
A Scalable Architecture for
Modular Multiplication Based on

Montgomery’s Algorithm

Alexandre F. Tenca, Member, IEEE, and
Çetin K. Koç, Senior Member, IEEE

Abstract—This paper presents a scalable architecture for the computation of

modular multiplication, based on the Montgomery multiplication (MM) algorithm. A

word-based version of MM is presented and used to explain the main concepts in

the hardware design. The proposed multiplier is able to work with any precision of

the input operands, limited only by memory or control constraints. Its architecture

gives enough freedom to select the word size and the degree of parallelism to be

used, according to the available area and/or desired performance. Design trade

offs are analyzed in order to identify adequate hardware configurations for a given

area or bandwidth requirement.

Index Terms—Cryptography, Montgomery multiplication, modular multiplication,

modular multiplier, scalable multiplier.

�

1 INTRODUCTION

MONTGOMERYmultiplication [1] is an efficient method for modular
multiplication with an arbitrary modulus, particularly suitable for
implementation on general-purpose computers and embedded
microprocessors. The method is based on a representation of the
residue class modulo M . The algorithm uses simple divisions by a
power of two instead of divisions by M, which are used in a
conventional modular operation.

Modifications of the original method [2], [3], [4], [5], [6] target

more efficient software implementations on specific processors,

arithmetic coprocessors, or specific hardware implementations.

Many algorithms and hardware implementations based on

Montgomery multiplication were developed for a fixed precision

of the operands [4], [2], [7], [5], [6]. The disadvantage of such

designs is to disregard the variable-precision multiplication feature

that is common in software implementations. In order to get

improved performance, high-radix algorithms and designs have

also been proposed [2], [8]. However, these designs are usually

complex and it is not so evident whether they provide the desired

speed gain. A theoretical investigation of the design trade offs for

high-radix modular multipliers is given in [9]. Low-radix designs

are usually more attractive for hardware implementation [10].
The Montgomery multiplication (MM) is the basic operation

used in modular exponentiation [11], [12], which is required in the

Diffie-Hellman and RSA public-key cryptosystems [13], [14].

Recent implementations of the Montgomery Multiplication are

focused on elliptic curve cryptography [15] over the finite fields

GF ðpÞ and GF ð2mÞ [16].
A major design concern for multiplication units used in

cryptography is the large number of operand bits, which causes

large fan-out of signals, large wire delays, and complex routing.

These problems are reduced in systolic architectures [17], [18], at

the cost of extra hardware resources. However, these architectures

are usually tailored for fixed-precision computation and they are

not equivalent to the architecture presented in this work. A

possible approach to obtain a similar architecture using systolic
arrays would consist of generating a systolic array for MM,
applying a partitioning method [19] to break the array into a
smaller network, and creating the infrastructure required to reuse
it. This approach was not followed in this work.

The word-based version of the MM algorithm and a scalable
architecture derived from it are described in more detail in this
paper than in [20]. Both deal with arithmetic operations
performed in radix-2 Montgomery multiplication (presented in
Section 3), but they manipulate operand words, as done in high-
radix algorithms used in software. However, differently from
high-radix algorithms, the proposed algorithm avoids the use of
costly digit multiplications and, this way, it allows the generation
of simple hardware implementations and the exploration of
several design trade offs to obtain the best performance in a
limited chip area, without limiting the operand precision.
Practical limits to the precision are imposed by the control and
memory subsystems, but not the data path. The algorithm is used
to explain the hardware design, thus it is not proposed for
software implementation. High-radix designs for our scalable
architecture were reported in [21], [22].

Section 2 contains a brief discussion on the scalability require-
ment imposed to our design. A presentation of the general
theoretical aspects of the Montgomery multiplication is given in
Section 3. The word-based algorithm is presented in Section 4,
followed by a discussion about its mapping to hardware (Section 5).
The scalable architecture for modular multiplication is described in
Section 6. The results obtained using a design synthesis tool for
0.5�mCMOS technology are presented in Section 7 and then used to
create a first-order system model to evaluate the design trade offs.

