
An Efficient Hardware Design for Fast
Implementation of HQC

Chen Li1, Suwen Song1, Jing Tian1, Zhongfeng Wang1, and Çetin Kaya Koç 2

1 School of Electronic Science and Engineering, Nanjing University, Nanjing, China
Email: chen li@smail.nju.edu.cn, suwsong@sina.com, tianjing@nju.edu.cn, zfwang@nju.edu.cn

2 University of California, Santa Barbara, Santa Barbara, USA
Email:cetinkoc@ucsb.edu

Abstract—Hamming Quasi-Cyclic (HQC), as a
code-based Key Encapsulation Mechanism (KEM)
algorithm, has been selected as one of the three code-
based candidates in the fourth round of standardizing
post-quantum cryptographic primitives. Efforts are
needed for the efficient hardware implementation
for HQC. However, in existing hardware designs for
HQC, they cost too many clock cycles in the polyno-
mial multiplication module and do not pay enough
attention to the decoders used in the decryption.
Therefore, this paper presents an improved hardware
design for HQC. Through applying a low-latency
polynomial multiplication design, every stage of our
design saves amounts of clock cycles. Moreover, an
efficient Reed-Solomon (RS) decoder based on the
enhanced Parallel Inversionless Berlekamp-Massey
(ePIBM) algorithm and a Reed-Muller (RM) decoder
based on the Fast Hadamard Transform (FHT) al-
gorithm are introduced to reduce the overhead in
the decryption. A complete architecture is finally
implemented on the Xilinx Artix 7 FPGA (xc7a200t-3).
Experimental results show that the proposed design
for the HQC-128 requires 25% less area-delay product
(ADP) than the latest one in decryption. Furthermore,
the proposed design can perform key generation in
0.11ms , encapsulation in 0.22ms, and decapsulation
in 0.38ms, which significantly outperforms the state-
of-the-art design.

Index Terms—Post-quantum cryptography, Ham-
ming quasi-cyclic, Reed-Solomon decoder, Reed-
Muller decoder, hardware implementation.

I. INTRODUCTION

Powerful quantum computers have been proven
that they can solve discrete logarithms and factor
large numbers trivially, which extremely threaten
the security of most public-key cryptography al-
gorithms used for the last few decades, such as
the Rivest Shamir Adleman (RSA), Diffie-Hellman,
and Elliptic Curve Cryptography (ECC). To deal
with this potential threat, the Post-Quantum Cryp-
tography (PQC) is introduced. Since 2016, the
National Institute of Standards and Technology
(NIST) [1] has been conducting a standardization
process to call for the public evaluation of PQC
algorithms. This process has reached the fourth

round and there survive four main families of PQC
algorithms now: lattice-based, isogeny-based, hash-
based, and code-based cryptography. To be more
specific, CRYSTALS-Kyber [2] has been selected
to be standardized in the KEM category as a lattice-
based algorithm and there are still three code-
based candidates to be considered: Bit Flipping Key
Encapsulation (BIKE) [3], Classic McEliece [4],
and HQC.

In this round, the algorithm performance and
hardware implementation can be regarded as the
most important factors for these candidates to be
standardized. As one of the three KEM candidates,
HQC mainly relies on the hardness of decoding
random quasi-cyclic codes in Hamming metric. It
not only has the optimal speed in key generation and
decryption among them, but has also been proven
to be Chosen Ciphertext Attack (IND-CCA) secure
[5]. That means HQC can be a reliable choice
definitely. However, the efficiency of HQC is still
far lower than the traditional solutions, like the RSA
and ECC. Besides, only a few papers explored its
hardware implementations [6]-[8]. The first hand-
optimized design of HQC is reported in [6]. It is
also the state-of-the-art hardware work until now.
The High-Level Synthesis (HLS) implementation of
the HQC-128 version has been released in [7]. It
allows faster experimentation of software code to a
hardware platform but the efficiency is limited. The
work in [8] shows an efficient architecture to realize
the polynomial multiplication in HQC, which can
complete polynomial multiplication operation in
fewer resources with a small number of clock cycles
by using the sparsity of the adopted polynomial
multiplications. It is worth mentioning that the latest
hardware design in HQC [6] costs too many clock
cycles in the polynomial multiplication and pays not
enough attention to the decoders used in decryption.
To alleviate these problems, we propose an efficient
architecture for HQC. It should be noted that this
paper mainly implements the security of the HQC-

20
23

 IE
EE

 3
6t

h
In

te
rn

at
io

na
l S

ys
te

m
-o

n-
C

hi
p

C
on

fe
re

nc
e

(S
O

C
C

) |
 9

79
-8

-3
50

3-
00

11
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

SO
C

C
58

58
5.

