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Abstract

The IETF released RFC 8446 in 2018 as the new TLS 1.3
standard, which recommends using X25519 for key exchange
and Ed25519 for identity verification. These computations
are the most time-consuming steps in the TLS handshake.
Intel introduced AVX-512 in 2013 as an extension of AVX2,
and in 2018, AVX-512IFMA, a submodule of AVX-512 to
further support 52-bit (integer) multipliers, was implemented
on Cannon Lake CPUs.

This paper first revisits various optimization strategies for
ECC and presents a more performant X25519/Ed25519 im-
plementation using the AVX-512IFMA instructions. These
optimization strategies cover all levels of ECC arithmetic,
including finite field arithmetic, point arithmetic, and scalar
multiplication computations. Furthermore, we formally verify
our finite field implementation to ensure its correctness and
robustness.

In addition to the cryptographic implementation, we further
explore the deployment of our optimized X25519/Ed25519
library in the TLS protocol layer and the TLS ecosystem. To
this end, we design and implement an OpenSSL ENGINE
called ENG25519, which propagates the performance ben-
efits of our ECC library to the TLS protocol layer and the
TLS ecosystem. The TLS applications can benefit directly
from the underlying cryptographic improvements through
ENG25519 without necessitating any changes to the source
code of OpenSSL and applications. Moreover, we discover
that the cold-start issue of vector units degrades the perfor-
mance of cryptography in TLS protocol, and we develop an
auxiliary thread with a heuristic warm-up scheme to mitigate
this issue.

Finally, this paper reports a successful integration of the
ENG25519 into an unmodified DNS over TLS (DoT) server
called unbound, which further highlights the practicality of
the ENG25519. We also report benchmarks of TLS 1.3 hand-
shake and DoT query, achieving a speedup of 25% to 35% for
TLS 1.3 handshakes per second and an improvement of 24%
to 41% for the peak server throughput of DoT queries.

1 Introduction

In the TLS 1.3 standard [46] released by IETF in 2018, the el-
liptic curve cryptographic (ECC) algorithms X25519 [2] and
Ed25519 [6] are recommended as the standard key exchange
and identity verification algorithms. These two public-key
cryptographic (PKC) algorithms are the security-critical and
time-consuming steps in the TLS handshake.

In today’s society, people are becoming increasingly reliant
on online services, such as e-commerce and social media.
For these online services, the challenge of slower service
responses or even service outages due to increased load is
something that service providers have to contend with, espe-
cially during times of surging user access. For instance, during
events like Black Friday sales, website traffic can surge to
levels 30 times higher than usual [51], and social media ser-
vices can experience crashes due to sudden spikes in user
traffic [1, 29]. Additionally, DNS and its privacy-enhanced
variant, DNS over TLS (DoT), serving a massive user base,
are integral parts of the internet’s infrastructure [16].

These online services undoubtedly rely on the TLS proto-
col to secure communication. However, the TLS handshake,
as the core of the entire protocol, involving complex crypto-
graphic computations, poses a potential bottleneck limiting
the quality improvements of these online services. This paper
aims to address the challenges of mitigating the computa-
tional burden introduced by the TLS handshake, especially
in high-load server scenarios. This paper takes a bottom-up
methodology to solve this problem, starting from optimizing
cryptographic algorithms at the lowest level, proceeding to the
OpenSSL layer, and ultimately reaching the TLS application
layer.

1.1 Motivations

The motivations of this paper, from the lower cryptographic
layer to the higher application layer, are as follows:

(1) Previous work has extensively explored the efficient
ECC implementation using the advanced Single Instruction

1



Multiple Data (SIMD) instructions on various CPUs, includ-
ing NEON instructions on ARM CPUs and AVX2/AVX-512
instructions on Intel CPUs (e.g. [7, 15, 18, 25, 35]). But only a
few of them (e.g. [18, 25]) focused on optimizing ECC using
the latest AVX-512 on Intel CPUs. Additionally, the existing
ECC optimizations using AVX-512 did not maximize the par-
allelism potential of AVX-512 or utilize the more powerful
52-bit (integer) multipliers in AVX-512IFMA (Integer Fused
Multiply-Add). Therefore, we try to fill this gap by utiliz-
ing the powerful AVX-512IFMA to speed up cryptographic
computations, thus alleviating the computational burden on
servers.

(2) While many implementations have sought to improve
the efficiency of ECC, they often neglect the integration of
optimized ECC into TLS libraries and the broader TLS ecosys-
tem. As a result, the TLS ecosystem cannot actually benefit
from these ECC optimizations at large. Therefore, investigat-
ing how to integrate the optimized ECC implementation into
a TLS application without modifying its source code would
enable us to explore the tangible performance enhancements
that the low-level ECC optimizations provide for high-level
TLS applications. We aim to constitute a systematic study
covering not only cryptographic optimization but also the
integration into the TLS ecosystem.

(3) When integrating the optimized ECC implementation
into the TLS ecosystem, we find that the vector units’ (e.g.
AVX2 or AVX-512) cold-start issue leads to noticeable per-
formance degradation of cryptographic primitives. Based on
our observations, the relevant primitives are even 3.8× slower
than usual. This finding motivates us to systematically exam-
ine and alleviate the adverse effects of the cold-start issue on
real-world TLS applications.

(4) The TLS protocol has become a cornerstone of safe-
guarding privacy in today’s digital landscape. The TLS hand-
shake, as the central component of the TLS protocol, involving
complex cryptographic computations, serves as a potential
bottleneck, constraining service quality improvements in var-
ious contexts like DoT, e-commerce, and social media. This
motivates us to address the above-mentioned issues and de-
velop a solution to mitigate the computational burden caused
by the TLS handshake.

1.2 Major contributions

Our artifact is available at https://github.com/Ji-Peng/
eng25519_artifact. This work has four main contributions.

First, we investigate how to maximize the parallelism po-
tential of AVX-512IFMA and utilize its 52-bit multipliers to
speed up the ECC arithmetic, including finite field arithmetic,
point arithmetic, and scalar multiplication. To achieve this, we
adopt a radix-251 big number representation tailored for the
52-bit multiplier of AVX-512IFMA, we develop an efficient
finite field arithmetic implementation, whose correctness is
formally verified using the semi-automatic tool CRYPTOLINE.

Besides, we show that by adopting the 8-way parallelism in
the low-level finite field arithmetic, we can explore more
parallelism strategies (see Figure 2 for the overview of our
strategies) for the upper layers of ECC. With these optimiza-
tions, we achieve new speed records for X25519-KeyGen,
Ed25519-Sign, and Ed25519-Verify. However, the X25519-
Derive function used to compute the shared secret key is
limited by its inherent execution flow and data dependencies;
thus, we cannot achieve a faster implementation.

Then, we design and implement an OpenSSL ENGINE
called ENG25519 to speed up the TLS ecosystem. The
ENG25519 could transparently integrate our optimized cryp-
tographic library into OpenSSL and, ultimately, into TLS
applications. We demonstrate the successful integration of
ENG25519 into unbound, a DNS over TLS (DoT) server,
to further illustrate its practicality and conduct a systematic
study under the DoT scenario. Compared with other related
work ( [5, 9]), the ENG25519 is superior to libsuola in [9],
as an ENGINE template, in integrating ECC implementation
to the TLS layer, because it has been verified to successfully
reach the TLS application layer.

Then, we evaluate the performance of the cryptographic
algorithms in realistic TLS application scenarios rather than
just using ideal warm-start benchmark testing. We accomplish
this by testing the DoT query scenario, concluding that these
cryptographic computations are not warm-started, and perfor-
mance suffers to varying degrees of degradation compared
to the warm-start benchmark. Some subroutines even take
3.8× longer than their warm-start CPU cycles, making the
cryptographic implementers “get half the results with twice
the effort”. To resolve the cold-start issue in realistic TLS
application scenarios, we developed an auxiliary thread with
a heuristic warm-up scheme for preventing vector units from
entering a low-power mode. Besides, our 8×1-way X25519-
KeyGen is utilized with a focus on cache friendliness and
optimal performance. To achieve this, we call the key genera-
tion subroutine multiple times when necessary and save the
extra keypairs for future use, as the key generation is inde-
pendent of the communication peer’s information and can be
precomputed for enhanced cache friendliness1 and efficiency.

Finally, in the TLS application layer, we achieve a speedup
of 25% to 35% for TLS 1.3 handshakes per second and an
improvement of 24% to 41% for the peak server throughput
of DoT queries. This implies that this paper presents an effec-
tive solution to mitigate the computational burden imposed
by TLS handshakes for throughput-critical online services.
Besides, our study demonstrates that the parallel strategies
employed in our ECC implementation, the ENG25519 frame-
work, and the proposed heuristic warm-up scheme for miti-
gating the cold-start issue of vector units can be extended to
related work in this field, and our findings have broad impli-
cations and can contribute to parallel computing in ECC and

1The cache friendliness involves L1 instruction and L1 data cache of
CPU.
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other related areas.

2 Background

This section introduces the relevant technical background. In
Section 2.1, we briefly introduce the AVX-512 instructions.
Next, we describe the algorithmic background of X25519 and
Ed25519 in Section 2.2. Finally, we introduce the TLS 1.3
handshake and DNS over TLS (DoT) in Section 2.3.

