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Abstract—Detecting and extracting textual information from
natural scene images needs Scene Text Detection (STD) algo-
rithms. Fully Convolutional Neural Networks (FCNs) are usually
utilized as the backbone model to extract features in these
instance segmentation based STD algorithms. FCNs naturally
come with high computational complexity. Furthermore, to keep
up with the growing variety of models, flexible architectures
are needed. In order to accelerate various STD algorithms
efficiently, a versatility-performance balanced hardware archi-
tecture is proposed, together with a simple but efficient way
of configuration. This architecture is able to compute different
FCN models without hardware redesign. The optimization is
focused on hardware with finely designed computing modules,
while the versatility of different network reconfigurations is
achieved by microcodes instead of a strenuously designed
compiler. Multiple parallel techniques at different levels and
several complexity-reduction methods are explored to speed up
the FCN computation. Results from implementation show that,
given the same tasks, the proposed system achieves a better
throughput compared with the studied GPU. Particularly, our
system reduces the comprehensive Operation Expense (OpEx) at
GPU by 46%, while the power efficiency is enhanced by 32%.
This work has been deployed in commercial applications and
provided stable consumer text detection services.

Index Terms—Scene Text Detection (STD), Instance Seg-
mentation, Fully Convolutional Neural Network (FCN), Filed-
Programmable-Gate-Array (FPGA), Hardware Acceleration.

I. INTRODUCTION

Scene text detection is widely used in consumer electronics
applications to facilitate Optical Characteristic Recognition
(OCR). Scene text refers to text appearing in camera cap-
tured outdoor images. The task to determine the geometric
information (including position and shape) of scene text
from the input images is named scene text detection (STD),
which acts as an essential prerequisite for subsequent scene
text recognition (like ID card scanning, vehicle license plate
recognition, etc.). Nevertheless, the task of STD is challenging
due to various factors causing the image degradation, e.g.,
out-of-shape fonts, transformed styles, and light/shadow oc-
clusion [1].

To this end, increasing efforts have been applied to im-
proving the efficiency and accuracy of STD systems [2], [3].
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A majority of state-of-the-art techniques are based on deep
learning and they are dependent on a step of bounding box
regression. In these methods, three typical modules are found
and performed widely: text/non-text classification, location
regression, and other post-processing (e.g., non-maximum
suppression or merging text segments) [3], [4]. Particularly,
various algorithms of text/non-text classification were devel-
oped to achieve semantic segmentation [2], [5]. Due to the
fact that text instances in scene images usually lie very close
to each other (as shown in [6]), however, they cannot be used
to separate different text-lines effectively.

To tackle the above problem, instance segmentation based
methods were proposed to conduct dense (pixel-level) pre-
dictions [6], [7]. These methods employed an end-to-end
Fully Convolutional Neural Network (FCN) to classify each
pixel in images as text or non-text by generating a dense
prediction map. Then a post-process groups pixels belonging
to the same text together. Text bounding boxes can thus be
generated directly without any regression operations. During
post-processing, how to separate instances belonging to one
text from the others is non-trivial. For example, PixelLink [6]
uses convolution to produce predicted links for each pixel
and learn to predict whether two adjacent pixels belong to
the same text instance by checking the positiveness of links.

A. Motivations and Challenges

Although the FCN-based algorithm is more effective than
the semantic segmentation based one, it comes with a higher
computation cost (sometimes even several orders of magni-
tude larger). In real-world implementations, Wang et al. [8]
proposed a distributed cloud-edge computing model to tackle
the large-scale data at the cloud while leaving the small-scale
data at the edge, and it was demonstrated that the performance
of computing system could be improved efficiently. In terms
of processing device, general purpose Graphics Processing
Units (GPUs) could be applied to accelerate the model
training and inference [9]. However, due to the high power
consumption and purchase cost of GPUs, their applications
in power and cost efficient situations are much limited. In
a prevail cloud-edge computing system [10], [11], GPUs are
only suitable for deployment in cloud server. The needs of



TABLE I
RELATED WORKS COMPARISON

Application Algorithm Versatility | Random size | High performance
Oliveira et al. [12] STR HOG & ELM Not support No No
Zho et al. [13] CNY banknote recognition Projection & Small FCN Not support No No
Jing et al. [14] License plate recognition | Feed forward neural network | Not support No No
Zhao et al. [15] STR Binary SegNet Not support No Yes
Xin et al. [16] STD RRPN Not support Yes Yes
Our work STD FCN Support Yes Yes

the edge also need to be considered, such as low power con-
sumption and low latency. Under such circumstances, FPGA
acceleration systems have become popular in data centers and
edge systems, due to their properties of high energy efficiency,
reconfigurability and short turn-around period. Thus, FPGA
or FPGA alike hardware is well motivated to be attempted
for the FCN-based STD in our situation.