20
23

.1
02

57
05

4

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 25,2023 at 18:55:14 UTC from IEEE Xplore. Restrictions apply.

128 version as an example and the techniques can
be directly used for other parameters. The main con-
tributions of this work are summarized as follows:
• A low-latency polynomial multiplication archi-

tecture is presented to improve the performance,
which can reduce the clock cycles by 42% com-
pared with the polynomial multiplication architec-
ture in [6].
• To further reduce the overhead in decryption, an

efficient Reed-Solomon (RS) decoder based on the
enhanced Parallel Inversionless Berlekamp-Massey
(ePIBM) algorithm and a Reed-Muller (RM) de-
coder based on the Fast Hadamard Transform (FHT)
algorithm are dedicatedly designed. The results
implemented on Xilinx Artix 7 FPGA (xc7a200t-
3) show that the proposed design can reduce the
area-delay product (ADP) by about 25%.

The remainder of the paper is structured as fol-
lows. Section II describes the background of HQC.
Section III gives the proposed hardware architec-
ture. Section IV shows the implementation results
of the proposed design and compares with related
works. Section V concludes the paper.

II. PRELIMINARIES

A. Notations

In this paper, F2 denotes the binary field and
R = F2[X]/(Xn − 1) represents the quotient
rings on F2. The elements of R can be written
as vector V = (v0, v1,vn−1) or polynomial
V =

∑n−1
i=0 viX

i. We define the polynomial mul-
tiplication for HQC as W = SDmod (Xn − 1),
where S and D are polynomials on F2 and W is
the resultant polynomial of multiplication. Note that
S is a polynomial with only ω nonzero coefficients.
G(·),H(·) and K(·) are hash functions used in
HQC KEM. Since this paper is mainly for HQC-
128 version, the length of the vector n is 17669.
The weights of the sparse vector ω, ωr are 66 and
75, respectively. As for RS code and RM code,
[N,K, d] denote the length, the dimension and the
minimum distance of the code. They are [46,16,31]
and [384,8,192], respectively. Specially, the codes
used in HQC are shortened RS code and duplicated
RM code. The multiplicity of duplicated RM code
is 3.

B. Background of HQC

HQC Public Key Encryption (HQC-PKE) con-
sists of three main primitives: Key Generation,
Encryption and Decryption.

Key Generation: Firstly, vector h is sampled
uniformly random and two vectors x, y are sampled
with a specified weight ω. Then the product of
vector h and the sparse vector y needs to add to the
sparse vector x. The resultant vector s = x + hy

and the vector h compose the public key. The
private key is the sparse vector (x, y). The above
polynomial multiplication and addition take place
in F2.

Encryption: Just like key generation, three vec-
tors r1, r2 and e are sampled with a specified weight
ωr. At the same time, the message m is encoded
first by RS encoder and then RM encoder to get t.
Finally, the ciphertext pair (u, v) can be calculated
by u = r1 + hr2 and v = t+ sr2 + e.

Decryption: v − uy′ will be sent to the RM
decoder first and then the RS decoder. The message
m will be retrieved correctly if the number of
the error in received ciphertext is less than the
error-correction capability of the code. Indeed, the
probability of decoding failures is very low. The
entire process of HQC-PKE is shown in Algorithm
1.