2.1 AVX-512

As the latest version of the AVX instruction set, AVX-512
provides double-sized vectors compared to AVX2. AVX-512
provides 32 512-bit registers that enable flexible operation for
a greater range of parallel data, such as eight 64-bit or four
128-bit lanes.

Apart from the core extension AVX-512F (Foundation),
which all AVX-512 implementations require, AVX-512 sup-
ports many submodules, such as AVX-512IFMA (Integer
Fused Multiply-Add). One of AVX-512IFMA’s critical fea-
tures is the 52-bit integer multiplier, which is the widest mul-
tiplier in the SIMD instructions of the current x86-64 series
CPUs. Indeed, AVX2 and AVX-512F multiplier have a width
of only 32 bits.

AVX-512 introduces new concepts, such as mask opera-
tions and broadcasts. The mask operation allows for precise
control over the specific behavior of SIMD instructions. The
mask instruction specifies the lanes that should be executed
or disregarded for a given operand. For more details about
AVX-512IFMA instructions, we refer to Appendix A.

2.2 X25519 and Ed25519

X25519 and Ed25519 are constructed from the Mont-
gomery [33] and twisted Edwards [4] curves, respectively.
In 2015, RFC 7748 [30] introduced the construction of the
Diffie-Hellman protocol based on Curve25519 with 128-bit
security, referred to as X25519. X25519 has two stages: key
generation (KeyGen) and shared secret calculation (Derive).
The core operation of KeyGen is a fixed-point scalar multi-
plication, and the core operation of Derive is a variable-point
scalar multiplication (see [30] for more details).

In 2017, the Edwards-curve Digital Signature Algorithm
(EdDSA) named Ed25519, with the same security level as
X25519, was introduced in RFC 8032 [28]. It is suggested that
Curve25519 is birationally equivalent to Edwards25519, the
underlying curve of Ed25519 [6, Sec 2]. Ed25519 consists of
three stages: key generation (KeyGen), signature generation
(Sign), and signature verification (Verify). The core operation
of KeyGen and Sign is a fixed-point scalar multiplication,
while the core operation of Verify is a double-point scalar
multiplication (see [28] for more details). Later in 2018, RFC
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Figure 1: Overview of TLS 1.3 handshake with X25519 for
key exchange and Ed25519 for digital signature

8446 [46] included X25519 and Ed25519 into the cipher suite
supported by TLS 1.3.

The efficient coordinates for implementing the point arith-
metic of Edwards25519 are the extended twisted Edwards
coordinates [26, Sec 3], which can be expressed as (X ,Y,T,Z).
Here, T is an auxiliary coordinate that holds T = XY/Z. The
identity element is (0,1,0,1), and the negative element of
(X ,Y,T,Z) is (−X ,Y,−T,Z).

To avoid confusion among the three terms: Curve25519,
X25519, and Ed25519, Bernstein standardized their descrip-
tion in [3], describing “X25519” as the Diffie-Hellman
key exchange system on Montgomery curve, “Ed25519”
as elliptic curve signature system on twisted Edwards
curve, and “Curve25519” as the underlying elliptic curve
of X25519/Ed25519.

2.3 TLS 1.3 and DNS over TLS (DoT)

To illustrate the basic flow of the TLS 1.3 handshake, we
present a simplified flow chart (see Figure 1) of the TLS 1.3
handshake, assuming that X25519 is used for key exchange
and Ed25519 is used for digital signature. The handshake
is primarily accomplished through the Client Hello and
Server Hello messages and related extensions. The crypto-
graphic operations performed by the client include X25519-
KeyGen, X25519-Derive, and Ed25519-Verify, while the
server’s cryptographic operations include X25519-KeyGen,
X25519-Derive, and Ed25519-Sign. The X25519 public key
is transmitted through the key_share extension, and the
Ed25519 signature is sent via the CertificateVerify ex-
tension. For more relevant details, we refer readers to the RFC
8446 [46].
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Figure 2: An overview of our ECC implementation. Please
refer to Section 3.1 for the meaning of m×n-way operation.

DNS over TLS (DoT) is specified in RFC 7858 [27], which
can protect user privacy by encrypting and wrapping DNS
queries and responses via TLS. Given the security guarantees
of the TLS layer, DoT can impede the monitoring and anal-
ysis of DNS traffic. The workflow of DoT is that the client
and server establish a TLS connection via a TLS handshake,
and then DNS queries and responses are sent and received
through this TLS connection. A DoT client can establish a
TLS connection with a DoT server via a TLS handshake, only
to send a DNS query and close the connection after receiving
the corresponding DNS response. In this case, the overhead
proportion of the TLS handshake will be more significant,
highlighting the role of the handshake’s speed optimization.

3 Optimized X25519 and Ed25519 Implemen-
tation

This section presents our bottom-up optimized implementa-
tion of X25519 and Ed25519. Our optimizations cover all
layers of the ECC implementation, including finite field arith-
metic, point arithmetic, and scalar multiplication. The finite
field arithmetic consists primarily of the basic operations in
Fp, such as addition, subtraction, multiplication, square, and
inversion modulo p. The point arithmetic includes point addi-
tion and point doubling on elliptic curves. The scalar multipli-
cations involves fixed-point, variable-point, and double-point
scalar multiplications.

Each layer of ECC implementation has different parallelism
strategies. Figure 2 shows an overview of the proposed ECC
implementation. To clarify the description, we provide a par-
allelism hierarchy division method and a vital optimization
principle — the MTP principle — in Section 3.1. Overall, we
implement the 8×1-way finite field arithmetic with the 52-bit
multiplier of AVX-512IFMA in Section 3.2, maximizing its
parallelism. Then, we further show that the underlying 8×1-
way finite field arithmetic can transfer more parallelism to
the upper layer, i.e. 8×1-way and 2×4-way point arithmetic
in Section 3.3. Based on these point arithmetic implementa-
tions, we further implement the 8×1-way fixed-point scalar
multiplication, 1×8-way fixed-point scalar multiplication in
Section 3.4, and 2× 4-way double-point scalar multiplica-
tion in Section 3.5 for X25519-KeyGen, Ed25519-Sign, and

Ed25519-Verify, respectively. A comparison with other work
is given in Section 3.6.

Key generation is an independent process that does not
rely on information from the communication peer during the
TLS handshake (see Figure 1). Therefore, one could generate
eight different keypairs by calling our 8× 1-way X25519-
KeyGen subroutine once and save them in the machine. When
a new keypair is needed for the next TLS handshake, it can
be retrieved directly from the remaining keypairs without
executing X25519-KeyGen again. If no keypairs are left, the
machine will generate a new batch.

However, X25519-Derive, Ed25519-Sign, and Ed25519-
Verify all rely on the message of the communication peer,
making their 8×1-way implementation difficult to integrate
into the TLS layer. Using an asynchronous programming
framework to collect eight requests asynchronously and then
perform the 8×1-way operation requires refactoring the TLS
applications’ source code. This is contrary to the original
intention of this paper, namely benefiting the TLS applica-
tions from cryptographic optimization without modifying
their source code. Thus, integrating other 8× 1-way imple-
mentations into the TLS layer will be our future work. We
only present the optimized 8×1-way X25519-KeyGen, 1×8-
way Ed25519-Sign and 1× 2-way Ed25519-Verify in this
paper.

3.1 Parallelism hierarchy
We use the paradigm “finite field arithmetic”→ “point arith-
metic”→ “scalar multiplication” to represent our parallelism
strategy. For example, our optimized Ed25519-Verify strategy
is 8× 1→ 2× 4→ 1× 2 (cf. Figure 2), which can also be
abbreviated as 1×2-way Ed25519-Verify. X25519-Derive is
an exception since the variable-point scalar multiplication (i.e.
Montgomery ladder algorithm) is directly contructed on top
of the finite field layer. Thus, the paradigm of X25519-Derive
is “finite field arithmetic”→ “Montgomery ladder”.

The AVX-512’s 512-bit registers allow the 8×64-bit par-
tition (i.e. 8 lanes, each of which holds 64 bits), and these 8
lanes can be used to implement 8×1, 4×2, 2×4, or 1×8-
way finite field arithmetic.

• Interpretation of parallelism. In the implementation
that follows m×n parallelism, “m” represents the num-
ber of independent operations simultaneously executed
in parallel within this layer, while “n” refers to the degree
of acceleration attained by each independent operation.
Taking the 4×2-way finite field implementation as an
example, “4” means that four independent finite field
operations are executed in parallel, and “2” means that
2-way acceleration is performed inside each finite field
operation.

• Transfer of parallelism. The “m” indicates the number
of independent operations occurring at this layer that
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can be transferred to the upper layer; “n” signifies the
amount of parallelism digested by this layer. Take the
4×2-way finite field implementation as an example. The
four independent arithmetic of the finite field layer can
be passed upwards to the point arithmetic layer, namely
implementing the point arithmetic in the form of 4×1-
way, 2×2-way, or 1×4-way.