There are already some references describing FPGA hard-
ware architectures designed for FCN operations. According to
their purpose, these architectures can be generally classified
into two categories: dedicated architecture designs for high
performance [17], [18] and general-purpose designs for multi-
model support [19]-[23]. Both have their own advantages and
disadvantages.

o The dedicated architectures usually concentrate on par-
ticular algorithms in order to achieve efficient computa-
tion. However, this method lacks versatility because if
the algorithm changes or adjusts, the hardware architec-
tures need to be redesigned.

o The general-purpose designs emerged to support a vari-
ety of network algorithms, without the need of redesign
of the architecture. However, the generalization leads
to performance compromise, because complex control
generally requires more logic resources. Complicated
software compilation tools are also needed to realize
optimization and scheduling.

Therefore, efficiently combining generalization and high-
performance (which we call versatility-performance balance)
is a real-world challenge for the FPGA hardware architecture
design. Additionally, as the accumulation operation in the very
multi-layer convolution of FCNs could cause exponentially
expanding errors, how to ensure a satisfactory accuracy,
especially under the constraint of limited hardware resource,
is another critical problem to tackle.

B. Our Contributions

In this work, we propose a flexible hardware architecture
that is tailored for the instance segmentation based STD al-
gorithms and achieves a good versatility-performance balance
for consumer applications. Specifically, the main contributions
of this work are summarized as follows:

1) In pursuit of versatility, a concise and efficient method
is proposed to achieve hardware generalization by us-
ing microcode. Specifically, the backbone networks for
feature extraction and feature merging are both con-
figured in advance without any hardware modification.

The configuration of each layer and the interconnec-
tion of different layers are realized through diversi-
fied microcode sequence combinations. The method is
hardware-friendly without the need of extra resources
to execute FCN models or to configure complicated
optimization combinations. Moreover, a full-stack auto
configuration software tool chain is proposed and de-
veloped to facilitate microcode generation and model
parameter normalization.

2) In order to maintain high performance, multiple parallel
techniques (at channel level, buffer level, and module
level) are explored to speed up the FCN computation.
An efficient method is applied to merge the batch
norm layer into convolutional layer. Furthermore, a
novel technique is proposed to minimize the padding,
thus reducing the computing complexity of upsampling
module by 75%.

3) For accuracy, fine tuned Block floating-point (BFP) data
representations and accuracy maintenance techniques
are adopted to achieve the optimal point in the trade-off
between hardware resources and algorithmic accuracy.
The experimental results show that the proposed FPGA
design delivers STD acceleration with a high cost
efficiency and a high performance while the decrease
of f-measure for the benchmark dataset is only 0.55%.
It outperforms the studied GPU in terms of inference
throughput, while its operating expense is lower than
GPU by 46% and the power efficiency is enhanced by
32%.

The rest of this paper is organized as follows: Section II
overviews related studies of hardware designs for text de-
tection and recognition. Section IV introduces the details
of the proposed STD algorithm. Section III proposes the
auto configuration heterogeneous system and the software
tool chain. The hardware architecture and its optimization
techniques are described in Section V. The implementation
results, performance evaluation and precision comparison are
shown in Section VI. Section VII concludes this paper.

II. RELATED WORK
A. Fully Convolutional Networks Architecture

Intensive research has been conducted in the general-
purpose hardware accelerators for FCNs. [19] presented
a scalable and modularized Convolutional Neural Network
(CNN) FPGA accelerator for ResNets. A layer-by-layer com-
putation flow is designed to integrate computing primitives
and communicate the complex connections of deep ResNet



layers. But only ResNet-50 and ResNet-152 are supported
with the throughput of 285.1 GOPS and 315.5 respectively.
[20] proposed an automated tool flow that can transform Deep
Neural Network (DNN) designs from popular deep learning
frameworks to highly optimized board-level FPGA implemen-
tations. It is mainly focusing on the resource allocation and
memory bandwidth adjustment. The tool is demonstrated on
four DNNs (Alexnet, ZF, VGG-16, and YOLO).

