main structure of the multi-precision dual-field adder 
(MPDFA) is shown in Figure 5. It makes use of a basic component called dual-field 
adder and registers to propagate information from one word operation to another. A 
carry-ripple adder design is shown in the multi-precision dual-field adder for 
simplicity. Other types of adder may be used. The design shown in Section 4 uses a 
Carry-Save adder structure. The Dual-field adder performs bit-wise addition with or 
without carry, depending on the field. A dual-field full-adder component (3-2 adder) 
was presented in [8] in a radix-2 version of the unified multiplier. We propose another 
design alternative in Section 4.2. 

 
Figure 5 - Multi-Precision non-redundant Dual-Field Adder 

 
Digit multiplier DM2 generates the multiples jpq ⋅  (Step 5c), based on the value 

q generated by f block (Step 4). Steps 6a and 6b of the hardware algorithm are 
implemented by proper wiring and registers, as shown at the bottom of Figure 4.  

Function f is used only at the beginning of the PEs computation, and it lies in the 
critical path of this design. A retiming strategy [21] may be used to reduce the impact 
of f in the design, as shown in Figure 6. For simplicity, the bus widths are not shown. 
In this case, a few LS bits of the LS operand words coming to the PE are required in 
order to obtain enough information to feed function f. The other bits are computed in a 
second sub-stage. The MP adders A and B work on words of incoming operands in 
different algorithm steps. While MP adder A is computing the LS bits of word i+1, 
MP adder B is computing the most-significant bits of word i. Therefore, carry bits are 
passed between them to perform the multi-precision addition, as shown in the figure. 
More details about this operation are presented in [21]. This approach adds one extra 
cycle to the overall pipeline structure, but provides a significant reduction in the 
critical path. Function f may be moved to the second sub-stage, if such modification 
results in a reduced critical path delay.  
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Figure 6 - Retimed Processing Element 

 

X.4. EXAMPLE: A RADIX-8 UNIFIED PE DESIGN 

In this section the general design framework presented in the previous sections are 
applied in the design of a radix-8 PE (k=3). CS adders are used to obtain fast addition 
at the PE level. The presentation of this example is instrumental to give the reader a 
better idea of the several design aspects that must be decided in the process, and some 
of the possible alternatives to get the best results out of the general case presented up 
to now. 

 
 

X.4.1 DIGIT MULTIPLIERS 

The input digits ai are in the digit set D = {0, 1, 2, 3, 4, 5, 6, 7}. In GF(p) it is 
more convenient to obtain the multiples aiB using signed basic multiples of the form 
2kB, such that “hard”' products are generated using at most two basic multiples, such 
as: 7B = 8B - B, 3B = 2B + B = 4B - B and so on. However, negative multiples cannot 
be used to generate products in GF(2m). In this field, three values (4B, 2B, and B) must 
be generated and then added to obtain all possible multiples aB, with Da ∈ .  

Instead of combining the basic multiples at the digit multiplier level and delivering 
only one bit-vector (as suggested in Section 3) we propose in this design to generate the 
basic multiples and send them to the following multi-precision adder. This solution is 
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more attractive since the multi-precision adders can be optimized for the extra input 
operands. Therefore, the proposed digit multiplier has 3 outputs: x, y, and z that 
represent the basic multiples. Another output neg is used to complete the negation of a 
multiple, when in GF(p). Output z has no meaning when working in GF(p) since 
multiples of p in this field can be obtained with only two basic multiples (represented 
by x and y). When working in GF(2m), all the output vectors are needed to transfer the 
4x, 2x, and 1x multiples. The digit multiplier transfer then 2 multiples to the adder 
when in GF(p) and 3 multiplies when in GF(2m). The fact that the value of z depends 
on the field is considered in the design of the multi-precision adder. 

The logic functions performed by the digit multiplier are shown in Table 1. The 
notation B’ indicates bit complementation. It can be designed using a small logic gate 
network and multiplexers. In the retimed PE organization, these muxes are split into 
two parts, each part allocated in the first or second sub-stages. The control signals for 
the muxes are passed from one sub-stage to another, after one clock cycle delay. Also 
note that the digit multiplier must work on words of B. The same digit multiplier is 
used to generate multiples of p. 