2 A SCALABLE ARCHITECTURE

The problem solved with the proposed word-based architecture is
related to the inability of most designs to handle more precision
than the one for which the system was designed. This aspect is
considered in this paper as a scalability feature. For example, a
multiplier designed for 768 bits [10] cannot be immediately used in
a system which needs 1,024 bits. The functions performed by such
designs are not consistent with the ones required in the larger
precision system and the multiplier needs to be redesigned. In
order to make the hardware scalable, it is necessary to have the
ability to reuse it in both space and time until the desired result is
obtained. The usual solution is to use software and standard digit
multipliers. The algorithms for software implementation of
Montgomery multiplication are presented in [16], [3]. The
complexity of software-oriented algorithms is much higher than
the complexity of the radix-2 algorithm and implementation [4],
making a direct hardware implementation of a software-oriented
algorithm unattractive.

3 MONTGOMERY MULTIPLICATION

The application of the Montgomery Multiplication (MM) algorithm
on two integers X and Y , with required parameters for n bits of
precision, will result in the number Z ¼ MMðX;Y Þ ¼ XY r�1

mod M , where r ¼ 2n and M is an integer in the range 2n�1 < M <

2n such that gcdðr;MÞ ¼ 1. Since r ¼ 2n, it is sufficient that the
modulusM be an odd integer. For cryptographic applications,M is
usually a prime number or a product of primes, thus this condition is
easily satisfied. The image or the M-residue of an integer a is defined
as a ¼ armodM. It is easy to show that the Montgomery multi-
plication over the images a and b computes the image c ¼ MMða; bÞ,
which corresponds to the integer c ¼ abmodM [3]. The transforma-
tion between the image and the integer set is accomplished using
MM as follows:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1215

. The authors are with the Department of Electrical and Computer
Engineering, Oregon State University, Corvallis, OR 97331-3211.
E-mail: {tenca, koc}@ece.orst.edu.

Manuscript received 11 Feb, 2002; revised 11 July, 2002; accepted 10 Dec,
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115877.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

. From the integer value to the M-residue: a ¼ MMða; r2Þ ¼
armodM.

. From the M-residue to the integer value: a ¼ MMða; 1Þ ¼
arr�1 modM ¼ amodM .

Usually r2 ðmod MÞ is precomputed and saved. Thus, only a

single MM is needed to perform either one of these transforma-

tions. The MM algorithm has a much lower complexity than a

regular modular multiplication, which requires a division opera-

tion. The conversion overhead is greatly compensated by the fast

multiplication operation over the M-residue values. Another

important advantage of MM over conventional multiplication is

exposed in modular exponentiation, when multiple MMs are

computed over the M-residues before the result is converted back

to the original integer set.
The radix-2 Montgomery multiplication algorithm for n-bit

operands X ¼ ðxn�1; :::; x1; x0Þ, Y , and M is given in Fig. 1. Higher

radices may be used but the radix-2 provides a simple hardware

implementation.
The simple operations in this algorithm are easily implemented

in hardware. However, these operations are performed with full-

precision operands and, in this sense, they have an intrinsic

limitation. Once a hardware based on this algorithm is defined for

n bits, it cannot work with more bits. To remove this limitation and

keep the simple operations of the radix-2 algorithm, a modified

algorithm is proposed, as presented in the next section.

4 A WORD-BASED RADIX-2 MONTGOMERY

MULTIPLICATION ALGORITHM

Given two operands Y (multiplicand) and X (multiplier) and the

modulus M , the algorithm presented in this section executes a

series of operations to generate XY r�1 modM, scanning Y and M

word-by-word and scanning X bit-by-bit. This characteristic

enables us to derive a hardware implementation that is very

regular and based on simple operations. The Multiple Word Radix-2

Montgomery Multiplication algorithm (MWR2MM) is presented in

Fig. 2 and it is a refined version of the one presented in [20]. The

final reduction step was intentionally omitted. The work in [23]

describes the conditions for which the reduction is eliminated

when multiple multiplications are performed.
In this algorithm, the n-bit operands are split into w-bit words.

