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Yue Geng2 , Jing Tian2 , Zhongfeng Wang2 , and Çetin Kaya Koç3,4,5
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Abstract. The complexity of the multiplication operation over polyno-
mial rings and finite fields drastically changes with the selection of the
defining polynomial of the respective mathematical structure. Trinomials
and pentanomials are the most natural choices for the best arithmetic.
In this paper, we first present a study in which a special type of trinomial
does not require any reduction steps. We then introduce two new algo-
rithms, FIKO and RF-FIKO, fully interleaved bit-parallel Karatsuba-
Ofman multipliers where the latter is only concerned with the three
Karatsuba-Ofman terms and is free from the bipartite reduction cir-
cuits. All algorithms are implemented in FPGA and ASIC, and detailed
implementation results are presented, showing significant improvements
to existing methods.
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polynomials · Reduction-free trinomials · Reduction-free multiplication

1 Introduction

The study of irreducible polynomials is particularly important in cryptography.
For modern schemes that employ modular arithmetic such as, RSA and ECDSA,
the multiplication operation is the most expensive. In particular, Post-quantum
Cryptography (PQC) lattice-based schemes and Fully Homomorphic Encryption
(FHE) systems would benefit from efficient finite field arithmetic. For practical-
ity, security, and efficiency, we are concerned with binary fields in the polynomial
basis (PB).
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The most efficient bit-parallel multipliers known all make use of special trino-
mials to obtain time and space complexity speedups. Moreover, they make efforts
to simplify modular reduction as a means to obtain faster implementations. In
this paper we present a solution to the problem A(t) × B(t) (mod F (t)) that
does not require reduction modulo F (t) but only three multiplications followed
by some shifts and additions in the last clock cycle, when F (t) has a special form
– A fully interleaved reduction-free modular multiplier.

2 Preliminaries

This section provides an overview of the notation used throughout in the paper,
concerning modular reduction with finite rings and fields where the elements are
represented in the polynomial basis.

Let Zp[t]/(F (t)) denote the set of polynomials in variable t with coefficients
over p, defined by a monic F (t) of degree n which forms a finite field, for p prime
and F (t) irreducible modulo p; and a ring, Rq=pn , otherwise. We express F (t)
as

∑n
i=0 = fntn + fn−1t

n−1 + fn−2t
n−2 + · · · + f2t

2 + f1t + f0t
0 where the fi

are the coefficients. The same notation is used for all other polynomials, strings,
and data registers in hardware to refer to the ith coefficient or data bit. Let f−1

i

denote the multiplicative inverse of fi (mod p). An element A(t) in any such
structure is expressed as A(t) =

∑n
i=0 = an−1t

(n−1)+an−2t
(n−2)+· · ·+a1t+a0t

0.
Then, the product of two elements is A(t) × B(t), is expressed as C(t) = A(t) ×
B(t) (mod p, F (t)). Arithmetic concerning coefficients of elements A(t) and B(t)
conforms to (mod p). Polynomial arithmetic conforms to (mod F (t)).

Let Cmax = 2(n−1) denote the maximum degree of a product of two elements
in Rq. Let Fd be the degree of defining polynomial F (t) and Cd the degree of
an arbitrary product of two elements, C(t) = A(t) × B(t) ∈ Rq. Then, ρ =
Cd − (Fd − 1) denotes the number of reductions required to reduce a product of
degree Cd to become representable in the field or ring.

For a hardware register or string holding A(t) of depth k = 2× r, let A(t)[j:i]
denote the bit range of data from j to i inclusive, from the jth most significant
bit to the ith least significant bit. For a register A of width k = 2 × r, let AUR

denote the upper register A[k−1:r] and ALR denote the lower register A[r−1:0].
Similarly, || denotes concatenation of strings. For example, C = A||B, would
refer to the equivalent SystemVerilog assignment C = {A,B} for C of width k
and A and B both of width r.