Xing et al [22] proposed a full-stack compiler solution
which is an integration of optimizers for graphs, loops and
data layouts, an assembler, a runtime supporter and a vali-
dation environment. In this compiler, the fusion and pipeline
optimization are explored with a subgraph isomorphism algo-
rithm and a shortest-path heuristic. It achieves a throughput
of 2.82 TOPs/s and 1.38 TOPs/s for VGG and ResNet50 with
the implementation on ZU9 @330 MHz. In Meng’s research
[23], an algorithm-architecture co-optimization framework,
named DYNAMAP, was proposed, which consists of a unified
hardware overlay that can be reused across layers, supporting
dynamic mapping of all three families of popular convolution
algorithms, and a novel software Design Space Exploration
(DSE) flow that customizes the hardware overlay and chooses
optimal strategy mapping. It is observation that the state-of-
art versatile architecture designs rely on the complicated op-
timization software, and the mapping manner from algorithm
to hardware has multiple parameters which can hardly achieve
across-the-board optimization.

B. Optical Character Recognition Architecture

In published hardware designs for STD, Scene Text Recog-
nition (STR), and Optical Character Recognition (OCR) ap-
plications mainly use traditional methods, such as Discrete
Wavelet Transform (DWT), Histogram of Oriented Gradients
(HOG), and Maximally Stable Extremal Region (MSER).

An FPGA-CPU heterogeneous system for embedded STR
applications is proposed in [12]. The system combines hard-
ware and software to accelerate STR, and uses HOG for fea-
ture extraction and deploys a neural network extreme learning
machine as a classifier. For task division, the FPGA acts as a
bicubic interpolation accelerator to resize input images of any
size to the size of 128 x 128 pixels. Other tasks are performed
by an Intel Atom N2600 processor. The results show that the
system reaches a good trade-off between processing time and
recognition accuracy in embedded environments.

In terms of scene text recognition, a computing-in-memory
accelerator using the binary SegNet is developed [15]. The
accelerator performs highly efficient pixel-wise character clas-
sification by maximizing the bit-level parallelism as well as
optimizing the pipeline for low latency at the critical path.
The FPGA implementation is able to process the STR with
an energy-efficiency of 351.7 GOPs/W and a throughput of
307 fps for image of size 128 x 32 pixels.

Regarding OCR applications, hardware designs for Chinese
banknote recognition [13] and car plate recognition [14] are
proposed. For the former application, the proposed system
contains two stages: character segmentation (CS) stage and

OCR stage. The CS stage is similar to the STD process, which
utilizes vertical/horizontal projection for character segmenta-
tion, while the OCR stage uses a small FCN to recognize
the segmented characters. The latter design adopts a three-
layer feed forward neural network and gets a high recognition
accuracy of 98.20%. However, the algorithms in these systems
are only suitable for small size image recognition.

The first full-stack hardware architecture design of STD
is proposed in [16]. An FPGA-CPU heterogeneous system is
designed to speed up the throughput and reduce the energy
usage. They present a hardware/software partition method to
analyze and split the detection tasks to enhance hardware
efficiency. The Winograd algorithm are utilized to reduce
multiplication complexity. Experimental results show that the
throughput of their heterogeneous system achieves 40 times
and 1.4 times improvements compared with CPU and GPU,
respectively. However, due to the dedicated design methodol-
ogy, their architecture is only able to compute Rotation Re-
gion Proposal Networks (RRPN) with VGG as the backbone.
Any change on the parameters or backbone network would
result in a time-consuming hardware redesign.

The comparison between related architectures and this work
is summarized in Table I. Though there are several hardware
designs in OCR related fields, they are either dedicated design
for a fixed algorithm or they do not support random size
input. The design of a general-purpose, high-performance and
high-accuracy deep learning method based STD system that
supports random size input will be a valuable reference for
both research and industry.

III. AuTO CONFIGURATION SYSTEM DESIGN
IV. ALGORITHM OVERVIEW

The scene text detection algorithm derived from Pix-
elLink [6] and EAST [24] is illustrated in Figure 1. More
specifically, feature extraction network and feature fusion
network constitute a U-shape FCN. The feature extraction
network is a convolutional network with interleaving convo-
lution and pooling layers. Four levels of feature maps are
extracted from the extractor network, whose sizes are 1/4,
1/8, 1/16, 1/32 of the input image, respectively. Then, these
four feature maps are merged gradually through the fusion
network. The technical rationale behind is that multi-scale
inception features are aggregated to encode rich local and
context information for text prediction. The features from later
stages of a neural network can determine large text geometry.
While the low-level information in early stages can determine
small text geometry information.