• MTP optimization principle. We notice that if we di-
gest “n” parallelism in the low-level finite field imple-
mentation, we will suffer from performance loss caused
by permutation instructions. See Appendix B for a de-
tailed comparison between the 4×2-way and 8×1-way
finite field multiplication implementations. In brief, the
4× 2-way finite field multiplication needs some awk-
ward permutation instructions to construct the required
execution flow, which will suffer a performance penalty
due to the high latency of permutation instructions. In
contrast, we can naturally construct the execution flow
of 8×1-way multiplication, minimizing the permutation
performance penalty. We propose the Maximized Trans-
fer Parallelism (MTP) principle which aims to maximize
the transfer of SIMD parallelism to the upper layer and
avoid wasting parallelism in lower level layer.

3.2 8×1-way finite field arithmetic
Unlike the AVX2 implementation of Cheng et al. [15], which
adopts the radix-229 representation to implement their 4×1-
way X25519. We employ the radix-251 representation to fully
utilize the 52-bit multiply-add instructions in AVX-512IFMA.
Note that our method is not a straightforward generalization of
[15] because they utilize the 32-bit multiplier of AVX2, while
we utilize the 52-bit multiplier of AVX-512IFMA. Therefore,
we need to re-design the finite field arithmetic.

The radix-251 method divides the 255-bit elements into five
51-bit limbs and a finite field element f is represented as:

f = f0 +251 f1 +2102 f2 +2153 f3 +2204 f4 (1)

where 0 ≤ fi < 252 for 0 ≤ i < 5. Among all the finite field
arithmetic, modular multiplication is an essential operation.
The modular multiplication f ×g consists of two steps: mul-
tiplication and modular reduction.

Step 1. Multiplication.

h = f ×g = h0 +251h1 + · · ·+251·8h8 +251·9h9,

hk = ∑
i+ j=k

( fig j)l +2 ∑
i+ j=k−1

( fig j)h,

(0≤ i, j < 5, 0≤ k < 10)

(2)

Step 2. Modular reduction. Its basic idea is as follows:

p = 251·5−19 ⇒ 251·5 ≡ 19 mod p

251·5h5 = 19h5, · · · ,251·9h9 = 251·419h9

h0 += 19h5,h1 += 19h6, · · · ,h4 += 19h9

Then, the modular reduction can be performed in the fol-
lowing order:

1©h5→ h6, 2©h6→ h7, 3©h7→ h8, 4©h8→ h9,

5©192(h9 >> 51)→ h0|h1, 6©19h5→ h0|h1,

7©19h6→ h1|h2, 8©19h7→ h2|h3, 9©19h8→ h3|h4,

10©19h9→ h4|h5, 11©19h5→ h0

(3)

In step 1, the 52-bit multiplier separates the lower 52-bit
and upper 52-bit of the 104-bit product into two registers.
In Equation 2, the subscript l and h represents the lower 52-
bit and upper 52-bit of the product, respectively. To fit with
the radix-251 representation, the upper 52-bit ( fig j)h is con-
verted from 252251·(i+ j)( fig j)h to 251·(i+ j+1)2( fig j)h, and is
accumulated to the corresponding limb.

In step 2, the paradigm h5→ h6 means replacing (h5,h6)
with (h5 mod 251,h6 + bh5/251c); the paradigm 192(h9 >>
51)→ h0|h1 means replacing (h0,h1) with (h0+(192(h9 >>
51))l ,h1 + 2(19(h9 >> 51))h). The bit length of hi(i =
5, · · · ,9) may exceed 52 before the modular reduction. To
utilize the 52-bit multiplier, we must propagate the carry that
exceeds 51-bit to the higher limb. After the carry propagation
(i.e. 1© to 5©), the modular reduction of 6© to 11© is performed.

The carry chain has many data dependencies that cause
extra latency to the computational process. Therefore, we
adjust the carry order and perform it in the following order:
1© 3© 5© 2© 4© 6© 8© 10© 7© 9© 11©. Apart from the modular multi-

plication, the carry propagation of modular addition and sub-
traction undergoes similar optimization.

In terms of data type, we adopt similar terminology
from [15, Sec 3.1]. The fundamental data type used in the
8× 1-way finite field arithmetic is the vector set V , which
consists of 5 vectors (i.e. 512-bit registers) vi (0 ≤ i < 5),
and each vector contains 8 limbs from different finite field
elements. The vector set V is defined as:

V = [a,b, · · · ,g,h]

=

[
4

∑
i=0

251iai,
4

∑
i=0

251ibi, · · · ,
4

∑
i=0

251igi,
4

∑
i=0

251ihi

]

=
4

∑
i=0

251i[ai,bi, · · · ,gi,hi] =
4

∑
i=0

251ivi

(4)

where vi = [ai,bi, · · · ,gi,hi], and all of the ai,bi, · · · ,gi,hi are
51-bit or 52-bit limbs. Each register comprises eight 64-bit
lanes, with each lane storing a 51-bit or 52-bit limb. In the
8×1-way finite field arithmetic, eight limbs in one register
come from eight different finite field elements. Based on
this data structure, we implemented the 8×1-way modular
addition, subtraction, multiplication, square, and inversion
using AVX-512IFMA.

Formal verification of our finite field implementation
The finite field implementation is critical for performance
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Algorithm 1 2×4-way point addition.

Input: [P,J] = [XP,YP,TP,ZP,XJ ,YJ ,TJ ,ZJ ]; [Qpre,K pre] =
[YQ − XQ + 2p,YQ + XQ,2dTQ,2ZQ,YK − XK + 2p,YK +
XK ,2dTK ,2ZK ]; P, Q, J, and K are points on Ed-
wards25519; Qpre is the precomputed format of Q, which
is generally obtained from a precomputed table.

Output: [R,S] = [XR,YR,TR,ZR,XS,YS,TS,ZS] such that R =
P+Q, S = J+K.

1: M← PERM([P,J],0xB1)
2: N←MADD([P,J],0x11,M,2p)
3: N←MSUB(N,0x11,N, [P,J])
4: N←MADD(N,0x22,N,M)
5: U ← N× [Qpre,K pre] . 8×1-way multiplication
6: M← PERM(U,0xDD)
7: N← PERM(U,0x88)
8: M←MADD(M,0x99,M,2p)
9: M←MSUB(M,0x99,M,N)

10: M←MADD(M,0x66,M,N)
11: N← PERM(M,0x4B)
12: [R,S]←M×N . 8×1-way multiplication
13: return [R,S]

and security in ECC. Even minor errors in the finite field
implementation can lead to severe consequences such as cryp-
tographic attacks or functional failures [8]. We utilize a semi-
automatic formal verification tool, CRYPTOLINE [21, 32], to
provide mathematical guarantee of its correctness. For more
details, see the artifact of this work.

3.3 8×1-way and 2×4-way point arithmetic

X25519-KeyGen is always computed on the Edwards curve,
and then the result is converted to the equivalent Montgomery
curve. X25519-Derive generally adopts the Montgomery lad-
der algorithm, and we can not achieve a new speed record. We
therefore only focus on the point arithmetic on the Edwards
curve. For the point addition formula on twisted Edwards
curves, giving P = (XP,YP,TP,ZP) and Q = (XQ,YQ,TQ,ZQ)
in the format of extended twisted Edwards coordinates [26,
Sec 3], R = P+Q = (XR,YR,TR,ZR) is calculated as follows:

A← (YP−XP)× B← (YP +XP)×
(YQ−XQ) , (YQ +XQ) ,

C← 2d×TP×TQ, D← 2ZP×ZQ,
E← B−A, F ← D−C,
G← D+C, H← B+A,
XR← E×F, YR← G×H,
ZR← F×G, TR← E×H.

(5)

By scheduling eight independent point additions (i.e. above
formula) into each lane of the 8×1-way finite field arithmetic,
we arrive at 8× 1→ 8× 1. The 8× 1-way point doubling
follows a similar approach.

Faz-Hernández et al. [18, Alg 4] implemented a 1×4-way
point addition based on 4×1-way finite field arithmetic us-
ing AVX2 instructions. However, limited by its calculation
flow, the point addition cannot be extended to 1×8-way. Con-
sequently, we design a 2× 4-way point addition, shown in
Algorithm 1, to handle this shortcoming. In Algorithm 1, +2p
ensures that the result of subtraction remains within the non-
negative range. Whereby the permutation instruction PERM
and mask instruction MADD/MSUB are mentioned in Ap-
pendix A. The 2× 4-way point doubling is computed in a
similar manner.

3.4 8×1-way and 1×8-way fixed-point scalar
multiplication

We adopt the terminology of searching a point from precom-
puted tables in [18, Sec 4.1]. For a fixed-point scalar multi-
plication kP, where P is known beforehand, precomputing
several multiples of P can effectively reduce the computa-
tional overhead. In this case, the scalar k is a 253-bit2 integer.
Let t = d253/ωe with ω > 0. We precompute a set of t ta-
bles; each contains 2ω−1 points. These tables are defined
as Tu = {Tu(v) = 2ωuvP | for 1 < v ≤ 2ω−1} for 0 ≤ u < t.
Searching for a point from these tables is defined as:

φ(Tu,v) =

 Tu(v), if v > 0
−Tu(−v), if v < 0

O, otherwise .
(6)

The scalar k is recoded into signed segments (k0, · · · ,kt−1),
such that k = ∑

t−1
j=0 2ω jk j and −2ω−1 ≤ k j < 2ω−1 (see [18,

Alg 5] for the recoding algorithm). This work employs ω = 4
and t = 64 and only precomputes even-indexed tables (i.e. all
Tu for even u) to reduce memory consumption. We utilize
a secure and constant-time masking technique to search for
points from these tables, which avoids secret-key indexing
and potential side-channel attacks.