For now, suppose that e words are used. The actual value of e is

discussed in Section 5. Word and bit vectors are represented as:

M ¼ ð0;Mðe�1Þ; :::;Mð1Þ;Mð0ÞÞ, Y ¼ ð0; Y ðe�1Þ; :::; Y ð1Þ; Y ð0ÞÞ, S ¼ ð0;
Sðe�1Þ; :::; Sð1Þ; Sð0ÞÞ, and X ¼ ðxn�1; :::; x1; x0Þ, where the words are

marked with superscripts and the bits are marked with sub-

scripts. M, Y , and S are extended to eþ 1 words by a most-

significant zero word.
The concatenation of two vectors A and B is represented as

ðA;BÞ. A particular range of bits in a vector A from position i to

position j, j > i, is represented as Aj::i. The bit position i of the kth

word of an operand A is represented as A
ðkÞ
i .

The total carry-out value generated in each j loop iteration
corresponds to Ca þ Cb (one for each addition) and it is in the
range ½0; 2�. This range for the carry value satisfies the condition
imposed by the addition of three w-bit words and a maximum
carry value Cmax (generated by previous word additions), which is
determined as : 3ð2w � 1Þ þ Cmax ¼ Cmax2

w þ 2w � 1) Cmax ¼ 2.
The algorithm computes a new partial sum S for each bit of X,

scanning the words of the present S, Y , and M. Once Y is
completely read, another bit of X is taken and the scan is repeated.
The arithmetic operations are performed in w bits of precision. The
number of loop iterations is adjusted to accomplish the modular
multiplication in the required final precision, without modifica-
tions to the inner structure. This is the main feature we explore in
the modular and scalable architecture shown in this paper.

A shift right operation must be performed in each i loop. In the
multiple-word computation of the shifted value, a new Sðj�1Þ word
is computed only when the least-significant bit of the new SðjÞ

word is obtained. This operation is described in the MWR2MM
algorithm by the expression: Sðj�1Þ :¼ ðSðjÞ

0 ; S
ðj�1Þ
w�1::1Þ, which is inside

each of the inner loops. Inserting an extra most-significant word
with value 0 allows the computation of Sðe�1Þ once the loop is
completed. Since e words are enough to represent the values in S,
the word SðeÞ will be always zero. Thus, eþ 1words are scanned in
each i loop.

5 MAPPING THE MWR2MM ALGORITHM TO

HARDWARE

The dependency between operations within the j loop restricts
their parallel execution due to the dependency on the carry bits.
However, instructions in different i loops may be executed in
parallel. The dependency graph for the algorithm is shown in
Fig. 3a. An atomic task is represented by a circle and it is labeled
according to the type of action it performs. Tasks A and B execute
basically the following steps:

1. Add one word from each one of the vectors S, xiY , and M

(the addition of M depends on a test), and

1216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

Fig. 1. Radix-2 Montgomery Multiplication algorithm.

Fig. 2. The MWR2MM algorithm.

2. One-bit right shift of an S word. For this operation, the
generation of the shifted Sðj�1Þ is possible only after
computing the least significant bit of SðjÞ.

Task A differs from task B because, additionally to these two

steps, it also needs to test the even condition for the result of the

addition xiY
ð0Þ þ Sð0Þ (shown in Fig. 2, Step 4), and store this test

result for the other tasks dealing with the next words of the same

operands (same column in the graph).
The dependency graph (Fig. 3a) has eþ 1 tasks per column. Each

column may be computed by a separate processing element (PE) and

the data generated by one PE may be passed to another PE in a

pipelined fashion. Each task is computed in one clock cycle.
The actual value of e depends on the representation of S. The

range of S (½0; 2M � 1�) must be taken into account to determine e.

When S is represented in nonredundant form, then e ¼ dnþ1
w e.