HQC KEM is also composed of three primitives:
Key Generation, Encapsulation and Decapsulation.
The process of key generation in HQC-KEM is
the same as that in HQC-PKE. Then the message
m will be sampled to generate the shared secret
using pk = (h, s) while the seed θ = G(m)
ensures the randomness of the encapsulation. At
the same time, the shared secrets K = K(m, c)
and d = H(m) are used to calculate the ciphertext
[c|d]. Concerning decapsulation, the c in ciphertext
is used in the decryption to retrieve the message m′

and it is necessary to check whether the received
ciphertext is correct. Therefore, the encapsulation
needs to be done again using the result m′ to
get the new ciphertext [c′|d′]. Finally, it is easy
to know if there is an error by verifying whether
the received ciphertext and the new ciphertext are
identical. Algorithm 2 shows the process of HQC-
KEM.

Algorithm 1: HQC-PKE
Input : message m,parameter = (ω, ωr, θ)
Output: m′

1 Key Generation :

2 h← R, (x, y)
ω←− R2.

3 s = x + h · y.
4 return : pk = (h, s) sk = (x, y).
5 Encryption :

6 r1, r2, e
ωr,θ←− R3.

7 u = r1 + h · r2.
8 t = encode(m).
9 v = t + s · r2 + e.

10 return : c = (u, v).
11 Decryption :
12 m′ = decode(v− u · y).
13 return : m′.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 25,2023 at 18:55:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: HQC-KEM
Input : message m,parameter = (ω, ωr)
Output: K ′

1 Key Generation :

2 h← R, (x, y)
ω←− R2.

3 s = x + h · y.
4 return : pk = (h, s) sk = (x, y).
5 Encapsulation :
6 θ = G(m).
7 c = (u, v) = Encryption(pk,m, θ).
8 K = K(m, c).
9 d = H(m).

10 return : (K, (c,d)).
11 Decapsulation :
12 m′ = Decryption(sk, c).
13 θ′ = G(m′).
14 c′ = (u′, v′) = Encryption(pk,m′, θ′).
15 d′ = H(m′).
16 K ′ = K(m′, c).
17 if c 6= c′ or d 6= d′ then
18 return : (K ′, 0).
19 else
20 return : (K ′, 1).
21 endif

III. PROPOSED HARDWARE ARCHITECTURE FOR
HQC

In this section, we will mainly introduce the
optimized modules in detail, including polynomial
multiplication module, RM decoder module and RS
decoder module. The polynomial multiplication is
applied in every primitive of HQC. Therefore, we
propose an efficient architecture with fewer clock
cycles in this paper. Moreover, the work in [6]
does not pay enough attention to the decoders used
in decryption. To further reduce the overhead in
this part, we dedicatedly implement an efficient RS
decoder based on enhanced Parallel Inversionless
Berlekamp-Massey (ePIBM) algorithm and a RM
decoder based on Fast Hadamard Transform (FHT)
algorithm. Meanwhile, SHAKE256 in HQC is used
to realize several functions e.g., as a pseudorandom
number generator (PRNG) to generate the specified
weight vectors in Key Generation and Encryption,
and as a PRNG for hashing in Encapsulation and
Decapsulation.

A. Polynomial Multiplication

The whole polynomial multiplication module can
be divided into two parts: accumulated addition and
reduction. As is known, the length of the resultant
polynomial after multiplying two n-bits polynomi-
als can expand to 2n bits maximally. However, con-
sidering this polynomial multiplication takes place

in F2, the resultant polynomial needs to be reduced
to back to n bit by reduction operation.

The polynomial multiplication in HQC is the
sparse polynomial multiplier [9], [10], which means
one of the operand vectors has only very few
nonzero elements. If implementing the polynomial
multiplication operation by the traditional meth-
ods, the complexity will be O(n2). However, the
nonzero coefficients of the sparse polynomial are all
“1”, which is different from the ordinary polynomial
multiplication. So this operation can be achieved
easily by shifting another polynomial based on the
location of “1” in sparse polynomial and accumu-
lating all of the shifted polynomials. In this case,
the complexity of the algorithm can be reduced to
O(nω).