Let GF (pn) and Fq with q = pn, be a finite field for p prime and defining
polynomial F (t) of degree n irreducible in modulo p. Our work is primarily
concerned with Galois fields of the form GF (2n) and is easily adaptable to rings
where the coefficients vary over Zp. We are interested in prime odd binary curves
of degree n that define different binary fields GF (2n) for varying F (t). We use
the notation GF (2n), (n+1)-bit curve, and k = (n+1)-bit field interchangeably,
where (n+1)-bit curve refers to F (t) and k-bit field to GF (2n) which is defined
by k-bit F (t).
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3 Reduction with Polynomial Rings

Efficient arithmetic over polynomial rings and fields Zp[t]/F (t) has originated
from usual modular arithmetic routines. If polynomial coefficients and words of
multi-precision numbers are considered as the atomic units of their representa-
tions, polynomials enjoy carry-free arithmetic over these units. Multiplication
involving creative representations make the arithmetic over polynomial rings
quite interesting.

Modular multiplication involves multiplication and reduction steps; these are
often implemented as separate algorithms or interleaved into one algorithm. Both
type of implementations are characterized by the reduction technique employed.
Modular reduction can applied from left-to-right, right-to-left, or both directions;
corresponding examples to these would be Blakely, Montgomery, and Bipartite,
respectively [3,16,25].

In this section, we go over the reduction techniques when given an already
computed product C(t) = A(t) × B(t) with A(t), B(t) ∈ Zp[t]/F (t) for some p
and F (t) a monic of degree n. We consider the product C(t) of maximum degree
m = Cmax and reduction (mod q, F (t)).

3.1 Left-to-Right Reduction

Any algorithm that reduces a product C(t) modulo F (t) from the left falls into
the left-to-right category, including the standard division algorithm.

Algorithm 1. Blakely Polynomial Reduction
Require: C(t) of degree m
Ensure: R(t) ≡ C(t)(modp, F (t))
1: R(t) = C(t)
2: j = m − n
3: for i = m downto n do
4: qj = ri mod p
5: R(t) = R(t) − qjF (t)ti−n

6: j = j − 1
7: end for
8: return R(t)

Algorithm 1 presents the Blakely reduction method from [3] which can be
adapted to GF (2n) as in [20]. This is a bit-serial algorithm in which we loop k =
m− (n− 1) times reducing the degree of C(t) from the most significant position
until i = n and we obtain a residue of degree ≤ n − 1. In line 4 we compute
the jth digit of the full quotient Q(t) as the jth digit of R(t) modulo p, starting
from the most significant position. In line 5 we subtract an aligned multiple of
the modulus, to continue reduction from left-to-right in each loop. The resulting
residue satisfies the closed form of the division theorem, R(t) = C(t)−F (t)Q(t).
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3.2 Right-to-Left Reduction

Montgomery multiplication [25] demonstrates the unique example of right-to-left
reduction which is shown in Algorithm 2.

Algorithm 2. Polynomial Montgomery Reduction
Require: C(t) of degree m
Ensure: S(t) ≡ C(t)(modp, F (t))
1: S(t) = C(t)
2: for i = 0 to k − 1 do
3: q′

i = f−1
0 s0 mod p

4: S(t) = (S(t) − q′
iF (t))/t

5: end for
6: return S(t)

The residue is computed in a bit-serial fashion, where we loop k = m−(n−1)
times, reducing the product from the least significant position, one degree per
loop. In line 3 we compute the ith quotient of the Montgomery quotient, q′

i, as the
multiplicative inverse of the least significant coefficient of F (t) multiplied with
the least significant digit of S(t), modulo p. In line 4, subtracting q′

iF (t) from S(t)
sets the constant coefficient, s0, to zero and hence the division by t corresponds
to a trivial division or a right-shift. This is the reason why Montgomery reduction
is preferred in most repetitive multiply-reduce designs. The result is a residue
S(t) = C(t)t−k (mod F (t)) with degree ≤ n − 1.