When S is represented in redundant Carry-Save (CS) form, then

e ¼ dnwe. The use of nonredundant representation, depending on

the word size, may be appropriate for FPGA implementation

where small carry-ripple adders are as fast as CS adders and

occupy significantly less area. CS adders are used to make the

design almost insensitive to variations in the word size (limited

carry chain). In CS form, a number (S) is represented by two bit-

vectors: carry vector (SC) and partial-sum vector (SS) such that the

nonredundant form of S is obtained computing SC þ SS.
An example of the computation executed on 5-bit operands

using five PEs (one for each column) is shown in Fig. 3b for the

word size of w ¼ 1 bit (e ¼ 6 words when S is in nonredundant

form). The example considers that the final result is available

without register delay at the end of each time unit (least-significant

word of the result—Sð0Þ—is ready at the end of t ¼ 10). Observe

that there is a latency (L) of two clock cycles between processing a

column for xi and a column for xiþ1. In this case, there are no

combinational logic paths starting in one PE and ending into

another. It would be possible to make PEi use the data coming

from PEi�1 earlier (L ¼ 1). However, the critical path in the design

would be almost twice that for the case L ¼ 2, which wouldn’t

bring any advantage in performance. For this reason, L ¼ 2 is used

in this work.
Fig. 3c shows what happens when only two processing

modules are used for the same computation shown in Fig. 3b. In

this case, the intermediate data vector S must pass through the two

PEs several times. Each pass is called a pipeline cycle in this work.

Once the first pipeline cycle starts, the time it takes to have the first

word of S coming out of the pipeline (pipeline latency) is Lp clock

cycles. Once this first word is generated, another pipeline cycle
may start. However, the PEs in the pipeline may still be busy when

that happens, as shown in Fig. 3c, and then the data generated by

the last PE in the pipeline must be buffered for a while. Observe
that the computation during the last pipeline cycle could be done

with a single stage in this example. It may be the case that some

PEs will be performing a nonrequired operation during the last
pipeline cycle just because n is not a multiple of the number of

available PEs. What happens when the precision of the X (n bits) is

not a multiple of the number of PEs in the pipeline (p)?
The same problem happens in software implementations of

Montgomery multiplication, when the precision is not equal to an

exact multiple of the word size. It is equivalent to having an
algorithm with an outer loop with kp > n iterations. When p PEs

are used in the pipeline, it is the same as saying that r ¼ 2kp, where

n � kp < nþ p, since k ¼ dnpe corresponds to the number of
pipeline cycles required to compute the multiplication for

operands in precision n. However, the originally stated condition

of r ¼ 2n, based on 2n�1 < M < 2n, was given only to reduce the
number of iterations in the algorithm. Using a different value of r

does not cause any problems in the computation as far as r is kept

constant the whole time (which is the case in the hardwire design).
In fact, it is shown in [24] that the selection of r as an integer

multiple of the word size produces more efficient software

implementations since bit-level operations within words are
avoided. Thus, the architecture corresponds to a special case of

the MWR2MM algorithm.

5.1 Performance Estimate

The total computation time T in clock cycles (assuming that each

task consumes one clock cycle) when p stages are used in the
pipeline to compute the MM with n bits of precision is

T ¼ Lkpþ e� 1 ifðeþ 1Þ � Lp
kðeþ 1Þ þ Lðp� 1Þ otherwise:

�
ð1Þ

The first case shown in the equation represents the situation

when the first PE in the pipeline cannot start its computation with

another bit ofX because the least significant word of S didn’t show
up at the pipeline output yet. The second case models the

condition when the number of words in the operands is large

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1217

Fig. 3. (a) Dependency graph for the MMR2MM algorithm, (b) example of its computation for 5-bit operands, where w ¼ 1 bit and L ¼ 2, and (c) same computation with

different number of PEs.

enough to keep all the PEs working all the time. As the word size
increases, there is a reduction in the total execution time up to a
lower bound that can be obtained from (1). The best parameters in
terms of number of PEs and word size for a given operand
precision and chip area depends on the clock cycle time of the final
implementation and the total number of clock ticks. The evaluation
of an ASIC implementation of the architecture is presented in
Section 7.

6 A SCALABLE ARCHITECTURE FOR MM

A pipelined organization for the system is shown in Fig. 4. The
pipeline itself was named kernel in the figure and it is composed of
p PEs. The other blocks represent memory, data conversion, and
control unit. Each processing element in the pipeline relays the
received words to the next downstream unit. All paths are w-bits
wide, except for the xi inputs (only 1 bit). The kernel itself does not
limit the final computation precision. If more precision is required,
it is only necessary to feed more words. The final and intermediate
results are stored in the queue. Gray boxes indicate registers.