8× 1-way implementation for X25519-KeyGen Using
the 8×1-way implementation, eight independent scalar multi-
plications can be computed in parallel based on our 8×1-way
point arithmetic. The calculation of each scalar multiplication
is as follows.

kP =
31

∑
j=0

φ(T2 j,k2 j)+24
31

∑
j=0

φ(T2 j,k2 j+1) . (7)

Such a formula is viewed as a lane in our 8× 1-way point
addition. When eight independent scalar multiplications are
computed in parallel, we arrive at 8×1→ 8×1→ 8×1.

2253 is the bit length of the elliptic curve group order L of Curve25519.
The scalar is guaranteed to lie within the range of [0,L) before executing the
scalar multiplication.
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Algorithm 2 Optimized double-point scalar multiplication.

Input: (k, l,P,Q), where k and l are 253-bit4 scalars, P
and Q are points on Edwards25519 curve, P is a fixed
point, and Q is a variable point. The precomputed table
tableP←{O,P,2P, · · · ,2ω−1P}, where ω is the width of
the window, O is the identity element of elliptic curve
group, and tableP can be precomputed offline since P is
a fixed point.

Output: R = kP+ lQ.
1: Compute tableQ←{O,Q,2Q, · · · ,2ω−1Q} at runtime
2: (k0,k1, · · · ,kr−1)←Recodingω(k) . r = d253/ωe+1
3: (l0, l1, · · · , lr−1)←Recodingω(l)
4: [M,N]← [O,O]
5: [A,B]← [±tableP[|kr−1|],±tableQ[|lr−1|]] . The

sign of the point taken from tables follows the sign of the
corresponding scalar fragments (i.e. kr−1 and lr−1 here).

6: [M,N]← [M,N]+ [A,B] . Using our 2×4-way point
addition.

7: for i← r−2 to 0 do
8: [M,N]← 2ω[M,N] . Using our 2×4-way point

doubling ω times.
9: [A,B]← [±tableP[|ki|],±tableQ[|li|]]

10: [M,N]← [M,N]+ [A,B]
11: end for
12: R←M+N
13: return R

1× 8-way implementation for Ed25519-Sign The calcu-
lation of kP using our 1×8-way strategy is shown as follows.

kP =
7

∑
j=0

φ(T2 j,k2 j)+24
7

∑
j=0

φ(T2 j,k2 j+1)

+
15

∑
j=8

φ(T2 j,k2 j)+24
15

∑
j=8

φ(T2 j,k2 j+1)

+
23

∑
j=16

φ(T2 j,k2 j)+24
23

∑
j=16

φ(T2 j,k2 j+1)

+
31

∑
j=24

φ(T2 j,k2 j)+24
31

∑
j=24

φ(T2 j,k2 j+1) ,

(8)

where the eight accumulators are computed in parallel by the
8×1-way point arithmetic and ultimately arrive at 8×1→
8×1→ 1×8.

3.5 2× 4-way double-point scalar multiplica-
tion

The core operation of Ed25519-Verify is a double-point scalar
multiplication, i.e. kP+ lQ, where k and l are scalars (i.e. 253-
bit integers), P is a fixed point, and Q is a variable point.

Faz-Hernández et al. [18, Alg 6] adopted a w-NAF [47]
method to compute the double-point scalar multiplication.

Table 1: The number of point addition (PA) and point doubling
(PD) of our double-point scalar multiplication with different
window widths.

ω PD PA PA+0.97PD1

3 257 88 338
4 259 68 320
5 260 57 310
6 267 53 312
7 276 55 323
1 The proposed 2×4-way point addition and point doubling

implementation consume 181 and 176 CPU cycles, respec-
tively in our machine.

Their parallelism strategy is 4× 1→ 1× 4→ 1× 1 using
AVX2, which shows that the point arithmetic layer digests all
the parallelism. It is suboptimal according to the MTP prin-
ciples. Moreover, they also admit (in [18, Sec 4.2]) that they
cannot provide a more efficient strategy due to the inherent
sequential pattern of the w-NAF method.

Instead of using the w-NAF method, we design a window-
based method to break the parallelism limit. We describe
the basic idea of the window-based method [23, Alg 3.41]
with a simple example. Calculating scalar multiplication 51P
with window width ω = 3 and signed encoding is shown
as follows. (1) Recode the scalar 51 into signed w-bit seg-
ments, i.e. (1,−2,3) such that each value lies within the
range of [−23−1,23−1) and 1 · 23·2− 2 · 23·1 + 3 · 23·0 = 51.
(2) Scan segments from left to right and accumulate them.
R←O,R←R+1P,R← 23R,R←R+(−2P),R← 23R,R←
R+3P, where O is the identity element of elliptic curve group,
“+” means point addition, and 23R is completed by three times
of point doublings. 1P, 2P, and 3P are all obtained from a
precomputed table, −2P is obtained by negating 2P. For a
fixed point, precomputation can be performed offline; for a
variable point, precomputation has to be run online.

The starting point is to design a window-based method
to construct the double-point scalar multiplication. Instead
of computing R← R+ iP solely, we compute R← R+ iP
and R′ ← R′+ jQ in parallel for constructing a 2× 4-way
point arithmetic naturally, where i and j are scalar fragments.
Finally, we arrive at 8×1→ 2×4→ 1×2. In this way, the
finite field layer does not digest parallelism ahead of time. Two
parallelisms are passed to the top-most scalar multiplication
layer, thus minimizing the permutation performance penalty
at the bottom layer.

We present our double-point scalar multiplication in Algo-
rithm 2. The Recodingω() subroutine in lines 2 and 3 is used
to recode a 253-bit scalar k into a series of signed segments
such that k = ∑

r−1
i=0 2ωiki, where r = d253/ωe+ 1, ω is the

width of the window, and −2ω−1 ≤ ki < 2ω−1. See [18, Alg
5] for more details of the Recodingω() subroutine.
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Table 2: The CPU cycles comparison of different X25519 implementations under warm-start conditions. Hisil et al. [25] and Nath
et al. [35] only provided optimized X25519-Derive implementation. ISA/ISE stands for Instruction Set Architecture/Extension.

Reference
X25519-KeyGen X25519-Derive ISA/ISE

Cycles Ratio1 Strategy Cycles Ratio2 Strategy3

OpenSSL [41] 90,809 12.01 1×1→1×1→ 1×1 90,849 1.47 1×1→ 1×1 x86-64
Faz-H. [18] 26,420 3.49 4×1→ 4×1→ 1×4 71,454 1.15 2×2→ 1×2 AVX2
Hisil [25] - - - 61,867 1.00 4×2→ 1×4 AVX-512F
Nath [35] - - - 64,832 1.05 4×1→ 1×4 AVX2

Cheng [15]4 70,164 2.32 4×1→ 4×1→ 4×1 - - - AVX2
This work 60,479 1.00 8×1→ 8×1→ 8×1 - - - AVX-512IFMA

1 Our 8×1-way X25519-KeyGen can generate eight different keypairs once. The implementation of Cheng et al. is
a 4×1-way implementation; others are 1×n-way (one keypair once). Therefore, the ratio with Cheng et al. is
(70164/4)/(60479/8) = 2.32. Other calculations are similar to this.

2 We don’t provide a faster X25519-Derive implementation. All comparisons are made with Hisil et al.
3 The strategy is represented as “finite field”→ “Montgomery ladder”.
4 Cheng et al. provide a 4×1-way implementation of the X25519-Derive, but as Section 3 said, integrating it into

the TLS ecosystem needs to re-engineer the TLS application so we do not present their cycles.

Determines the window’s width ω The larger the value of
ω, the larger the precomputation overhead of tableQ will be,
and the number of point addition (PA) and point doubling
(PD) in the main loop will be smaller. The computational cost
of Algorithm 2 is mainly composed of the precomputation
cost of tableQ and the main loop cost. The precomputation
cost is (2w−3 + 1)PD+ 2w−3PA. The cost of the main loop
is w(r−1)PD+ rPA. Line 12 is a point addition to calculate
the final result. We detail the computational cost for different
ω in Table 1, and it is obvious that ω = 5 achieves the best
performance.

3.6 Comparison
Note that the performance comparison in this section only
considers the warm-start case. The cold-start case will be
analyzed in Section 4.

Our benchmark machine is an Intel Xeon (Ice Lake) Plat-
inum 8369B with 8 vCPUs and 16 GiB memory3. We use
GCC 9.2.0 to compile all programs. We did not disable Turbo
Boost option for the following reasons: Firstly, and most im-
portantly, we aimed to simulate real-world application scenar-
ios as closely as possible rather than conducting tests under
ideal conditions. Secondly, extensive testing revealed that
our experimental results remain reproducible even without
disabling Turbo Boost, with no significant jitter observed.