3.3 Bipartite Reduction

The bipartite modular multiplication (BMM) method introduced by Kaihara
and Takagi in [16], presents a method of modular reduction in which a left-to-
right and a right-to-left technique can be applied in parallel to reduce a product
from both ends simultaneously. This method is presented in Algorithm 3; for
completeness we simply combine Algorithms 1 and 2.

Algorithm 3 executes in a sequential fashion but it loops ρ = �n/2� =
m−(n−1)

2 half the number of times as Blakely and Montgomery which require
ρ = m − (n − 1) reductions. In lines 4–5, we compute the standard and Mont-
gomery quotients, respectively. In line 6, we apply Blakely reduction to S(t) and
in line 7 we apply Montgomery reduction. Lines 7–8 can be implemented as sep-
arate threads in software or functional units in hardware executing in parallel.
When the coefficients are over Zp we must account for the Montgomery domain
and set the parameter R to be less than the modulus.

4 Interleaved Modular Reduction

This sections builds on the previous section by interleaving multiplication of
a product and reduction using a simpler structure, GF (2n). We present the
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Algorithm 3. Bipartite Polynomial Reduction
Require: C(t) of degree m
Ensure: S(t) ≡ C(t)(modp, F (t))
1: S(t) = C(t)
2: k = �n/2�
3: for i = 0 to �n/2� − 1 do
4: qk = sk mod p
5: q′

i = f−1
0 s0 mod p

6: S(t) = S(t) − qkF (t)tk−n

7: S(t) = (S(t) − q′
iF (t))/t

8: k = k − 1
9: end for

10: return S(t)

corresponding interleaved modular multiplication algorithms for Blakely, Mont-
gomery, and BMM.

4.1 Blakely

Algorithm 4. Interleaved Blakely
Require: k-bit F(t), (k − 1)-bit A(t) and B(t)
Ensure: R(t) ≡ A(t) × B(t)(modF (t))
1: R(t) = 0
2: for i = k − 2 downto 0 do
3: R(t) = R(t) � 1
4: if ai then
5: R(t) = R(t) ⊕ B(t)
6: end if
7: if rk−1 then
8: R(t) = R(t) ⊕ F (t)
9: end if

10: end for
11: return R(t)

Algorithm 4 shows the adapted version of the original interleaved algorithm
in the binary basis [3,20]. Multiplication and reduction are interleaved using
the standard shift and add technique. In this case we observe the bits of A(t)
starting from the most significant bit; if the bit is set, we multiply or add B(t)
to R(t). Similarly, if the most significant bit of R(t) is set, we reduce R(t) with
F (t). After a multiplication and a reduction, we shift out the degree that has
been knocked down.
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4.2 Montgomery

Algorithm 5 shows the interleaved binary version adapted from [2]. If we are
only concerned with multiplication, we observe the bit of the multiplier from
either end. However, when we are performing interleaved multiplication, these
bits must be observed according to the technique; for Blakely and Montgomery
it is according to the direction we are reducing from. In this case, we test if the
least significant bit of the residue is set and reduce it with F (t). Lastly, we shift
out the knocked-down degree.

Algorithm 5. Interleaved Mongtomery
Require: k-bit F(t), n = (k − 1)-bit A(t) and B(t)
Ensure: R(t) ≡ A(t) × B(t) × 2−n(modF (t))
1: R(t) = 0
2: for i = 0 to k − 2 do
3: if bi then
4: R(t) = R(t) ⊕ A(t)
5: end if
6: if r0 then
7: R(t) = R(t) ⊕ F (t)
8: end if
9: R(t) = R(t) � 1

10: end for
11: return R(t)