The control block function can be inferred from the algorithm
description that was provided, combined with other data manip-
ulation tasks that must be done to transfer data between the
multiplier and the host system. The other portions of this design
are presented in the following sections.

6.1 Memory Organization

Since the data is received word-serially by the kernel, the memory
for Y , M , and S must allow the scan of operands’ words. In this
implementation, RAM modules are used to store Y and M. These
RAMs are loaded with the operand values from the host system.
The xi bits come from a n-bit p-shift register, where p is the number
of processing elements in the pipeline. In order to make the system
flexible enough for several values of precision, the memory
element for S is designed as a queue. The maximum length of
the queue (Qmax) depends on the maximum number of words that
may be stored in the memory (emax) and the number of stages (p) in
the pipeline. This length is determined as:

Qmax ¼ emax þ 2� Lp ifðemax þ 2Þ > Lp
1 otherwise:

�
ð2Þ

The size of memory components becomes the limiting factor for
the operand precision. The memory space should be previously
allocated with a provision for the maximum number of words to be
used in the system. In order to avoid this limitation, one alternative
to compute e > emax words is to keep emax words inside the
multiplier and the other e� emax words in the system main
memory. The host processor would then load the words in main
memory into the kernel when needed. Such a solution would

imply a reduction in the processing speed when the words in main

memory are required.
The memory space in this design is not more than what is

normally used in a conventional radix-2 design of the MM

algorithm for similar maximum precision of the operands.

6.2 Result Conversion

To reduce storage and arithmetic hardware complexity, M , X, and

Y are in nonredundant form. However, the internal accumulated

product and final result S is received and generated in CS form

(2w bits per word). This design decision forces the conversion of

the result from CS to nonredundant form in order to reuse it as

input for another multiplication. However, the conversion does not

impact the system performance significantly. For example, in a

multiplication of 512-bit operands using an 8-PE kernel with w ¼ 8,

the multiplication takes 4,174 clock cycles (from (1)). The CS

conversion module may be designed to compute one nonredun-

dant 8-bit word every two clock cycles (assuming a fast 4-bit carry-

propagate adder). Thus, since e ¼ 64 words are used in this case,

only 128 extra clock cycles would be needed for conversion, which

represents a worse case of only 3 percent increase in the total

number of clock cycles. In addition to that, this overhead could be

almost eliminated if words of the converted result are immediately

used as inputs for the next multiplication. A design that takes X or

Y in CS form uses much more hardware, has a longer clock cycle,

and requires more memory resources.

6.3 Processing Element

The block diagram of the processing element is shown in Fig. 5.

The data path receives words MðjÞ, Y ðjÞ, and SðjÞ from the previous

stage in the pipeline and computes the new value of Sðj�1Þ.

Delaying inputs M and Y , the module provides as outputs the

words Mðj�1Þ, Y ðj�1Þ, and Sðj�1Þ. In fact, since the signals provided

1218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

Fig. 4. Pipelined organization for the multiplier.

Fig. 5. The block diagram of the processing element (PE).

by the PE pass by an interstage register, these signals will reach the
next PE one clock cycle later. That means, when one PE is working
on word j, the next PE is working on word j� 2.

The data path needs to make the information on the least
significant bit (t) of the computation Sð0Þ þ xiY

ð0Þ available to the
local control. This bit is used to generate the control signal c

(controls addition of M). The local control is responsible for
generating and keeping c during a pipeline cycle, and also relay
some control signals to downstream PEs. The basic operations
executed in the data path are: 1) generation of the product xiY

ðjÞ,
2) generation of the product cMðjÞ, and 3) addition of three words
(SðjÞ, xiY

ðjÞ, and cMðjÞ) and a carry digit in the set f0; 1; 2g. The
basic organization of the data path is shown in Fig. 6a, for a w-bit
word. Observe that we are considering a 4-input CS adder, but any
other adder could be used. The shaded box represents a register.

The partitioning of a long-precision adder into a w-bit adder
follows the idea presented in [25] modified for least-significant-
digit-first type of computation. The basic organization of the
4-input CS adder (CSA) for w ¼ 3 bits is shown in Fig. 6b. It is
expected that the cycle time increase with w as a result of the
increase in the fan-out on xi and c.