The implementations of OpenSSL [40, 41], Hisil et al. [25]
and Cheng et al. [15], as well as this work are all com-
piled with the “-O2” flag4, while the implementations of

3Our machine is leased from Alibaba Cloud. The family and instance type
are compute optimized type c7 and ecs.c7.2xlarge, respectively. The 8 vCPUs
can be approximately understood as 4 physical cores & 8 hyperthreads.

4For the implementation of OpenSSL, we need to extract the X25519
and Ed25519 implementation from the huge OpenSSL project to form a new

Faz-Hernández [18] and Nath et al. [35] are compiled with
the “-O3” flag. Our experiment shows that the performance
difference between “-O2” and “-O3” is negligible.

All performance reported in this section is warm-start per-
formance; we run the subroutine 2,000 times before counting
the CPU cycles to avoid the cold-start issue. The reported
CPU cycles represent the average time taken to run the sub-
routine 20,000 times.

Table 2 compares our X25519 implementation with others.
Even though OpenSSL’s implementation is the slowest one
in the table, a comparison with it is still needed. Since none
of the previous work has integrated their implementations
into OpenSSL, we need to use the OpenSSL implementation
as a baseline when comparing metrics related to the TLS
handshake. The ratio of CPU cycles of OpenSSL’s X25519-
KeyGen to our implementation is as high as 12.01; in other
words, the throughput (executions per second) of our imple-
mentation is 12.01 times that of OpenSSL X25519-KeyGen.
The proposed X25519-KeyGen achieves such a significant
performance improvement because we pass the 8-way par-
allelisms of the AVX-512IFMA to the top layer thoroughly
according to our MTP principles.

Table 3 provides a comparison of various Ed25519 imple-
mentations. Ed25519-Sign and Ed25519-Verify achieve 3.79
and 3.33 times higher throughput than OpenSSL, respectively.
We also give the corresponding fixed-point scalar multiplica-
tion comparison in Table 4, showing that the throughput of our
optimized fixed-point multiplication is 8.06 times and 1.67

small project for benchmark, so its compilation options are consistent with
our implementation. For the implementation of Hisil et al., their compiling
script did not work on our machine, so we refactored their project, and its
compile options were also consistent with our implementation. Cheng et al.
originally used the “-O2” option; they used the Clang compiler by default,
and we changed it to GCC for a fair comparison.
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Table 3: The CPU cycles comparison of different Ed25519 implementations under warm-start conditions. The comparison of
Ed25519-KeyGen is not provided, partly because it is not used in TLS handshake and its performance is close to X25519-KeyGen.

Reference
Ed25519-Sign Ed25519-Verify ISA/ISE

Cycles Ratio Strategy Cycles Ratio Strategy

OpenSSL [40] 93,606 3.79 1×1→ 1×1→ 1×1 271,445 3.33 1×1→ 1×1→ 1×1 x86-64
Faz-H. [18] 29,252 1.18 4×1→ 4×1→ 1×4 108,082 1.33 4×1→ 1×4→ 1×1 AVX2
This work 24,723 1.00 8×1→ 8×1→ 1×8 81,506 1.00 8×1→ 2×4→ 1×2 AVX-512IFMA

Table 4: The CPU cycles comparison of the corresponding
fixed-point scalar multiplication.

Reference Cycles Ratio

OpenSSL [40] 71,561 8.06
Faz-H. [18] 14,813 1.67
This work 8,880 1.00

times that of OpenSSL and Faz-Hernández et al., respectively.

4 Reaching TLS and Application layers

The goal of reaching TLS and the application layers is to
explore the performance of cryptographic operations in re-
alistic scenarios, including the impact of the cold-start issue
of vector units. In Section 4.1, we implement ENG25519
to transparently integrate our optimized implementation into
TLS applications. Section 4.2 explores the cold-start issue
and presents our solution for alleviating this issue. We con-
duct several experiments in Section 4.3 and Section 4.4 to
benchmark TLS handshakes and DoT queries, respectively,
through the successful integration of ENG25519.

4.1 The ENG25519 ENGINE
We follow the methodology suggested in [49] for incorpo-
rating the optimized X25519 and Ed25519 implementation
into the OpenSSL ENGINE framework. Interested readers
can refer to this paper for more detailed descriptions.

In the OpenSSL framework, an ENGINE acts as a con-
tainer for implementing cryptographic algorithms. OpenSSL
has a built-in ENGINE called “dynamic” that loads other
ENGINEs, such as our ENG25519, in the form of a shared
library, dynamically at runtime. Thus, through the OpenSSL
configuration file, the “dynamic” ENGINE loads ENG25519,
and the optimized implementations of X25519 and Ed25519
are transparently integrated into both OpenSSL and TLS ap-
plications.

The ENG25519 is built based on libsuola [50] in [49] and
engntru5 [43] in [5]. However, while libsuola provided

5An OpenSSL ENGINE that can integrate the batched implementation

Table 5: Detailed configuration of ENG25519.

Subroutine Implementation

X25519-KeyGen
Ed25519-KeyGen

Our 8×1→ 8×1→ 8×1 impl.
batch-size = 16 (Section 3.4)

X25519-Derive
4×2→ 1×4 impl. of

Hisil et al. ( [25])

Ed25519-Sign
Our 8×1→ 8×1→ 1×8 impl.

(Section 3.4)

Ed25519-Verify
Our 8×1→ 2×4→ 1×2 impl.

(Section 3.5)

simple test cases to verify its correctness, it did not reach the
TLS ecosystem. When we attempted to reach the TLS layer,
we encountered two bugs in libsuola (see Appendix C for
the fixes). Consequently, our ENG25519 is a better ENGINE
template to integrate ECC implementations into the TLS layer
than libsuola, as ENG25519 has been verified to reach both
the TLS and application layers.

The X25519 and Ed25519 are implemented
through the EVP_PKEY_meth and the corresponding
EVP_PKEY_ASN1_meth APIs within the OpenSSL
framework, which are abstract data types provided by
OpenSSL for public key cryptographic algorithms. The
former API provides keygen() and derive() methods
for X25519 implementation; provides keygen(), sign(),
and verify() for Ed25519 implementation. The latter one
provides encoding and decoding methods for the public and
secret keys. Table 5 presents the detailed configuration of
ENG25519.

To integrate our 8 × 1-way X25519-KeyGen into
ENG25519, we implement a BATCH_STORE structure, as
described in [5]. This structure holds a certain number of key-
pairs, i.e., 128 in our case. The keygen() method of X25519
accesses this structure to determine if there are any remaining
keypairs. If so, it fetches them directly. Otherwise, it uses our
8×1-way X25519-KeyGen 16 times to regenerate the key-
pairs and repopulate the structure. We will discuss the design

of a post-quantum key exchange scheme, NTRU Prime, into TLS and TLS
applications.
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Table 6: Warm-start performance vs cold-start performance in the DoT query scenario. CC is the abbreviation of CPU cycles.

Subroutine
Warm-start

CC
Cold-start
CC (DoT)

Cold-start CC/
warm-start CC

DoT warm
CC3

DoT warm CC/
warm-start CC

Our X25519-KeyGen1 7,5602 28,450 3.8 10,3154 1.4
Our Ed25519-Sign 24,723 52,157 2.1 28,515 1.2

Our Ed25519-Verify 81,506 239,176 2.9 90,956 1.1
Hisil et al. X25519-Derive [25] 61,867 97,789 1.6 64,395 1.0
1 Here, we set the batch size to 1 to see the effect of the auxiliary thread more intuitively.
2 In Table 2, our 8×1-way X25519-KeyGen takes 6,0479 cycles for generating eight keypairs. Here, we report

the average cost for generating one keypair.
3 The performance using our auxiliary warm-up thread for mitigating the cold-start issue.
4 Part of the overhead is consumed by the BATCH_STORE frame.

decisions for batch-size = 16 later. The derive() method is
a wrapper around the 1×4-way X25519-Derive implementa-
tion by Hisil et al. [25]. The keygen() method for Ed25519
is similar to the X25519 case. The sign() and verify()
methods are wrappers of our 1× 8-way Ed25519-Sign and
1×2-way Ed25519-Verify implementation, respectively.

4.2 How to mitigate the cold-start issue?

The so-called “cold-start” approach measures the direct run-
ning time of the cryptographic algorithm a few thousand times
during cryptographic benchmark tests. In contrast, the “warm-
start” approach involves an initial warm-up phase where the
cryptographic algorithm is executed a few hundred times be-
fore measurement. According to [19, Sec 11.9], the processor
will set the upper parts of the AVX2/AVX-512 vector units to
a low-power mode to save power if the units are not in use for
about 675 µs, leading to a warm-up phase of approximately
14 µs (56,000 clock cycles at 4 GHz) when an AVX2/AVX-
512 instruction is executed in the low-power mode. During
the warm-up phase, the throughput of the related instructions
is 4.5 times slower than usual.