4.3 Bipartite Modular Multiplication

Algorithm 8 adapts BMM from [16] to GF (2n). In hardware, the intermediate
Blakely S(t) and Montgomery T (t) residues are computed in parallel. The algo-
rithm uses Algorithm 6 and Algorithm 7 to compute interleaved modular multi-
plication with A(t) and the upper and lower words of B(t). For k-bit curves, we
can compute the bipartite residue in k/2 CC without dependencies. The Blakely
residue requires r − 1 reductions in Algorithm 6 while the Montgomery residue
requires r reductions in Algorithm 7 since BH is one bit less. BMM ensures a
residue R(t) ≡ (A(t)×BH(t) (mod F (t))+(A(t)×BL(t)×2−� k−1

2 � (mod F (t)))
(mod F )(t). This residue is also implicitly expressed as A(t) × B(t) × 2−r

(mod F (t)) indicating the r = �k−1
2 � Montgomery degrees knocked down.
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Algorithm 6. ibBlakely
Require: A(t)[k−2:0], BH(t)[r−2:0], F (t)[k−1:0]

Ensure: S(t) ≡ A(t) × BH(t)(modF (t))
1: S(t) = 0
2: for i = r − 2 downto 0 do
3: S(t) = S(t) � 1
4: if bhi then
5: S(t) = S(t) ⊕ A(t)
6: end if
7: if sk−1 then
8: S(t) = S(t) ⊕ F (t)
9: end if

10: end for
11: return S(t)

Algorithm 7. ibMontgomery
Require: A(t)[k−2:0], BL(t)[r−1:0], F (t)[k−1:0]

Ensure: T (t) ≡ A(t) × BL(t) × 2−r(modF (t))
1: T (t) = 0
2: for i = 0 to r − 1 do
3: if bli then
4: T (t) = T (t) ⊕ A(t)
5: end if
6: if t0 then
7: T (t) = T (t) ⊕ F (t)
8: end if
9: T (t) = T (t) � 1

10: end for
11: return T (t)

Algorithm 8. BMM
Require: k-bit F (t), (k − 1)-bit A(t), B(t), r = �( k−1

2
)	

Ensure: R(t) ≡ A(t) × B(t) × 2−r (mod F )(t)
1: S(t) = ibBlakely(A(t), B(t)[k−2:r], F (t))
2: T (t) = ibMontgomery(A(t), B(t)[r−1:0], F (t))
3: R(t) = S(t) ⊕ T (t) ⊕ F (t)
4: return R(t)

5 Partially Interleaved Karatsuba-Ofman

Modular multipliers fall under one of two types: multiply and reduce or inter-
leaved multiply and reduce. Varying implementations of Montgomery, BMM,
and Mastrovito are among the most efficient interleaved modular multipliers
introduced [14,24]. In general, interleaving fast multi-digit multipliers, such as
Schönhage-Strassen or Fürer is difficult and application-specific [12,34]. For
example, Fürer is intended for huge numbers in the order of 1082 and becomes
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efficient when the operands are in that order. In this section, we present the
Karatsuba-Ofman Algorithm (KOA) and the work from [33], a Partially Inter-
leaved Karatsuba-Ofman (PIKO) modular multiplier.

5.1 Karatsuba-Ofman Multiplication

KOA is a recursive divide and conquer algorithm based on the observation by
Babbage that two n-digit numbers can be expressed as binomials and multiplied
out likewise requiring four multiplications [1,19]. In 1962, Karatsuba and Ofman
observed that the middle term could actually be computed in one multiplication
with some additions and subtractions from already computed terms requiring
only three multiplications total. KOA is intended for very large numbers in the
order of several thousand digits ranging from 103 to 104 digits with complexity
O(nlog2(3)) in the input size.

The algorithm is quite generic that it can easily be adapted to polynomial
multiplication for binary fields where operands range from a few thousand bits
to a few hundred thousand bits. In practice, KOA is used in conjunction with
reduction routines such as Blakely or Montgomery [3,25]. Recursion can be set to
any desired level. However, further recursion and improved KOA must account
for platform constraints and is completely application-specific.