The data path has an alignment section to generate the output
words. When computing bits of word j (step j), the circuit
generates w� 1 bits of SðjÞ and the new most significant bit of
Sðj�1Þ. Bits of Sðj�1Þ computed at step j� 1 must be delayed and
concatenated with the most significant bit generated at step j.

7 DESIGN EVALUATION

The scalable architecture has area/time trade offs that result from
different values of operand precision n, word size w, and number
of stages in the pipeline (p). The area used by registers for the
intermediate sum, input operands, and modulus is the same for all
cases discussed in this section and it was not included in the area
calculations.

7.1 Experimental Results

The performance evaluation presented in this section is based on
area and time estimates obtained with Mentor Graphics design
tools and libraries for 0:5�m CMOS technology (ADK - ASIC
Design Kit). Table 1 shows the area and time results from
experiments.

Given an area A, there are many possible kernel configurations
with different number of PEs and word size that satisfies the area
constraint. Table 1 shows the estimated area for several kernel

configurations to a maximum around 20,000 gates. This limitation
of area was done arbitrarily to show a situation when a full-
precision design would not be feasible. The PE area (in equivalent
gates) depends only on the word size w. The experimental results
obtained with the synthesis tools mentioned above allows an
estimation of the PE area as: APEðwÞ ¼ 50wþ 25, which includes
the local control logic. The area of each interstage latch was
obtained as AlatchðwÞ ¼ 34w and, therefore, the area of a pipeline
with p units may be approximated as:

Akernelðp; wÞ ¼ ðp� 1ÞAlatchðwÞ þ pAPEðwÞ � corr
¼ 84wpþ 25p� 22w;

where corr accounts for simplifications in the last PE in the
pipeline. The interstage latches can be removed at the cost of
longer clock cycles (Section 5).

The clock period values shown in Table 1 consider the impact of
load and wires. Observe that the increase in word size is the only
parameter that effects the clock period since the architecture is very
modular. Increasing the number of stages shouldn’t impact the
clock period after placement and routing if neighboring modules
in the pipeline are kept close to each other. As a consequence of
using Carry-Save adders, the increase in the word size does not
have a significant impact on this design parameter.

The time to compute n bits using the scalable architecture
depends on the kernel configuration (w and p). Given w and p, the
total number of clock cycles to execute MM for n-bit operands is
obtained from (1). This data, combined with the results shown in
Table 1 are used to calculate the total execution time in
microseconds shown in Fig. 7. Only two important values of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1219

Fig. 6. PE data path (a) block diagram and (b) logic diagram for w ¼ 3 bits.

TABLE 1
Area and Clock Cycle Time for Different Kernel Configurations

operand precision are presented. Observe that, when the operand
precision is small, the number of PEs may be small and, when the
precision is high, the number of PEs should be as high as possible.
Thus, the final decision on the actual configuration depends on the
precision for which the hardware will be used the most and the
available area. In order to make the design efficient for a large
range of operand precision, the optimal solution for the highest
expected precision is the best choice. Dots in the figure show
configurations with equivalent area of 27-28K gates, such as
(w; pÞ ¼ ð8; 40Þ, ð16; 20Þ, and ð32; 10Þ. It is easy to see that going
from p ¼ 40 to p ¼ 30 will not affect the computation time for
n ¼ 256, but will impact the time to compute the multiplication for
n ¼ 1; 024. Thus, the concept of optimal design in this case is
relative to the precision of the operands and the available area. A
detailed evaluation of this problem is given in [26].

7.2 Comparison with Other Approaches

The comparison with other hardware implementations of the
Montgomery multiplication algorithm is not straightforward since,
to the best of the authors’ knowledge, there is no other hardware
design that presents the same scalability features. Systolic
implementations of the Montgomery multiplier such as the one
in [6] are done for full precision of the operands. A systolic
multiplier for n ¼ 512 bits consumes about 50K gates and performs
the operation in approximately 2n ¼ 1; 024 clock cycles. Our design
with a configuration of w ¼ 8 and p ¼ 40 uses an area of 28K and
computes the multiplication in 1,103 clock cycles. The design is
8 percent slower using only slightly more than half the area.
Besides, the systolic design couldn’t directly compute with more
than 512 bits, while our design could.