After a careful review of the previous implementations
with AVX2/AVX-512, we found that the cryptographic imple-
menters tend to report only warm-start performance (e.g. [12,
13, 15, 18, 25, 35] and their software [10, 11, 14, 17, 24, 34]),
without considering the adverse effects of the cold-start issue
of vector units. Actually, the cold-start issue has never been
discussed in previous related work in the cryptographic engi-
neering field. This finding motivates us to explore the actual
effect the cold-start issue brings to the ECC implementation
with AVX2/AVX-512. Furthermore, as our objective is to
incorporate the AVX-512IFMA-optimized ECC implementa-
tion into TLS, the vector units could operate in the low-power
mode during certain stages of the TLS protocol, which could
result in a much worse cold-start performance than what has
been observed during warm-start testing.

As a result, we intend to systematically examine and allevi-

ate adverse effects of the cold-start issue on real-world TLS
applications. We measured the CPU cycles of cryptographic
operations under the DoT query benchmark conditions (cf.
Section 4.4). These results are more qualified than the warm-
start performance reported in Table 2 and 3 to illustrate the
performance of cryptographic operations in realistic TLS ap-
plications.

We present the results in Table 6. The “warm-start CC”
column is derived from Table 2 and 3. The “Cold-start CC
(DoT)” column is measured under DoT query benchmark
conditions, and the results show that cryptographic operations
are cold-started. The “Cold-start CC/warm-start CC” column
indicates the performance degradation of cryptographic oper-
ations in the DoT query conditions (i.e. cold-start scenario)
compared to the warm-start scenario. The last two columns
will be analyzed later. All subroutines suffer from varying
degrees of performance degradation; especially the X25519-
KeyGen takes 3.8 times longer in the DoT scenario than in
the warm-start scenario.

Initially, we hypothesized that the performance degrada-
tion was caused by cache misses due to the larger executable
file than the L1 cache (as mentioned in [55, Sec 5.1]). How-
ever, after careful analysis through the top-down method [54]
with pmu-tools [39], we concluded that cache misses could
not cause such significant performance degradation. Subse-
quently, we discovered the cold-start issue of vector units,
which is also mentioned in [19, 20, 52]. As this is a mecha-
nism inside the CPU without any interface to disable it, we
have to find a workaround to mitigate this issue.

The warm-up phase typically lasts around 14 µs (56,000
cycles under 4GHz), after which all vector units are fully ac-
tivated, as demonstrated in [19, Sec 11.9]. The vector units
will enter low-power mode if no vector instructions are ex-
ecuted for approximately 675 µs. To tackle this issue, one
can execute a vector instruction 14 µs prior to cryptographic
operations to initiate the warm-up phase. However, predict-
ing precisely when a client initiates a TLS handshake with a
server is impossible.
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To address this problem, we propose an auxiliary warm-up
thread that executes a dummy vector instruction every 500
µs to prevent the vector units from entering low-power mode.
The time interval is set as 500 µs to allow for timer errors.
Nonetheless, continuously preventing the vector units from
entering low-energy mode will increase the CPU’s power con-
sumption, which contradicts the CPU designer’s intentions.
Therefore, we propose a heuristic warm-up scheme for the
auxiliary thread, which operates as follows: It wakes up every
500 µs, executes a vector instruction if necessary, and then
goes to sleep. Otherwise, it goes to sleep directly, resulting
in minimal consumption of CPU resources because it sleeps
most of the time.

Heuristic warm-up scheme The unbound server provides
the capability to report statistics [45], allowing us to determine
the number of DoT queries within a 60-second period6, de-
noted as Q. We record the maximum number of DoT queries
that unbound can resolve in 60 seconds as Qmax, which is
approximately 290,000 with ENG25519 support. We clas-
sify DoT workload into three categories: high, medium, and
low. In high workload scenarios (Q≥ 120,000), at least one
DoT query is resolved on average every 500 µs, and the
auxiliary thread does not require any warm-up actions. For
medium workload scenarios (60,000 ≤ Q < 120,000), the
auxiliary thread executes one vector instruction every 500 µs
to prevent the vector unit from entering low-power mode. For
low workload scenarios (Q < 60,000), the auxiliary thread
does not need to execute any warm-up actions. Compared to
consistently executing a vector instruction every 500 µs to
warm up vector units, regardless of the workload scenario, our
heuristic warm-up scheme considers the various scenarios’
requirements. Unnecessary warm-up actions are removed for
high-workload scenarios, periodic warm-up actions ensure
faster TLS handshakes for medium-workload scenarios, and
for low-workload scenarios, we avoid disrupting the power-
saving mechanism inside the CPU. We describe the heuristic
warm-up scheme as follows.

T =

 +∞, Q≥ 120,000
500µs, 60,000≤ Q < 120,000
+∞, Q < 60,000

(9)

where the time interval T denotes the duration for the auxil-
iary thread to execute a vector instruction for warm-up vector
units, and the symbol +∞ indicates no instruction execution.
In our implementation, the thresholds for dividing the three
workload cases and the corresponding time intervals are ad-
justable, enabling the scheme to be expanded to other ap-
plication scenarios. See Appendix D for the guidelines of
parameters adjustment.

The last two columns in Table 6 show the effectiveness of
our auxiliary thread. These results are measured after equip-
ping our auxiliary thread with T = 500µs for both the server

6The time interval is adjustable in the unbound configuration file.

Table 7: Amortized CPU cycles (CC) to generate a keypair us-
ing our 8×1-way X25519-KeyGen with different batch sizes.
The data presented here encompasses the memory manage-
ment overhead introduced by the OpenSSL ENGINE layer.

Batch
size

Amortized CC
with auxiliary thread

Amortized CC
without auxiliary thread

1 10,315 28,450
2 9,903 24,977
4 9,107 19,388
8 9,003 14,108
16 8,980 11,406

and the client. In realistic scenarios, we only equip the server
with the auxiliary thread. The client is only equipped with the
auxiliary thread in the experiments of Table 6; in all other ex-
periments, the client is not equipped with the auxiliary thread.
In practice, requests initiated by clients are scattered and un-
predictable. We forgo the performance sweetspot brought by
auxiliary threads on the client side to simulate a more realistic
scenario. In this way, among the cryptographic operations
performed by the client, the batching technique described
below can mitigate the cold-start issue of X25519-KeyGen.
However, X25519-Derive and Ed25519-Verify will inevitably
suffer from the cold-start issue. Benchmarks in Sections 4.3
and 4.4 demonstrate that our configuration (i.e. the server us-
ing ENG25519 with our auxiliary thread and the client using
ENG25519 without our auxiliary thread) still outperforms
other configurations.

Power consumption One might think that using AVX-512
and bypassing energy-saving mechanisms could potentially
increase CPU power consumption and even carbon emissions.
We argue that our faster cryptographic computations not only
don’t increase power consumption but actually reduce it due
to the overall time reduction. Consider the cryptographic oper-
ations in a TLS 1.3 handshake on the server side, i.e. X25519-
KeyGen+X25519-Derive+Ed25519-Sign. This work (97.1k
CC) achieves an 184% and 31% improvement over OpenSSL
(275.3k CC) and Faz-Hernandez (127.1k CC), respectively.
Professional power consumption tests [31] indicate that AVX-
512 only increases average power consumption by 17% and
peak power consumption by 10% compared to AVX2. Addi-
tionally, compared to the implementation without any AVX
instructions, AVX-512 increases the peak power consumption
by 9.6%, but reduces the average power consumption. Consid-
ering the efficiency improvement, utilizing AVX-512 remains
beneficial in terms of power consumption.

Online-KeyGen and offline-KeyGen We only consider
the online KeyGen scenario. The offline-KeyGen pattern is
commonly used in scenarios such as TLS/SSL certificate au-
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thorities and cryptocurrencies with dedicated security devices
for protecting offline keypairs. Our focus is on the online-
KeyGen (for X25519 key exchange) scenario. Most server
software using the TLS protocol adopts the online-KeyGen
mechanism, such as unbound and nginx. The precomputed
keypairs are securely stored in memory, eliminating the need
for dedicated security devices. Key management involves
simple memory operations at the ENGINE level, which is
transparent to the server.

Batch X25519-KeyGen As previously mentioned,
X25519-KeyGen can be performed without relying on infor-
mation from the communication peer. This is the underlying
premise that allows our 8 × 1-way X25519-KeyGen to
be utilized. Calling our 8× 1-way X25519-KeyGen once
generates eight different keypairs. We call it 16 times when
needed, denoted as batch-size = 16, for two reasons. First,
when auxiliary thread support is not available, such as on the
client side mentioned above, multiple calls can amortize the
impact of the cold-start issue. Second, when auxiliary thread
support is present, as on the server side, multiple calls are
more cache-friendly and can improve performance. Table 7
presents the amortized cost of each keypair under different
batch sizes. Compared to batch-size = 1, the performance
improvement of batch-size = 16 is 13% or 60% with or
without our auxiliary thread, respectively. Further increasing
batch-size beyond 16 yields diminishing returns, so we
adopt 16 as our choice. The time taken to generate a batch
is approximately 0.22 to 0.33 milliseconds (under 4GHz),
which is imperceptible to users.