 
 

ai GF(p) GF(2m) 
 X Y z neg x y z neg 

000 0 0 0 0 0 0 0 0 
001 0 B 0 0 0 0 B 0 
010 0 2B 0 0 0 2B 0 0 
011 4B B’ 1 1 0 2B B 0 
100 4B 0 0 0 4B 0 0 0 
101 4B B 0 0 4B 0 B 0 
110 4B 2B 0 0 4B 2B 0 0 
111 8B B’ 1 1 4B 2B B 0 

Table 1 - Function table for digit multiplication 

 
 

X.4.2 4-INPUT DUAL-FIELD ADDERS 

Considering the redundant representation of C (two bit-vectors in GF(p) and one 
bit-vector in GF(2m)), and the multiples aiB and qM (three bit-vectors in GF(2m) and 2 
bit-vectors in GF(p)), 4-input multi-precision adders must be used. They can be 
designed using the dual-field adder proposed in [8], however, a better design can be 
obtained when considering all 4 inputs together. The design of the 4-input Dual-Field 
Adder is shown in Figure 7. It is similar to a 4-to-2 adder with the introduction of the 
field information. In the radix-2 design [8], only one out of two XOR gates in the 
critical path performs a valid operation in GF(2m), however, in radix 8, two out of 
three XOR gates perform a valid operation in this field. This observation indicates that 
the radix-8 design has a better resource utilization than the unified radix-2 design. 
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Figure 7 - 4-input Dual-Field Adder design 

 
 

X.4.3 FUNCTION F 

Depending on the field, different values of q are required based on the LS bits of c0 
and p0 (Step 4). The values for radix 8, based on a non-redundant representation of the 
LS bits of c0 and p0 is shown in Table 2.  

Observe that there are several similarities between the two fields that could be used 
to optimize the design of this table. Only two bits of p0 are enough to index the table 
since the LS bit is always 1. The 3 LS bits of c0 are applied in non-redundant form. 
 

LS bits LS bits of p0 in GF(p) LS bits of p0 in GF(2m) 
c0 001 011 101 111 001 011 101 111 

000 0 0 0 0 0 0 0 0 
001 7 5 3 1 1 7 5 3 
010 6 2 6 2 2 6 2 6 
011 5 7 1 3 3 1 7 5 
100 4 4 4 4 4 4 4 4 
101 3 1 7 5 5 3 1 7 
110 2 6 2 6 6 2 6 2 
111 1 3 5 7 7 5 3 1 

Table 2- Function f - generation of q 

 
 

X.4.4 COMPLETE DESIGN 

A block diagram for the radix-8 PE is shown in Figure 8. It puts together the digit 
multipliers presented in Section 4.1, the multi-precision adders using 4-input dual-field 
adders discussed in Section 4.2, and the function f presented in Section 4.3. Muxes are 
used to select proper inputs for the multi-operand addition, according to the field. 
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Using these muxes we reduce the number of inputs in the multi-precision adder to 
only 4. The use of the muxes is possible because output z of the digit multiplier is zero 
when in GF(p) and carry bits are zeros in GF(2m). 

 
 

Figure 8- Radix-8 Processing Element Block Diagram 

 

X.5. EXPERIMENTAL RESULTS AND EVALUATION 

The radix-8 unified design was described using VHDL and synthesized using 
Mentor Graphics tools for a 0.5�m AMI CMOS technology (ADK library [29]). The 
tool incorporates an estimate of wire delays and for this reason, an actual chip 
implementation may show some small variation on the timing presented in this section. 
Based on the highly modular design, the critical path of a PE defines the minimal clock 
period that can be applied to the pipeline. Other components in the design, such as the 
one responsible for final reduction, may be pipelined to match the PE critical path 
delay. Table 3 shows the area (in equivalent gates, i.e. 2-input NAND gates) and delay 
of some PE designs, using different word size (w). Observe that the word size is not 
affecting the critical path because CS representation of intermediate results was used.  

 
W Unified Architecture Only GF(p) [21] 
 Area (gates) Critical Path (ns) Area (gates) Critical Path (ns) 
8 1138 (14%) 9.84 999 8.32 

16 1993 (12%) 9.84 1787 8.32 
32 3646 (11%) 9.84 3280 8.32 

Table 3 - Area/time values for PEs synthesized for 0.5�m AMI CMOS technology 
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An important parameter for evaluation consists in comparing a multiplier designed 

only for GF(p) with the unified multiplier. The design proposed in [21] uses radix 8 
and works in GF(p) only. The unified design was synthesized for the same technology, 
using the same tools. The synthesis results are also shown in Table 3. The Table shows 
that the increase in area from an architecture designed only for GF(p) to the unified 
architecture is only 11% to 14%. The delay in the critical path increased by 18%, with 
a consequent reduction of 15% in maximum clock frequency at which the system can 
operate. It was expected to find that the unified architecture would be slower and more 
area consuming then the non-unified one, and the results obtained from this analysis 
show that it is not a big price to be paid for all the extra functionality provided by the 
unified architecture. 