The operands are 128 bits, and this paper will use
the same parameters. Thus, the RAM D, which
is used to store the polynomial D. The depth and
width of RAM D are 139 and 128, respectively.
Meanwhile, as the input of the multiplication, the
indices loc of the nonzero elements in S will be
stored in RAM L. Its depth is ω and width is
15. As is shown in Fig. 1, when the process of
the multiplication starts, the signal raddr ini will
be read from RAM L, which is the highest 8 bits
of the loc. It will be the initial reading address of
the RAM A, which are composed of four RAMs
mainly used for storing the accumulated values
generated in the process of multiplication. At the
same time, the data rdata d will be read from
RAM D. Then it needs to be shifted first to add
the data rdata a read from the RAM A. The
summation of them can be derived to the bit-wise
XOR operations. The details of this procedure can
be seen in Fig. 2.

Since the operands in every cycle are 128 bits,
it should be considered that there are likely partial
data of the rdata d used in addition. Therefore,
the rdata d will undergo the left shifting operation
controlled by the lowest 5 bits of the loc. Then the
remains will be the carry to be added in next cycle.
Eventually, the summation will be divided into 4
parts and written to the different RAM A simulta-
neously. Every time reading a loc from RAM L,
it needs 139 cycles for the process of addition
until reading the next loc. It should be noticed
that the reading and writing addresses of RAM A
and RAM D need to add one per cycle in this
process, which means each RAM A needs at least
277 addresses to store the accumulated values and
one more address to store the carry. After getting
the final summations, the 2n-bit polynomial needs
to be reduced by slicing it into two parts and then
performing an XOR operation.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 25,2023 at 18:55:14 UTC from IEEE Xplore. Restrictions apply.

>>5

<<123

Shifter

Shifter

rdata_d
carry

D

raddr_ini
RAM_L

raddr_ini

RAM_D

loc[14:7]

RAM_A0

RAM_A1

RAM_A3

RAM_A0

RAM_A1

RAM_A3

RAM_A2

RAM_A0

RAM_A1

RAM_A3

RAM_A2

Fig. 1. The architecture of the polynomial multiplication.

32bit

128bit

D3 D2 D1 D0D3 D2 D1 D0

D3 D2 D1 D0D3 D2 D1 D0

carry

D3 D2 D1 D0

carry D<<loc[4:0]

D7 D6 D5 D4D7 D6 D5 D4D138 D137 D136 D135D138 D137 D136 D135
... D8

raddr_ini=loc[14:7]

......D138 D137 D136D138 D137 D136

RAM0RAM1RAM3RAM2RAM0RAM3 RAM2

Fig. 2. The process of data shifting.

B. RM Decoder

The ciphertext needs to be decoded first by RM
decoder and then RS decoder. Since the duplicated
RM code used in HQC is a first-order RM code
essentially, it can be decoded most efficiently using
the FHT algorithm [11]. Thus, our proposed archi-
tecture will be based on FHT algorithm.

C. RS Decoder

In general, the process of decoding can be di-
vided into three steps: Syndrome Computation(SC),
Key Equation Solver(KES) and Chien Search and
Error Evaluation(CSEE). Actually, the RS decoder
occupies most of the area among the three modules
in Decryption. Furthermore, the logic consumption
of RS decoder is mainly in KES. Hence, the pro-
posed architecture chooses an area-saving decod-
ing algorithm: ePIBM algorithm. Since the ePIBM
algorithm can significantly reduce the number of
Processor Elements (PE) while ensure that other
modules remain unchanged when compared to the
other RS decoding algorithms. It can be regarded
as the best RS decoding algorithm in time domain
until now. The introduction of the ePIBM decoding
algorithm can be found in [12], [13].

The decoded codewords from the RM decoder
are first sent to calculate the syndrome Sj (0 ≤
j < 2t) where 2t = N −K. The evaluation value
of the received polynomial can be written as y =
yn−1x

n−1 +yn−2x
n−2 + · · ·+y0, where x = αj+1.

If applying the Horner’s rule, it can be rewritten as
y = (· · ·((yn−1x+ yn−2)x+ yn−3)x+ · · ·)x+ y0.
In fact, this formula can be achieved in hardware

D

𝛼𝑗+1

 𝑆𝑗 𝑦0 , . . . ,𝑦𝑛−2,𝑦𝑛−1

Fig. 3. Syndrome computation architecture.

serially or parallelly. In order to save the area, the
proposed architecture chooses the former and the
Sj is available in the register after N clock cycles.
The simple feedback loop to compute the syndrome
serially is shown in Fig. 3.