The final output makes two kinds of pixel-wise predictions
which are text/non-text prediction (represented as score) and
link prediction. The score determines if pixels are within
text instances. Link prediction contains 8 elements for every
pixel denoting 8 neighboring pixels. If the links between
a given pixel and its neighbors are labeled as positive, it
means they lie within the same instance. The positive score
pixels are joined together into Connected Components (CC)
according to predicted positive links, and each CC represents
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Fig. 1. The complete procedure of scene text detection algorithm.

a detected text box. This is how instance segmentation is
achieved without regression.

The feature extraction network has several candidates such
as ResNet, VGG, and MobileNet. Different network structures
have distinct properties in terms of speed, accuracy, and
training difficulty. Developers can select appropriate networks
to meet specific requirements during deployment. To support
a maximum degree of flexibility, the architecture of FCN
is made to be capable of being configured by microcodes.
Within the generally designed FCN architecture, the developer
can modify the microcode to compute different networks. This
architecture eliminates the tedious procedure of redesigning
the whole hardware architecture when the network changes.

The top-level design of our heterogeneous system is shown
in Figure 2. The CPU acts as the control host of the whole
system and the FPGA acts as a worker. The PCle register
accommodates control information and parameters for com-
puting units, which can be accessed by both CPU and FPGA.
According to the control information in the PCle register, the
task scheduler arranges the operation of different modules in a
specific timing order. The processing data is accessed through
the PCle interface and is temporarily stored in DDR4 memory
as a data pool. All computing modules read/write data from/to
DDR4 via bus controllers.

In terms of FCN architecture, the feature extraction module
and feature fusion module are responsible for the major
processing tasks. This architecture facilitates a more flexible
realization of different feature extraction and fusion networks
according to the control of microcodes, compared with other
designs for specific purposes. The upsample module is in-
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Fig. 2. Top-level architecture design of the proposed heterogeneous system.

dependently extracted from the fusion module to make the
architecture modularized in a coarse-grained manner, as the
feature extraction, feature fusion and upsample can work
independently in parallel

The whole system works as follows. First, the configuration
microcodes and model data are pre-loaded into DDR4 mem-
ories through PCle interface from CPU host by DMA write.
Then, CPU writes the related control registers of computing
modules to invoke the module computation. The microcodes
are then loaded into the configuration RAM and parsed
successively. The FCN module is configured to load/store
data and implement different types of layers according to the
parsed parameters. After the above preparations, images are
transferred to DDR4 memories from host CPU continuously.
During the computation, the FCN module repeatedly reads
the related data, computes according to the pre-determined
dataflow, and writes the results back to memory. Under most
circumstances, the results from the previous layer are treated
as the input of the imminent layer. By keeping the temporary
data of none-last layers in memory, the interactions between
CPU and FPGA are reduced to a minimum level. Finally, the
task scheduler issues an interrupt to the CPU when that round
of computation is finished.

A. Microcode Design

Given that the increasing diversity and layer numbers of
evolving FCN structures, how to design an efficient hardware
is of great challenge. A relatively fixed computation dataflow
can hardly accommodate varying FCN structures. In order
to design a versatile hardware configuration scheme, we
split the FCN structure into units of layers, and each FCN
layer can be represented by a set of hyperparameters. Based
on this observation, these hyperparameters of one layer are
encoded into a microcode so that the configuration of the



TABLE II
MICROCODE FORMAT

Field Layer | Transpose | Input Output | Height | Width | Kernel | Stride | Res OP | Input | Output | Reserved
type & Relu | channel | channel size addr addr
Bitwidth 2 2 16 16 20 15 2 1 2 34 34 112
Input | Size: 2564256 .
Microcode sequence
ch=128
Conv1x1 stride 1 ; Layer | Trans | Input Output ; - Kemel . Input | Output
Field Hight |Width Stride |Res OP
type [& Relu| channel | channel g size addr addr
ch=128 Code 1 0 1 128 | 256 | 256 0 0 0 | oxoo00 | Dx1000
C””;i‘ﬁﬂ”d”‘ Pacling 2x2| IZ:> Code2 | 0 1 128 | 256 | 256 | 1 0 [0x1000 | 0x2000
g Code 3 0 0 512 | 128 | 128 1 0 1 |ox2000| J
e 1% h=st Code 4 1 1 512 256 | 256 / 1 2 0x0000 | 0x3000
Conv1x1 stride ode X X
BN
ch=512
ReLl 1
eLu

Fig. 3. An example of microcode sequences to compute a residual bottleneck in ResNet.
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Fig. 4. The process flow of auto configuration. The left branch is FCN
microcode generation and the right branch is model weight normalization.