Several kernel configurations may be obtained using different number of PEs or 
varying the word size used by the PE. The total area of the kernel is linearly dependent 
on the number of PEs. The total number of cycles to perform a modular multiplication 
on n-bit operands will depend on the kernel configuration. Table 4 shows the number 
of clock cycles to perform the operation for some typical n values and some chosen 
kernel configurations (with approximately 30,000 gates). Observe that the hardware is 
capable of executing in � 0.8 to 1.8 clock cycles/bit. A reconfigurable architecture 
shown in [30] works at a speed of 1 clock cycle/bit. It is important to say that the 
design in [30] has extended functionality (performs more than just multiplication) and 
it has an estimated area (our estimate) for the data path (excluding registers and I/O 
interface) of roughly 440,000 devices (110,000 gates). This reconfigurable processor 
executes operations in GF(2m) at the same speed as the operations in GF(p), the same 
way it is done in the proposed architecture. Multiplication in GF(2m) is done using 
conventional methods (not Montgomery multiplication). 

 
n Kernel configurations (w,s) 
 (8,25) (16,15) (32,8) (64,4) 

128 116 98 100 90 
256 232 196 184 180 
512 510 436 410 436 
1024 1868 1546 1476 1554 

Table 4 - Clock cycles to perform modular multiplication in GF(p) or GF(2m) (radix 8) 

 
A comparison of the speed of a radix-2 unified design with a microprocessor-based 

implementation of MM in GF(p) was presented in [8] and demonstrates that a radix-2 
design can be almost 10 times faster than an ARM microprocessor at 80MHz when 
performing multiplication. The proposed radix-8 design could be therefore almost 30 
times faster when working at the same frequency. Notice that the proposed design can 
work at much higher clock frequency. 

Since the multiplier design for GF(p) is the most complex one, it establishes the 
lower bound on the unified architecture complexity. It is clear that the unified design 
will yield less performance than other specific hardware designs proposed for GF(2m) 
multiplication only.  
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The choice of the radix impacts the design complexity and it is not the goal of this 
work to investigate the effect of different radices in the system performance. The radix-
8 example was taken to allow a better presentation of the concepts. A fair comparison 
between the radix-2 unified architecture in [8] and this radix-8 architecture would 
require re-synthesizing the radix-2 design. Nevertheless, it was shown in [21] that the 
radix-8 design for GF(p) has a better area/time factor than the radix-2 design for the 
same scalable architecture.  

Another question is related to the kernel configuration that provides the best 
area/time relation. This problem has been investigated in [26]. The best configuration 
depends on the operand precision for which the multiplier is used the most. For 
example, if the multiplier is optimized for 1024-bit numbers, and a maximum area of 
30,000 gates, the configuration that provides the best result is p=8 and w=32 
(14.5�sec). For 256 bits, the configuration should be p=2 and w=128 (1.7�sec). Both 
cases obtained trying to get the best time from the architecture using the given area. 
Recall that even though we optimize the configuration for a given precision, other 
values of precision are still possible. In general, optimizing the design for the largest 
precision is the best choice. For example: the configuration p=8 and w=32 performs 
multiplication on 256-bit operands in 1.8�secs, just slightly slower than the best 
configuration of p=2 and w=128. 

 
 

X.6. SUMMARY 

This chapter presented a design framework to obtain scalable and unified modular 
multipliers based on Montgomery multiplication algorithm. These multipliers are able 
to work in both GF(p) and GF(2m). The advantage of this approach resides on the 
flexibility of the proposed solution. The resulting designs allow the use of any modulus 
value or any irreducible polynomial. This feature is important for cryptosystems using 
ECC and RSA that require added security. The design is highly scalable allowing the 
designer to create a system that fits a particular area and extract a good level of 
performance from the available silicon. Any precision of the operands is allowed, up to 
a maximum system memory capacity. The kernel itself is designed to handle an 
unlimited precision of the operands.  

Our experiments show that the speed of our design example using radix-8 digits is 
very good with significantly less area than other approaches, and still offering a lot of 
flexibility. Previous work on a radix-2 architecture shows that the unified design is 
able to run almost 10 times faster than an optimized code on an ARM microprocessor. 
The generalization of unified architectures for any radix, as proposed in this text, 
opens the door to the investigation of the impact of other radices in the system 
performance, and the exploration of several alternatives for the implementation of 
system components, such as adders and digit multipliers. 
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