4.3 Benchmark of TLS handshake
We used two machines with the same configuration as the
client and server to benchmark TLS handshake, the same as
in Section 3.6. Additionally, the two machines communicate
over an internal network with a bandwidth of up to 10Gbps.
Our OpenSSL version is 1.1.1q. Our benchmark method
is similar to Bernstein et al. [5, Sec 4.4] in Usenix Security
2022. We ran a generic TLS server on the server side that
listens for connections on a given port using TLS via the
openssl s_server tool [42]. On the client side, we mea-
sured handshakes per second using tls_timer [44]. In the
main loop of tls_timer, it records a timestamp, and then
performs a certain number of TLS connections, then records
another timestamp, resulting in the elapsed time. For each
TLS connection, it just performs TLS 1.3 handshake with-
out sending any application data, and then the client properly
shuts down the connection. The elapsed time covers the com-
putational overhead of cryptographic operations, the time for
the packet to travel over the network, and the time to travel
from kernel space to user space.

Our experiments with cumulative distributions are pre-
sented in Figure 3a. We used Ed25519 as the signature algo-

rithm for all experiments. As a baseline for comparison, we re-
port results with both client and server using NIST P-256 [36]
and X25519 in OpenSSL 1.1.1q for key exchange, namely
“P256” and “X25519” in legend. Both experiments use the
cryptographic implementation built into OpenSSL instead of
using any ENGINEs. In the setting of the “ENG25519” leg-
end, the server adopts our ENG25519 supported by our auxil-
iary warm-up thread, and the client adopts our ENG25519 not
supported by the auxiliary thread. The “ALL-OpenSSL” leg-
end indicates that the ENGINE is implemented using X25519
and Ed25519 implementation in OpenSSL. When it is com-
pared with the “X25519” configuration, the impact of the
ENGINE framework on performance can be known.

On average, the proposed ENG25519 setting (1,707 #con-
nections/second) enables 25% and 35% more handshakes per
second than X25519 (1,366) and P256 (1,260), respectively.

4.4 Benchmark of DoT query

We conducted two benchmarking approaches. The first in-
volved end-to-end experiments derived from [5, Sec 4.4] in
Usenix Security 2022, allowing us to showcase optimizations
on both client and server paths. This approach is in align
with users’ perception. The second measured the server’s
peak throughput by bombarding it with a sufficient number of
clients, quantified as the number of completed DoT queries
per 60 seconds (#queries/min). Large-scale service providers
are particularly interested in this metric, as higher throughput
can potentially reduce hardware acquisition costs.

End-to-end experiments On the server side, we utilized
unbound [37] DoT server, which listens for TLS connec-
tions on a given port. On the client side, we developed the
dot_timer tool based on the tls_timer. Once the TLS 1.3
handshake is completed, dot_timer sends a DNS query to
unbound, waits for the corresponding DNS response over the
established TLS connection, and then properly shuts down the
connection. Other configurations remain unchanged from Sec-
tion 4.3. Compared to tls_timer, the elapsed time recorded
by dot_timer additionally covers the time taken by the client
to send the DNS query and receive the DNS response over
the TLS connection. Figure 3b visualizes our experimental re-
sults, with the same legends as in Section 4.3. Our ENG25519
outperforms all other configurations.

Peak throughput Our ENG25519 configuration achieved
a significant improvement, achieving 290,315 #queries/min,
which represents a 41% and 24% increase over P256
(206,275) and X25519 (234,875), respectively. This enhance-
ment demonstrates the effectiveness of our optimizations in
achieving higher server throughput.
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(b) DoT query performance

Figure 3: Cumulative distributions of TLS handshake and DoT query performance under different configurations. For each
configuration, we collected 100 samples in terms of the average number of TLS connections and DoT queries per second. For
each sample, we measure the elapsed time over 10000 sequentially TLS 1.3 handshakes and DoT queries.

5 Security

We confirm that all instructions used in this work are constant-
time, and we avoid secret-data-dependent memory access and
branches to protect against cache-timing attacks and branch
prediction attacks. The implementation of X25519-KeyGen
and Ed25519-Sign involves accessing precomputed tables.
Our secure table lookup method traverses the entire (sub)table
and uses masking techniques to obtain the desired table entry.
Attackers cannot observe any useful cache access patterns
or expose any secret information. The precomputed keypairs
are saved directly into memory. Memory security is ensured
through operating system (OS) measures, e.g., virtual memory,
access control, and memory isolation. Our X25519 keypairs
follow the “one-time pad” pattern, with no secret informa-
tion being revealed to a specific cache line. Different private
keys are generated using random number generation APIs,
ensuring no correlations between different keys. Thus, our
implementation does not introduce any potential attack sur-
face and does not affect the security assumptions relied upon
by cryptographic primitives.

6 Availability and Scalability

The availability of AVX-512IFMA AVX-512IFMA was
first implemented in Cannon Lake CPUs in 2018. Since then,
it has gained widespread support in high-performance server
environments. After 2018, most Intel Xeon series processors,
except Cascade Lake (2019) and Cooper Lake (2020), have

provided support for AVX-512IFMA. On the client side, AVX-
512 support has been somewhat contentious due to power
consumption concerns. However, it is important to note that
our optimizations are of greater interest to large-scale service
providers.

For hardware without AVX-512IFMA support AVX2
enjoys more widespread support compared to AVX-512, with
almost all CPUs released after Haswell (2013) supporting
AVX2. For hardware that only supports AVX2, one can de-
rive a solution with additional engineering efforts: At the
cryptographic primitive layer, employ 4× 1-way X25519-
KeyGen from [15], X25519-Derive from [25], Ed25519-Sign,
and Ed25519-Verify from [18]. In the OpenSSL ENGINE
layer, our ENG25519 framework (including batching mech-
anisms for X25519-KeyGen) can be reused with some engi-
neering effort to align with the interfaces of cryptographic
primitives. Our auxiliary threads with the heuristic wake-up
strategy can also be used to mitigate the cold start issue asso-
ciated with AVX2.

Scalability of the heuristic warm-up scheme Our imple-
mentation of the heuristic warm-up scheme depends on the
reporting statistics feature of unbound. However, for TLS ap-
plications without this feature, the scheme is still available by
implementing it at the ENGINE layer.

Scalability of MTP principle for high-end hardware For
wider SIMD/vector instruction sets, such as the vector length
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supported by the ARM SVE(2) is up to 2,048 bits [48], and
supported by the vector extension of RISC-V is up to 16,384
bits [22]. The design concepts proposed in this paper to en-
hance the parallelism of ECC-related arithmetic from 4-way
to 8-way can serve as a valuable guide when contemplating
hardware with greater parallelism. For instance, guided by the
MTP principle, for a machine that supports 1,024-bit vectors,
according to the ideas in this work, the optimization scheme
is 16×1→ 16×1→ 16×1 X25519-KeyGen, 4×4→ 1×4
X25519-Derive, 16× 1→ 16× 1→ 1× 16 Ed25519-Sign,
and 16× 1→ 2× 8→ 1× 2 Ed25519-Verify. Then, utilize
the methodology similar to this paper to reach the TLS layer
and TLS applications.

Application scenarios In addition to the example of DoT
provided in this paper, we list here more potential application
scenarios that could benefit from this paper: (1) E-commerce,
especially during promotional discount periods. During events
like Black Friday sales, website traffic can surge to levels 30
times higher than usual [51]. A report by the WTO [53, Sec
7] also mentions that with the rise of e-commerce, network
capacity and higher bandwidth services have proved to be
crucial. (2) Social media platforms that experience sudden
spikes in activity due to major news events can also be vul-
nerable to performance issues related to the TLS handshake
and could experience crashes [1,29]. (3) Industrial Internet of
Things (IoT) servers. It’s predicted that by 2025, the number
of connected devices per minute will reach 152,000 [38]. For
instance, there can be thousands of devices connected to the
server at any given time, each requiring a secure TLS hand-
shake. This underscores the critical importance of improving
server throughput. The common feature of these scenarios is
their strong emphasis on peak throughput because it can even
affect hardware resource procurement costs.

Session resumption mechanism This mechanism can ef-
fectively expedite TLS handshakes using pre-shared keys.
However, to ensure forward secrecy when conducting fast
handshakes with this mechanism, ECDHE calculations (i.e.,
X25519-KeyGen and X25519-Derive in our case) are still
required. As mentioned in TLS 1.3 specification [46, Sec 2.2]:
“When a client offers resumption via a PSK, it SHOULD
also supply a “key_share” extension to the server to allow the
server to decline resumption and fall back to a full handshake
if needed. The server responds with a “pre_shared_key” ex-
tension to negotiate the use of PSK key establishment and
can (as shown here) respond with a “key_share” extension
to do (EC)DHE key establishment, thus providing forward
secrecy.” Therefore, this work can also accelerate scenarios
where session resumption is used while ensuring forward
secrecy.

7 Conclusions

In this study, we redesign and implement all layers of
ECC arithmetic to improve the performance of X25519
and Ed25519 using the AVX-512IFMA instruction set. At
the OpenSSL level, we proposed ENG25519, based on the
OpenSSL ENGINE API and libsuola, which can actually
benefit the TLS application from the optimized ECC imple-
mentations. In the end, we choose TLS handshakes and DoT
for application-level benchmarking. During this process, we
also uncover and address the cold-start issue of vector units,
which, to our knowledge, had not been reported in the field
of cryptographic engineering before.