The best comparison can be made against another scalable
system (software based) that uses an ARM processor and software
to obtain a variable precision implementation [3]. Table 2 shows the
performance of the scalable multiplier designed for an area of 28K
(kernel area) and an ARM system (running at 80MHz) and operand
precision of 256 and 1,024 bits. For a configuration of the scalable
multiplier kernel using w ¼ 8, p ¼ 40, and the clock cycle period of
12.5ns (slower clock than the scalable hardware can operate in this
configuration, see Table 1), the total computation time is calculated
as 7.4�s and 43�s, for operand precision of 256 and 1,024 bits,
respectively. The speedup promoted by the scalable multiplier is
significant and increases as the operand precision increases, using
only a fraction of the area that would be required by a full-precision
design.

8 CONCLUSION

The fundamental advantage of this new architecture to compute
Montgomery multiplication is its ability to manipulate any operand
precision while using even a small chip area. The proposed
architecture is highly flexible and allows the investigation of several

design trade offs. Some possible configurations were discussed in

this paper and others can be found in [26]. The proposed multiplier

kernel was synthesized for a 0.5�m CMOS technology and the

experimental results show that the circuit is able to work at high

clock frequencies. The total time to compute the Montgomery

multiplication for a given precision of the operands depends on the

kernel configuration. The upper limit on the operands’ precision is

imposed only by the memory available to store the operands and

internal results. Significant speedups can be achieved over software

algorithms executing on a microprocessor system, using only a

small extra chip area, which makes this design a good solution for

embedded systems.An extension of this architecture towork in both

GF ðpÞ and GF ð2mÞ was proposed in [27], increasing the applic-

ability of this architecture.

ACKNOWLEDGMENTS

This work was partially supported by Secured Information

Technology, Inc., and the US National Science Foundation under

Grant CCR-0093434. The authors would like to thank Erkay Savas,

Georgi Todorov, and the anonymous reviewers for their contribu-

tions. This is an extended and improved version of the paper

published in the Proceedings of CHES ’99, Lecture Notes in

Computer Science, vol. 1717, Springer-Verlag.

REFERENCES

[1] P.L. Montgomery, “Modular Multiplication without Trial Division,” Math.
of Computation, vol. 44, no. 170, pp. 519-521, Apr., 1985.

[2] H. Orup, “Simplifying Quotient Determination in High-Radix Modular
Multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic, S. Knowles and
W.H. McAllister, eds., pp. 193-199, July 1995.

[3] Ç.K. Koç, T. Acar, and B.S. Kaliski, “Analyzing and Comparing
Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3,
pp. 26-33, June 1996.

[4] A. Bernal and A. Guyot, “Design of a Modular Multiplier Based on
Montgomery’s Algorithm,” Proc. 13th Int’l Conf. Design of Circuits and
Integrated Systems (DCIS ’98), Nov. 1998.

[5] C.-C. Yang, T.-S. Chang, and C.-W. Jen, “A New RSA Cryptosystem
Hardware Design Based on Montgomery’s Algorithm,” IEEE Trans. on
Circuits and Systems - II: Analog and Digital Signal Processing, vol. 45, no. 7,
pp. 908-913, July 1998.

[6] C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu, “An Improved
Montgomery’s Algorithm for High-Speed RSA Public-Key Cryptosystem,”
IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp. 280-
284, June 1999.

[7] S.E. Eldridge and C.D. Walter, “Hardware Implementation of Montgo-
mery’s Modular Multiplication Algorithm,” IEEE Trans. Computers, vol. 42,
no. 6, pp. 693-699, June 1993.

[8] P. Kornerup, “High-Radix Modular Multiplication for Cryptosystems,”
Proc. 11th IEEE Symp. Computer Arithmetic, E. Swartzlander Jr., M.J. Irwin,
and G. Jullien, eds., June 1993.

[9] C.D. Walter, “Space/Time Trade-Offs for Higher Radix Modular Multi-
plication Using Repeated Addition,” IEEE Trans. Computers, vol. 46, no. 2,
Feb. 1997.