FCN networks is transformed to hyperparameters assignment,
which is achieved by interpretation of a set of microcodes.
The bit width of the microcode is 256-bit, which is aligned
with the bit width of AXI data bus. One microcode is
responsible for the hyperparameter setting of one specific
layer. Table II shows the format of a microcode. To be
specific, layer type includes convolution, pooling, upsample,
and null. Kernel size supports 1x1, 3x3, and 7x7. Stride
number supports 1 and 2. The residual OP is set specially
for ResNet, and the value of 0 means no residual operation,
1 means layer results should be cached, 2 denotes layer
results should be added to the cached result to get the final
output of a residual block. The connection between layers
is maintained by the input and output address allocation in
external memory. Specifically, the results from each layer are
stored in external memory as the input of the subsequent layer.
The concatenation (shown as concat in Figure 1) is achieved
by putting the results of two layers into adjacent addresses.
For ease of understanding, Figure 3 provides an example
of microcode sequences to compute a residual bottleneck in

ResNet.

The complete set of microcodes is generated according to
the FCN structure and transferred to the configuration on-chip
RAM in the initialization phase. The microcode interpreter
(shown in Figure 5) parses the microcode of each layer and
distributes the parsed parameters to different units of FCN
module. The FCN module works under the control of the
parsed parameters to perform the layer computation.

B. Auto Configuration Flow

The auto configuration process is shown in Figure 4. It
has two branches: FCN microcode generation and model
weight normalization. Python and C/C++ toolkit have been
developed to make the process highly automated. The model
description file is analyzed and resolved into the general
model description and further transformed to microcodes by
a Python parser layer by layer. The parser can resolve most
types of FCN models with convolution kernels of 1x1, 3x3,
7x7, including residual networks. Because block floating-
point (BFP) format is applied in the computation, the weights
need to be normalized in advance. The BFP normalization
process is computed by the C/C++ toolkit. Exponent and
mantissa bitwidth are customized to obtain different precision
combinations according to the normalization block size and
kernel size.

C. Hardware Architecture Design of FCN Module

According to the property of the instance segmentation
based STD algorithm, we divided the core computing section
into two parts: feature extraction and feature fusion, which
are all fully convolution networks with different network
structures. Figure 5 shows the hardware architecture of the
feature extraction module. Details of microcode interpreter
are also illustrated on how the parsed microcode controls the
operation of each unit. Note that the feature fusion module
is designed in a similar manner, but without a conv 7x7
datapath, and max pooling is replaced by sigmoid. Moreover,
the dimensions of the multiply-and-accumulate (MAC) arrays
in these two FCN modules are different, which are 32 x 64 and
16x32, respectively.
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Fig. 5. The hardware architecture of feature extraction module.

The MAC arrays in the feature extraction module are built
with DSP supertiles to perform fixed-point MAC on the
mantissa part of BFP. The FCN module supports multiple
size kernels of convolution: 1x1, 3x3, and 7x7. These three
types of convolutions share the same set of DSP arrays
but have distinct input datapaths. Since 3x3 convolution is
dominant in various FCNs, Winograd algorithm with a tile
size of F'(4 x 4,3 x 3) is deployed to reduce the number
of multiplication by a factor of 4. The minimal algorithm
for F'(4 x 4,3 x 3) can be formulated using the fixed
transformation matrices A, B and G as follows:

Y = AT[(GWGT) ® (BTXB)|A (1)

where © indicates point-wise multiplication, W is a 3 x 3
kernel, X is a 6 x 6 input image tile, and Y is a 4 x 4
output. The number of multiplications for Winograd F(4 x
4,3x3) is 36 compared to the number of 144 for conventional
algorithm, which is a fourfold reduction. Moreover, given that
the transformation matrices are fixed and weights are known,
GWGT could be precomputed and stored for the subsequent
operations.

The MAC array is implemented with DSP supertile arrays
by using cascaded DSPs via two dimensions [25]. A supertile
array consists of both memory and DSP. The memory in
the array stores the pre-computed weights and works in a
ping-pong mode thus the weights transfer time is overlapped
with computation time. Note that Winograd input/output
transforms are essentially matrix multiplication of the fixed
matrices shown above, so one could rearrange the computa-
tion flow to reduce the hardware usage. Specifically, the input
transform includes the multiplication of BT and input matrix
X. A direct computation requires 12 multiplications and 16

add/sub operations. By rearranging the computation flow, it
only requires 6 multiplications and 18 add/sub operations.

Convolutions with kernels of sizes 1x1 and 7x7 are
performed through the point-wise MAC method. These two
datapaths bypass the Winograd transform and lead to MAC
arrays directly. Max pooling operation is embedded in post-
processing module, which could hide the computation time
in a pipelined manner.