Let S(x) =
∑2t−1
j=0 Sjx

j be the syndrome poly-
nomial. In the original RS decoding algorithm, the
aim of KES mainly solves the equation Λ(x)S(x) =
Ω(x) modx2t to obtain the error locator polynomial
Λ(x) =

∏v
l=1(1−Xlx) = Λ0+Λ1x+···+Λvx

v and
the error evaluator polynomial Ω(x). Generally, the
computation of this equation requires the inversion
operation, which has very long data path and costs
too many logic resources. Although the later algo-
rithm eliminates this operation, it still needs 3t+ 1
PEs to solve that. But in the ePIBM algorithm,
A scratch polynomial B(x) is used to update the
Λ(x). And γ(r) is the r-th constant coefficient of the
Λr(x), which is used to calculate the discrepancy
coefficient for iteration r. Moreover, z = α−(r−1)

is computed iteratively in synchronization with the
Chien search on B(x) and Λ(x). As long as γ(r)

is unchanged, the higher coefficients of Λ(x) and
B(x) do not need to be calculated or stored, which
means it only needs 2t + 1 PE shown in Fig. 4(b)
to finish this step. Moreover, the critical path of the
PE has only one variable multiplier and one adder.
After 2t cycles, the Λ2t(x) derived at the end is the
error locator polynomial, whose inverse roots are
the error location. The whole architecture for KES
is shown in Fig. 4(a).

Eventually, the exhaustive search is used to find
the roots of error polynomials over the entire fi-
nite field, and the Chien search can implement it
efficiently. It will search for Λ(x) in the order of
α−i for i = 0, 1, · · ·, n − 1. If Λ(α−i) = 0, it
means the i-th symbol of the received codewords is
erroneous. Besides, by using the Horiguchi-Koetter
formula, the error magnitudes eil can be calculated
as eil = (γ(2t)Λ

(2t)
0 z−i)/(B(2t)Λodd(X

−1
l)). Af-

ter N cycles, the whole original message will be
obtained just add eil to the corresponding position
of the received polynomial according to the error
location found by Chien search. The architecture of
the CSEE is shown in Fig. 5. Finally, the completion
of RS decoding indicates the end of decryption.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 25,2023 at 18:55:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
IMPLEMENTATION RESULTS AND COMPARISON

Design LUT DSP FF1 BR2 F3 Cycles Times4 ADP

Polynomial Multiplication 2239 0 612 4 198 10921 55.16 123k

[6] 1834 0 573 4 228 18765 82.30 150k

Key Generation 2813 0 1318 10 172 16188 94.12 264k

[6] 2350 0 1106 9.5 164 23480 140 336k

Encryption 2716 0 1894 13 192 24016 125 339k

[6] 2245 0 1667 13 245 44982 183 411k

Decryption 6641 0 5466 13 187 14769 78.97 524k

[6] 5747 0 4801 12.5 204 24889 120 701k

1 : FF=flip-flop.
2 : BR=BRAM.
3 : Unit for F (frequency) : Mhz.
4 : Unit for Times : µs.

TABLE II
COMPARISON OF THE TIME AND LOGIC RESOURCES FOR OUR HQC ARCHITECTURE WITH THE RELATED WORKS

Scheme LUT DSP FF BR F
Encap Decap KeyGen

Mcyc. ms Mcyc. ms Mcyc. ms

HQC-128 (this work) 19794 0 11079 68 178 0.02 0.11 0.04 0.22 0.07 0.38

Classic McEliece [14] 40018 4 61881 178 113 0.97 8.60 0.03 0.30 0.10 0.90

BIKE [15] 52967 13 7035 49 96 0.26 2.60 0.01 0.10 0.19 1.90

HQC-128-RTL [6] 16956 0 9837 66 204 0.03 0.12 0.06 0.30 0.08 0.43

HQC-128-HLS [7] 20169 0 16374 25 148 0.04 0.27 0.09 0.59 0.19 1.27

S0

S0

PE0

S0

S0

PE0

S1

S1

PE1

S1

S1

PE1

S2t-1

0

PE2t-1

S2t-1

0

PE2t-1

1

1

PE2t

1

1

PE2t

St

St

PEt

St

St

PEt

C
o

n
tro

lle
r

...