Our solution achieves a speedup of 25% to 35% for TLS
handshakes per second and improves peak server through-
put for DoT queries by 24% to 41%. This means that our
solution is indeed effective in mitigating the computational
burden of TLS handshakes for throughput-critical scenarios.
Additionally, we discuss the scalability of our solution, which
can extend to high-end hardware, low-end hardware, and var-
ious CPU architectures. This suggests that our solution offers
guidance for complex real-world environments.
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A Details of AVX-512IFMA instructions

The 52-bit multiplication instructions One of AVX-
512IFMA’s critical features is the 52-bit integer multi-
plier, with corresponding instructions like vpmadd52luq and
vpmadd52huq. For instance, the “vpmadd52luq a_l, b, c”
and “vpmadd52huq a_h, b, c” instructions7 can multiply
the unsigned 52-bit integers in each 64-bit lane of b and c
and produce a 104-bit intermediate result utilizing the 52-bit
multiplier. The first instruction gets the low 52-bit result and
accumulates it to the corresponding lane of a_l. The second
instruction gets the high 52-bit result and accumulates it to
a_h.

Mask addition and subtraction instructions
Consider the inline8 mask addition instruction

7Each of the AVX-512 instruction has a corresponding mask operand
to control the specific behavior of the instruction, here we ignore it for the
convenience of understanding.

8Intel Intrinsics Guide: https://www.intel.com/content/www/us/
en/docs/intrinsics-guide/index.html

_mm512_mask_add_epi64, abbreviated as VMADD.
The syntax of the instruction is as follows:

__m512i _mm512_mask_add_epi64(__m512i src,
__mmask8 k, __m512i a, __m512i b);

The instruction adds packed eight 64-bit integers in a and
b, stores the results in dst (the return value), and employs an
8-bit mask k to determine whether each corresponding lane of
dst should be a copy of the corresponding lane of src or the
result of the addition. Specifically, when the mask bit in k is 0,
the corresponding lane in dst is a copy of the corresponding
lane in src, and when the mask bit is 1, the corresponding lane
in dst is the sum of the corresponding lanes in a and b. The
mask subtraction _mm512_mask_sub_epi64, abbreviated as
VMSUB, operates in a similar manner.

Suppose a = [a0,a1,a2,a3,a4,a5,a6,a7] and
b = [b0,b1,b2,b3,b4,b5,b6,b7]. In line 2 of Algorithm 1,
the mask k is 0x11, which is represented in binary as
00010001. The result of the MADD(a,0x11,a,b) instruction
is [a0 + b0,a1,a2,a3,a4 + b4,a5,a6,a7]. This means that
the 0-th and 4-th lanes are the sum of the corresponding
lanes in a and b, while the remaining lanes are a copy of the
corresponding lanes in a.

Permutation instructions Apart from the mask instruc-
tions, the permutation instruction, abbreviated as PERM, is
also versatile. With the following syntax, it shuffles the 64-bit
integers in a within each 256-bit lane using the control bits in
imm8 and stores the results in dst.

__m512i _mm512_permutex_epi64(__m512i a,
const int imm8);

For example, in line 1 of Algorithm 1, where imm8 is 0xB1,
and its binary representation is 10110001, which is equivalent
to “2 3 0 1” in two-bit integers. The result of PERM(a,0xB1)
is [a1,a0,a3,a2,a5,a4,a7,a6]. Every two-bit integer in “2 3 0
1” is used to index a 64-bit integer in each 256-bit lane of a
512-bit register. The 8-bit values 0xDD, 0x88, and 0x4B in
Algorithm 1 follows the same pattern as imm8.

B Performance penalty caused by permuta-
tion instructions

Using 4 × 2-way modular multiplication as an exam-
ple, let a,b, · · · ,g,h ∈ Fp where p = 2255 − 19. The
4 × 2-way modular multiplication calculates four mod-
ular multiplications in parallel, i.e., a · e,b · f ,c · g,d · h
(mod p). The four elements a, b, c, and d can be repre-
sented using three 512-bit registers with the radix-251

representation as [a0, a3, b0, b3, c0, c3, d0, d3],
[a1, a4, b1, b4, c1, c4, d1, d4], and
[a2, 0, b2, 0, c2, 0, d2, 0].
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The elements e, f , g, and h can also be represented in
a similar way. We need to construct all the product terms,
i.e. aie j, bi f j, cig j, and dih j where i, j = 0, · · · ,4, using the
following computation sequences:

[a0,a0,b0,b0,c0,c0,d0,d0]× [e0,e3, f0, f3,g0,g3,h0,h3]

[a0,a0,b0,b0,c0,c0,d0,d0]× [e1,e4, f1, f4,g1,g4,h1,h4]

[a0,a0,b0,b0,c0,c0,d0,d0]× [e2, 0, f2,0, g2, 0, h2,0]
· · ·
[a4,a4,b4,b4,c4,c4,d4,d4]× [e0,e3, f0, f3,g0,g3,h0,h3]

[a4,a4,b4,b4,c4,c4,d4,d4]× [e1,e4, f1, f4,g1,g4,h1,h4]

[a4,a4,b4,b4,c4,c4,d4,d4]× [e2, 0, f2,0, g2, 0, h2,0].

Obviously, we need to use permutation instructions to trans-
form the form [a0,a3,b0,b3,c0,c3,d0,d3] (i.e. input form)
into the form [a0,a0,b0,b0,c0,c0,d0,d0]. In addition, permu-
tation instructions are also required when accumulating these
product terms. Overall, twenty permutation instructions are
used (12 vpshufd instructions and 8 vpblendmq instructions)
in our 4×2-way modular multiplication.

For the 8×1-way modular multiplication, the eight finite
field elements can be represented with radix-251 representa-
tion as:

[a0,b0,c0,d0,e0, f0,g0,h0]

· · ·
[a4,b4,c4,d4,e4, f4,g4,h4].

We can construct the execution flow without permutation
instructions by adopting a similar computation sequence as
1-way implementation.

The performance penalty caused by awkward permutation
instructions in the bottom-level finite field arithmetic will be
magnified due to its heavy usage by the upper-level arithmetic
(e.g. point arithmetic and scalar multiplication).

C Fixing two bugs in libsuola

The first bug prevents the TLS layer from finding a suitable
signature algorithm for the TLS handshake when we want
TLS to select Ed25519. During the execution flow of the TLS
handshake, OpenSSL checks the digital signature algorithm
and its corresponding message digest algorithm. If the check
fails, OpenSSL refuses to use the corresponding algorithm, re-
sulting in the failure of the TLS handshake. In the libsuola
implementation, OpenSSL is told that the message digest
scheme for Ed25519 is “mandatory”9, which makes TLS
refuse to use the Ed25519 algorithm, causing the TLS hand-
shake to fail. To fix this issue, our ENG25519 tells OpenSSL
that the message digest scheme for Ed25519 is “advisory”10

instead of “mandatory”.
9Return value is 2 in https://github.com/romen/libsuola/blob/

c055fd0f546b8a257293e7794055886081deddfd/meths/suola_asn1_
meth.c#L208-L212

10Return value is 1 instead of 2

The second bug resulted from an incorrect EVP_MD imple-
mentation for Ed25519, causing incorrect signature results.
Before calling the sign() subroutine during the TLS hand-
shake, OpenSSL copies a temporary EVP_MD and uses it to
execute sign(). The message cached in the original EVP_MD
is not cleared after the sign() subroutine is executed, which
leads to residual contents being included in the signed mes-
sages. We fix the issue by clearing the message in the original
EVP_MD after it is copied by OpenSSL.

After fixing these two bugs, our ENG25519 works success-
fully after integrating it into TLS applications.

D Parameter adjustment guidelines

The parameters used for categorizing three workload
cases The configuration of these parameters determines
how the workload is categorized into three different cases.
We consider Q ≥ 120,000 as high load because estimates
suggest that under such load, there is an average of one DoT
request every 500 microseconds, simulating a wake-up oper-
ation. Therefore, there’s no need for an additional wake-up.
The division between medium and low loads is primarily
based on empiricism. For medium loads, our default configu-
ration enable wake-up operations to expedite server-side TLS
handshake computations, proactively preparing for potential
transitions to high load conditions due to sudden user surges.
Experienced developers can fine-tune the categorization of the
three workload cases based on their own empirical insights.
For example, if one aims to accelerate TLS handshake calcula-
tions even under low load conditions, it is possible to remove
the low load scenario by considering 0≤ Q < 120,000 as a
medium load condition.

The time interval parameter Recall that for Intel CPUs, if
no vector instructions are executed for approximately 675 mi-
croseconds, vector units enter a low-power mode. Setting this
parameter to 500 microseconds primarily addresses potential
timer inaccuracies. If CPUs of other architectures exhibit sim-
ilar cold-start issues due to internal designs, this parameter
should be adjusted based on the distinct cold-start behaviors.
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