We set the input dimension M = 32 and output dimension
N = 64 for MAC arrays in this design. The working clock
frequency of the DSP array is twice the clock frequency of
the outside input/output interface. Thus doubling the bitwidth
of the input/output interface could support the data feeding of
the inner computing logics. With the help of the ping-pong
mode of the input buffer, the MAC is able to work at full
capacity. When the clock frequency is operating at 320MHz,
the DSP arrays could achieve a peak MAC performance of
655.36 GOPS.

D. Block Floating-Point Normalization Module

This design adopts a half-precision floating-point (FP16)
representation in storage to maintain relatively high accu-
racy. However, in MAC computation, block floating-point
(BFP) is adopted. A normalization process as shown in
Algorithm 1 is required to transform the floating-point data to
BFP representation. The normalization module is illustrated in
Figure 6. The BFP arithmetic is operated to make an entire
block of data sharing a common exponent. This method is
possible to maintain a dynamic range similar to floating-point
arithmetic while taking advantage of fixed-point computing
units. Moreover, the usage of BFP is able to reduce the
resource usage of hardware.



Algorithm 1 BFP normalization algorithm.

Input: Floating-point number block X
Output: Block floating-point block X g p
For a block X containing /N floating-point numbers:
X = (1,0, Tiy -, TN)
= (m1 X 2617 e,y X 2Ei, MmN X 26N)
Find the maximum exponent:
&x = max(e;),1 € {1,2,...N}
Normalization:
Fori < 1toN
di =&x —e;
mp; = m; >>d;
EndFor
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Fig. 6. The architecture of normalization module.

V. HARDWARE ARCHITECTURE OPTIMIZATION

In this section, several methods are presented to improve
the efficiency of the hardware architecture. First, parallel skills
and image segmentation techniques are applied to parallelize
the design. Then, an accuracy maintenance technique during
partial summation is proposed.

A. Parallel Techniques

The parallelism is explored efficiently in this work in
three aspects: 1) Multiple input/output channels together with
2D MAC arrays guarantee the most fundamental parallel
computation; 2) Two sets of input and output buffer facilitate a
ping-pong operation. The next round of input data can be pre-
loaded during calculation on the current data set. Furthermore,
the computing process for the entire convolution is fully
pipelined. 3) In the proposed design, the computations of
feature extraction, feature fusion and upsample are separated.
That means if they are fed with different inputs, the computing
processes are independent of each other. Therefore, a multi-
threading scheme is proposed to invoke the three modules
simultaneously with different inputs. This method could max-
imize the hardware utilization rate and increase the throughput
of the system.

B. Image Segmentation Technique

In the practical deployment of the STD system, the input
images might be of various sizes. Resizing the image may
affect the detection accuracy. In order to reduce the affection
from size, the proposed system is designed to support random
height images with a width up to 4096. To better fit these types
of images into STD computation, a row-wise segmentation
technique is utilized in this system. Multiple rows from

l truncate
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Fig. 7. The accuracy maintenance procedure that used in partial summation.

different input channels are loaded and computed in each
round until the entire feature map is scanned. The number of
rows and input channels engaged in each round of calculation
are dynamically changed according to the current size of
feature maps, which can make sure a suitable amount of data
is fed into the buffer, thus balance between data loading time
and computation time.

If the width of an image exceeds the limit of 4096 pixels
while the height does not, the system would detect this
situation and transpose the image. The proposed system is
designed to dynamically support transposed image compu-
tation by transposing the corresponding weight kernels and
modifying the convolution and upsample mode. In the end, the
output would be recovered through an inverse transposition.

Another advantage of using the row-wise segmentation
technique is that data reorganization of the input/output fea-
ture maps and intermediate results are not required anymore,
which reduces plenty of latency. Furthermore, as the row-wise
method does not change the storage structure of the image in
memory, it can facilitate the DDR burst mode and enhance
memory access efficiency.

C. Accuracy Maintenance in Partial Summation

The model of the STD algorithm is trained by using a single
precision floating-point (i.e. FP32) format. The usage of half-
precision floating-point (i.e. FP16) representation during the
inference process will inevitably introduce a loss of precision.
By carrying out an analysis on the inference process, we found
that the partial sum accumulation in the convolution layer
contributes the most to the accuracy loss. This is because the
number of data for summing is enormous, making the loss in
each summation accumulate many times. The results require
higher precision than that the 10-bit mantissa in FP16 can
provide.