...

...

...

...

......

............ 0

0

𝛾(𝑟)

Λ(𝑟)

S0

S0

PE0

S1

S1

PE1

S2t-1

0

PE2t-1

1

1

PE2t

St

St

PEt

C
o

n
tro

lle
r

...

...

...

...

...

...

...... 0

0

𝛾(𝑟)

Λ(𝑟)

D

1
0 0

1

0
1

D

Λ0

𝛾(𝑟)

𝐵(𝑟)

Λ(𝑟) Λ(𝑟−1)

0

𝐵(𝑟-1)

(a)

(b)

Fig. 4. ePIBM architecture for KES. (a) overall architecture; (b)
architecture for PE

IV. IMPLEMENTATION RESULTS AND
COMPARISON

In this seciton, the designed hardware architec-
ture is coded with Verilog HDL and implemented
on Artix 7 board with xc7a200t-3 FPGA chip.
We compared our proposed architecture with [6]
firstly. The results of the Polynomial multiplication,
Key generation, Encryption and Decryption mod-
ules are exhibited in Table I. Since we refer to the

D

Inverter

Inverter

Λ𝑒𝑣𝑒𝑛 (𝑋)

= 0?

𝑧𝑖

𝑧−1

Λ𝑜𝑑𝑑 (𝑋) 𝐵(𝑋)

Λ0

γ

Fig. 5. CSEE architecture.

SHAKE256 module in [6], it will not be repeated
here.

Note that the SHAKE256 module is shared
among all primitives, so it is not included in Table
I. We consider the ADP as the criterion for compar-
ison. Apparently, our proposed architecture has the
lower area-time complexities than that in [6] based
on the same memory block size and on the same
FPGA device for the HQC-128 version. It can be
seen in Table I that the proposed architecture has at
least 18% less ADP than that in [6]. The degree of
improvement increases to 21% in Key Generation
and 17% in Encryption. As for Decryption, not
only we save more clock cycles by the proposed
Polynomial multiplication, but also choose the most
efficient decoding algorithms for two decoders. The

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 25,2023 at 18:55:14 UTC from IEEE Xplore. Restrictions apply.

ADP of our architecture is 25% less than the design
in [6]. For a more comprehensive explanation, it can
be pointed out that our proposed hardware design
involves less delay time than [6] while only increase
few area usage when considering the number of
LUTs, FFs and BRAMs.

Moreover, we will give the latest results of three
PKE and KEM candidates in NIST’s standardiza-
tion process: BIKE, Classic McEliece, and HQC.
Their timing and area are listed in Table II. Since
we use the same SHAKE256 module as [6], we
also have the problems that the SHAKE256 module
limits the maximum clock frequency of all primi-
tives. Therefore, the dual clock design is applied
in our proposed architecture, which can ensure
that the SHAKE256 module is able to work at a
lower frequency but the other modules at a higher
frequency.

As Table II shows, our proposed architecture
can perform key generation in 0.11ms, encapsula-
tion in 0.22ms, and decapsulation in 0.38ms, with
slightly more logic resources like LUTs and FFs.
The result of Encapsulation, Decapsulation, and
Key Generation are all faster than the state-of-the-
art works for HQC-128. In addition, our hardware
design achieves the fastest Key Generation and
Decapsulation among all candidates and the speed
of Encapsulation is faster than all other candidates
except BIKE design. In summary, our proposed
architecture can achieve the high-speed process of
encryption with as little area as possible, which
can meet the requirements in the fourth round of
standardizing cryptographic primitives exactly.

V. CONCLUSION

This paper presents an improved hardware design
for HQC. The proposed design consumes small
logic resources while achieving high speed with the
aid of a low-latency polynomial multiplication mod-
ule and two decoders based on efficient decoding
algorithms. The implementation results demonstrate
that our architecture outperforms prior works. In
particular, it leads to a reduction of 25% on ADP
in decryption compared to the latest one for the
HQC-128. Additionally, the proposed optimization
methods are also suitable for the HQC-192 and
HQC-256 versions.