Now, consider two arbitrary polynomials A(t) = apt
m + · · · + a2t

2 + a1t + a0

and B(t) = bqt
n + · · · + b2t

2 + b1t + b + 0 of degrees m and n respectively, and
without loss of generality, let m ≥ n and r = �m/2�. For simplicity, let’s say
they are both expressed as the closest power of two and are split into half-size
equal words. Let:

A(t) = A1(t) · tr + A0(t),
B(t) = B1(t) · tr + B0(t)

where, A1(t) and A0(t) represent the upper and lower words of the polynomial
A(t), each of degree r. Standard multiplication of A(t) and B(t) can expressed
as follows:

C(t) = A(t) · B(t)
= (A1(t)tr + A0(t))(B1(t)tr + B0(t))
= (A1(t)B1(t))t2r + (A1(t)B0(t) + A0(t)B1(t))tr

+A0(t)B0(t)
= C2(t)t2r + C1(t)tr + C0(t).

Notice that, the above calculation requires four different polynomial multiplica-
tions with operands of degree r. This has quadratic complexity in operand size.
KOA however, achieves the same computation with only three multiplications
as follows:



Reduction-Free Multiplication for Finite Fields and Polynomial Rings 61

C0(t) = A0(t) · B0(t)
C2(t) = A1(t) · B1(t)
C1(t) = (A0(t) + A1(t))(B0(t) + B1(t)) − C0(t) − C2(t)
C(t) = C2(t)t2r + C1(t)tr + C0(t).

5.2 Interleaving Karatsuba-Ofman and Bipartite Reduction

In [33] Saldamlı et al. present PIKO, consisting of Karatsuba-Ofman multiplica-
tion and bipartite reduction circuits. The algorithm considers only the first layer
of recursion requiring half-size words. In this section, we give a general overview
of the algorithm as follows.

Let F (t) = xn + x�n
2 � + 1 the defining polynomial of degree n for some

odd prime curve with coefficients defined over GF (2). Now, consider two n-bit
elements A(t) and B(t) in the field, both of maximum degree n − 1. First, we
prefix the elements to consists of k = n + 1 bits. This allows all operands F (t),
A(t), and B(t) to be split into equal half-size words of size r = k

2 bits. Note
that the maximum degree for the lower word of an element is d = r − 1 but for
the upper word it is r − 2. For uniformity, because we are working with r-bit
registers, the operands are decomposed as follows.

F (t) = F1(t) · td + F0(t),
A(t) = A1(t) · td + A0(t),
B(t) = B1(t) · td + B0(t),
Q(t) = Q1(t) · td + Q0(t),
Q′(t) = Q′

1(t) · td + Q′
0(t).

where Q(t) and Q′(t) represent the Blakely and Montgomery quotients.
Figure 1 illustrates the PIKO algorithm. The algorithm is the same as BMM

except that multiplication is done using KOA. In the upper part, we compute
the Karatsuba-Ofman terms C0(t), C1(t), and C2(t); the middle term is partially
computed. In the middle part, we compute bipartite terms consisting of bipartite
quotients and bipartite products. The quotients Q′

0(t) and Q1(t) are computed
using fully interleaved Montgomery and Blakely algorithms applied to the prod-
ucts C0(t) and C2(t) which are reduced with F0(t) and F1(t), respectively.

The reduction terms are then (Q′
0(t)F0(t)), (Q′

0(t) + Q1(t))(F0(t) + F1(t)),
and (Q1(t)F1(t)). These terms are applied to C0(t), C1(t), and C2(t) to produce
reduced products C ′

0(t), C ′
1(t), and C ′

2(t). Lastly, the final sum can be computed
in different ways. In Fig. 1, the final sum is simply S(t) = C ′

2LR(t)||C ′
0UR(t) +

C ′
1(t)+C ′

2LR(t)||C ′
0UR(t). This gives us a residue A(t)×B(t)× t−r (mod F (t)).

The term t−r is equivalently expressed as (tr)−1 = 2−r = (2r)−1 since in the
binary base, t−r is a shift right by r indicating the Montgomery degrees knocked
down.
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Fig. 1. Partially interleaved Karatsuba-Ofman algorithm.