To address this issue, an accuracy maintenance approach is
proposed, and the procedure is illustrated in Figure 7. In this
approach, the length of mantissa in FP16 is expanded from
10-bit to 15-bit during the partial sum accumulation. The final
summation results are truncated back to 10-bit to recover a
standard FP16 representation. The large dynamic range of 15-
bit avoids certain accuracy loss during accumulation process.

VI. EXPERIMENTAL RESULTS AND COMPARISONS

The proposed heterogeneous system is implemented using
CPU and FPGA. The hardware architecture is implemented on
a Xilinx Kintex UltraScale platform (XCKU115-FLVA1517-
2-E) and the software part is running on an Intel Xeon CPU.
The CPU and FPGA board communicate via a PCle gen 3x8
interface with 2 channels DDR4 SODIMM.
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TABLE III
CONFIGURATIONS COMPARISON ON THE GPU AND FPGA PLATFORMS
GPU FPGA
Type NVIDIA Tesla M40  Xilinx KU115
Memory 12G GDDRS 16G DDR4
Memory Bandwidth 288 GB/s 18 GB/s
Peak FLOPS 7 TFlops 2.68 TFlops
Max Power 250W 65W
TABLE IV

HARDWARE RESOURCE UTILIZATION OF THE PROPOSED ARCHITECTURE.
Used Available  Utilization (%)

CLB LUTs 286827 663360 43.24
CLB Registers 554207 1326720 41.77
DSP48E2 2843 5520 51.69
Block RAM Tile 999 2160 46.25
CARRY38 4638 82920 5.59

In terms of the GPU-CPU platform, two main methods
are used to increase the throughput. First, the number of
concurrent workers is set to 10. Within each worker, the batch
size is set to 1. According to the experimental results, this is
the optimal setting because further increasing the concurrency
would saturate the GPU memory. Moreover, the input images
in the same batch of different sizes require to be padded and
resized to the largest image. Increasing the batch size would
incur additional overhead and reduce efficiency. Second, the
CPU and GPU are configured to work in a pipelined dataflow
to further maximize the throughput. Thanks to the above
optimizations, the GPU utilization rate achieves more than
60% on average.

A. Hardware Resource Utilization

Table IV shows the FPGA resource usage of the proposed
architecture. The hardware utilization rate is designed to be
less than 65% because the power supply of the board is from
PCle. The power limitation of PCle prevents the design from a
higher percentage of hardware usage. As can be seen from the
table that the hardware utilization rate is relatively balanced in
terms of LUT, register, and DSP. Note that the Block RAMs
are consumed more than 60% due to the fact that deploying
a ping-pong storage scheme doubles the number of memories
to build input/output buffers.

B. Performance Evaluation

In this section, we compare the proposed FPGA-CPU het-
erogeneous platform with GPU-CPU platforms. The detailed
configurations of the two platforms are shown in Table III.

Firs, the comparison of latency is conducted. The latency is
defined as the average runtime consumption per image. Two
candidates of feature extractor network are implemented with
ResNet-50 and VGG-16 (without Fully Connected layers).
The experimental results of these two platforms are compared
and shown in Figure 8a and Figure 8b. Overall, the latency
performance of GPU and FPGA is closed except for the image
of size 256x256. The FPGA outperforms GPU for images of
sizes smaller than 1024 x 1024, while GPU has the advantage
in large size images.

After careful analysis and comparison on throughput and
precision, ResNet-50 is selected as the network architecture
in the actual deployment. Note that all the following perfor-
mance comparisons are conducted based on this architecture.

To make fair comparisons, a public dataset is selected in the
performance evaluation. The benchmark dataset is the LSVT
dataset in ICDAR2019 Robust Reading Competition [28]. The
test dataset is computed by using FPGA-CPU and GPU-CPU
systems respectively. The optimal concurrent thread number
is set (20 for FPGA-CPU and 10 for GPU-CPU) to explore
their best performance. The processing capability in terms of
Transactions Per Second (TPS) of two platforms is compared
in Figure 9a. It is shown that the throughput of FPGA is
higher than the GPU platform by 5.2%.