VI. ACKNOWLEDGMENTS

This work was supported in part by the National
Natural Science Foundation of China under Grant
62174097, in part by the Key Research of Jiangsu
Province of China under Grant BE2022098, and in
part by the National Key R&D Program of China
under Grant 2022YFB4400604. (Corresponding au-
thors: Suwen Song; Zhongfeng Wang.)

REFERENCES

[1] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon,
D. Cooper, Q. Dang, Y.-K. Liu, C. Miller, D. Moody,
R. Peralta et al., “Status report on the first round of the
NIST post-quantum cryptography standardization process,”
2019.

[2] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle,
“CRYSTALS - Kyber: A CCA-secure module-lattice-based
KEM,” in 2018 IEEE European Symposium on Security
and Privacy, 2018, pp. 353–367.

[3] N. Aragon, P. L. Barreto, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, S. Gueron, T. Güneysu, C. A.
Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P.
Tillich, and G. Zémor, “BIKE: Bit flipping key encapsula-
tion,” 2017.

[4] H. Singh, “Code based cryptography: Classic McEliece,”
CoRR, vol. abs/1907.12754, 2019. [Online]. Available:
http://arxiv.org/abs/1907.12754

[5] L.-P. Wang, “Loong: a new IND-CCA-secure code-based
KEM,” in 2019 IEEE International Symposium on Infor-
mation Theory (ISIT), 2019, pp. 2584–2588.

[6] S. Deshpande, M. Nawan, K. Nawaz, J. Szefer, and C. Xu,
“Towards a fast and efficient hardware implementation of
HQC,” IACR Cryptol. ePrint Arch., vol. 2022, p. 1183,
2022.

[7] C. Aguilar-Melchor, J.-C. Deneuville, A. Dion, J. Howe,
R. Malmain, V. Migliore, M. Nawan, and K. Nawaz,
“Towards automating cryptographic hardware implementa-
tions: a case study of HQC,” in Code-Based Cryptography:
10th International Workshop, CBCrypto 2022, Trondheim,
Norway, May 2930, 2022, Revised Selected Papers, p.
6276.

[8] Y. Tu, P. He, C. K. Koc, and J. Xie, “Leap: Lightweight and
efficient accelerator for sparse polynomial multiplication of
HQC,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 1–5, 2023.

[9] S. Deshpande, S. M. d. Pozo, V. Mateu, M. Manzano,
N. Aaraj, and J. Szefer, “Modular inverse for integers
using fast constant time GCD algorithm and its applica-
tions,” in 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL), 2021, pp.
122–129.

[10] E. Montagne and R. Surs, “Systolic sparse matrix vector
multiply in the age of tpus and accelerators,” in 2019
Spring Simulation Conference (SpringSim), 2019, pp. 1–
10.

[11] M. Hashemipour-Nazari, K. Goossens, and A. Balatsoukas-
Stimming, “Hardware implementation of iterative
projection-aggregation decoding of Reed-Muller codes,”
in ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021,
pp. 8293–8297.

[12] X. Zhang, “VLSI architectures for Reed Solomon codes:
Classic, nested, coupled, and beyond,” IEEE Open Journal
of Circuits and Systems, vol. 1, pp. 157–169, 2020.

[13] Y. Wu, “New scalable decoder architectures for Reed
Solomon codes,” IEEE Transactions on Communications,
vol. 63, no. 8, pp. 2741–2761, 2015.

[14] P.-J. Chen, T. Chou, S. Deshpande, N. Lahr, R. Nieder-
hagen, J. Szefer, and W. Wang, “Complete and improved
FPGA implementation of Classic McEliece,” IACR Trans-
actions on Cryptographic Hardware and Embedded Sys-
tems, no. 3, pp. 71–113, 2022.

[15] J. Richter-Brockmann, J. Mono, and T. Gneysu, “Folding
BIKE: Scalable hardware implementation for recongurable
devices,” IEEE Transactions on Computers, vol. PP, pp.
1–1, 05 2021.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 25,2023 at 18:55:14 UTC from IEEE Xplore. Restrictions apply.