[10] A. Royo, J. Moran, and J.C. Lopez, “Design and Implementation of a
Coprocessor for Cryptography Applications,” Proc. European Design and
Test Conf., pp. 213-217, Mar. 1997.

[11] T. Hamano, N. Takagi, S. Yajima, and F.P. Preparata, “O(n)-Depth Circuit
Algorithm for Modular Exponentiation,” Proc. 12th IEEE Symp. Computer
Arithmetic, S. Knowles and W.H. McAllister, eds., pp. 188-192, July 1995.

[12] Ç.K. Koç and T. Acar, “Fast Software Exponentiation in GF (2k),” Proc. 13th
IEEE Symp. Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, eds.,
pp. 225-231, July 1997.

1220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

Fig. 7. Execution time of several configurations

TABLE 2
Performance Comparison between Scalable Multiplier Hardware

(w ¼ 8; p ¼ 40) and Software on a Microprocessor System
(Both with 80MHz Clock)

[13] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE
Trans. Information Theory, vol. 22, pp. 644-654, Nov. 1976.

[14] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Comm. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[15] A.J. Menezes, Elliptic Curve Public Key Cryptosystems. Boston: Kluwer
Academic Publishers, 1993.

[16] Ç.K. Koç and T. Acar, “Montgomery Multiplication in GF (2k),” Design,
Codes, and Cryptography, vol. 14, no. 1, pp. 57-69, Apr. 1998.

[17] T. Blum and C. Paar, “Montgomery Modular Exponentiation on Reconfi-
gurable Hardware,” Proc. 14th IEEE Symp. Computer Arithmetic, pp. 70-77,
Apr. 1999.

[18] C.Walter, “Systolic Modular Multiplication,” IEEE Trans. Computers, vol. 42,
no. 3, pp. 376-378, Mar. 1993.

[19] D.I. Moldovan and J.A.B. Fortes, “Partitioning and Mapping Algorithms
into Fixed Size Systolic Arrays,” IEEE Trans. Computers, vol. 35, no. 1,
pp. 1-12 Jan. 1986.

[20] A.F. Tenca and Ç.K. Koç, “A Scalable Architecture for Montgomery
Multiplication,” Proc. First Int’l Workshop Cryptographic Hardware and
Embedded Systems—CHES ’99, Ç.K. Koç and C. Paar, eds., pp. 94-108,
Aug. 1999.

[21] G. Todorov, “ASIC Design, Implementation, and Analysis of a Scalable
High-Radix Montgomery Multiplier,” MS thesis, Oregon State Univ., Dec.
2000.

[22] A.F. Tenca, G. Todorov, and Ç.K. Koç, “High-Radix Design of a Scalable
Modular Multiplier,” Proc. Workshop Cryptographic Hardware and Embedded
Systems, Ç.K. Koç, D. Naccache, and C. Paar, eds., pp. 185-201, 2001.

[23] G. Hachez and J.-J. Quisquater, “Montgomery Exponentiation with No
Final Subtractions: Improved Results,” Lecture Notes in Computer Science,
Ç.K. Koç and C. Paar, eds., vol. 1965, pp. 293-301, 2000.

[24] T. Yanik, E. Savas, and Ç.K. Koç, “Incomplete Reduction in Modular
Arithmetic,” IEE Proc.-Computers and Digital Techniques, vol. 149, no. 2,
pp. 46-52, Mar. 2002.

[25] A.F. Tenca, “Variable Long-Precision Arithmetic (VLPA) for Reconfigur-
able Coprocessor Architectures,” PhD thesis, Univ. California Los Angeles,
1998.

[26] B. Kurniawan, “ASIC Design and Implementation of a Parallel Exponentia-
tion Algorithm Using Optimized Scalable Montgomery Multipliers,” MS
thesis, Oregon State Univ., Corvallis, 2002.

[27] E. Savas, A.F. Tenca, and Ç.K. Koç, “A Scalable and Unified Multiplier
Architecture for Finite Fields GF ðpÞ and GF ð2mÞ,” Proc. Second Int’l
Workshop Cryptographic Hardware and Embedded Systems—CHES 2000,
Ç.K. Koç and C. Paar, eds., pp. 277-292, Aug. 2000.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1221