The total cost of ownership (TCO) and comprehensive Op-
erating Expense (OpEx)! of the two platforms are compared
and shown in Figure 9a. The TCO reflects the operating
cost and maintenance cost. It is an important index during
commercial deployment. The TCO ratio of FPGA to GPU in
our practice is 1:1.77, which means that deploying the GPU-
CPU system requires 77% more expense than the FPGA-CPU
counterpart. OpEx indexes are calculated by dividing the TCO

Purchasing cost+Maintenance cost

1 _ _
TCO - Estimated operating month and OpEa: -
ThTi. Due to commercial confidentiality, only the ratios of FPGA
rougput A .
and GPU are given in the text
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Ma et al. [19]| Cheng et al. [21] |Kala et al. [26] | Lian et al. [17]| Xing et al. [22] Liang et al. [27] Our Work
Year 2017 2018 2019 2019 2019 2020 2021
FPGA Altera Zyng-7000 Virtex-7 Virtex-7 Zynq UltraScale+ |Zynq UltraScale+ Kintex UltraScale
Arria 10 XC7Z045 VX690T VX690T ZU9 ZCU102 XCKU115
Techonogy 20nm 28nm 28nm 28nm 16nm 16nm 20nm
Precision 16-bit 8-bit fixed 16-bit fixed 8-bit BFP 8-bit fixed 16-bit fixed 16-bit BFP
Freq (MHz) 150 200 200 200 330 200 320
LUTs 128K 203K 468K 232K 118K 600K 230K
DSP 1046 0 1436 1027 1542 2520 2434
BRAM 2167(20K) 443 1465 913 747 912 763.5
Algorithm Winograd Convention Winograd ‘Winograd Convention Convention Winograd & Convention
CNN power (W) / 10.56 17.3 9.18 22.8 23.6 16.5
Model ResNet-50 | VGG-16 | ResNet-50 VGG-16 VGG-16 VGG-16 | ResNet-50 VGG-16 VGG-16| ResNet-50
Throughput
(Average GOPS) 285.1 878.1 804 407.2 760.8 2820 1380 2479.6 2866.1 12435
Energy efficiency
(GOPS/W) / 83.2 76.1 235 82.88 123.7 60.5 105.4 173.4 75.2
by throughput. Deploying the proposed FPGA-CPU system is TABLE VI

able to reduce the OpEx by approximately 46%.

In terms of power consumption, the average power of
GPU is measured by NVIDIA System Management Interface
(vidia-smi), and this index of FPGA board is measured by a
digital power meter. The power efficiency (i.e. average power
consumed by processing one image, J/image) is calculated and
shown in Figure 9b. Due to the low power consumption and
high throughput of the proposed design, it only consumes 4.7J
to process one image on average, which is a 32% decrease
compared with the GPU counterpart.

Recently published state-of-the-art CNN accelerators are
thoroughly compared with the proposed FCN architecture,
as shown in Table V. The selected objects of comparison
are dedicated implementations for Resnet-50 and VGG-16.
Note that it may be unfair to compare throughput and energy
efficiencies if the implementation devices have different tech-
nologies. However, even though the proposed work uses 20nm
technology FPGA, the average GOPS and GOPS/W indices
outperform the results that using 16nm technology FPGA
[22] [27]. This is due to the advantage of our optimizations
on dataflow, adoption of Winograd transform, and multiple
parallel techniques.

These evaluations show that the proposed design would
be very attractive in real commercial products in terms of
throughput, operating cost and power efficiency.

PRECISION RESULTS COMPARISONS BETWEEN GPU AND FPGA.

ICDAR2019 LSVT Dataset

Platform GPU FPGA Difference
Precision 84.45% 84.27% -0.21%
Recall 78.37% 77.69% -0.87%
F-measure 81.30% 80.85% -0.55%

C. Precision Results Comparisons

The precise evaluations of FPGA and GPU implementa-
tions are also compared by using ICDAR2019 LSVT dataset,
conducted from three perspectives: precision, recall, and f-
measure. As shown in Table VI, the results from FPGA are
slightly lower than the GPU counterparts, with the largest
discrepancy of 0.87%. Nevertheless, the precision loss is
acceptable to meet the detection system requirements. The
f-measure reflects the comprehensive performance, while the
decrease of f-measure for the benchmark dataset is only
0.55%. After the calculation of a large number of convolution
layers, the accuracy loss is able to maintain within an accept-
able range, thanks to our accuracy maintenance approach.

VII. CONCLUSION

In this work, a flexible hardware architecture for the
instance segmentation based STD algorithm is proposed. The
hardware architecture can be dynamically organized through
microcode to support different types of FCNs, with the



assistance of developed automation software tools. The com-
puting units are fine-grained and optimized, while multiple
parallel techniques are exploited to improve efficiency. The
implementation results show the proposed design achieves
a comparable computing capability, better cost efficiency,
and better power efficiency when compared with its GPU
counterpart. This work is currently deployed in commercial
products to provide consumer scene text detection services
with a stable performance.
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