If we compute all terms in PIKO in a bit-parallel fashion, bit-by-bit per clock
cycle, it becomes fully interleaved. Then, a residue of k-bit operands can be com-
puted in k

2 clock-cycles. We call this version the Fully Interleaved Karatsuba-
Ofman (FIKO) algorithm. This follows by noting that when we compute a prod-
uct A × B, the bits of a multiplier B, can be observed from either the least
significant or most significant position. In this manner, we can compute the
Blakely and Montgomery quotients from opposite ends. Close attention to the
half-size products, reveals no dependencies in this approach. For example, the
product of two upper words A1(t) × B1(t) will always have Cmax = 2(r − 2)
because they are prefixed. Consequently, the most significant (k−1)−Cmax bits
of C(t)2 will always be zero. The upper bits of the product C2(t) become fixed
as the amount by which we shift A1(t) by decreases.

The remaining multiplications such as Q1(t)F1(t), can all be accomplished
using shifts and adds, according to F (t). The three types of F (t) used are dis-
cussed in Sect. 7. Figure 2 shows the core of the FIKO bit-parallel algorithm
in SystemVerilog. C0, C1, C2 correspond to KOA terms; R1 and R0 are the
Blakely and Montgomery residues; and Q1 and Q0 are the Blakely and Mont-
gomery quotients.
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Fig. 2. Fully interleaved Karatsuba-Ofman algorithm core.

6 Reduction-Free FIKO

In this section we develop the FIKO algorithm into a reduction-free version.
First, we present the special form of the defining polynomial which allows us to
accomplish this.

6.1 Equally Spaced Polynomials

In [14], Koç provides a concise definition of Equally Spaced Polynomials (ESPs)
and Equally Spaced Trinomials (ESTs). An ESP with degree n = δk has form
xδk + xδ(k−1) + · · · + xδ + 1 and is necessarily of even degree with all non-zero
terms equally spaced by δ−1 zero terms. For example, xδk +xδ(k−1) +xδ(k−2) =
x6 + x3 + x0 = 10010012 for δ = 3 and k = 2, the terms are equally spaced by
δ − 1 = 2 zero terms. Similarly, x4 + 1 is an ESP. A special case is the All-One-
Polynomial (AOP), in which case δ = 1. For example, x(k−1) +x(k−2) +x(k−3) +
x(k−4) + x(k−5) + x(k−6) = 11111112 with k = 6. An EST is a trinomial with
all non-zero terms equally spaced and necessarily of even degree; for example
x4 + x2 + 1 = 101012.

6.2 Reduction-Free Trinomials

Ideally, we would like to work with an intermediary binomial or an EST where we
can reduce a product from both ends in parallel without dependencies. However,
for our work, ESTs cannot be used as they have an even degree, cannot be equally
split, and have security considerations. Now, when the defining polynomial is an
ESP-like trinomial of form xn + xr + 1 with n odd and r = �n/2�, we can enjoy
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reduction-free multiplication. We define this special polynomial as a Reduction-
Free Trinomial (RFT). Such polynomials can be split into equal half-size r-
bit registers and are of necessarily odd prime degree. This trinomial is easily
characterized as one whose lower register is a 1 and whose upper register is an
ESP of desired binomial form. For symmetry, we zero-extend the input operands
and work with r-bit registers.

When we work with half-size operands and an RFT, careful observation of
the computations and results in FIKO reveal that the bipartite reduction circuits
can be removed. The following example shows this.

Example 1. For simplicity, consider GF (29), F (t) an RFT that defines the field,
and two elements in the field:

F (t) = t9 + t5 + 1
A(t) = t8 + t7 + t6 + t5 + t2 + 1
B(t) = t8 + t5 + t3 + t + 1.

The corresponding half-size words with the prefixed elements are given in
Table 1.

Table 1. Half-size parameters

Operand Upper register Lower register

F (t) F1(t) = 10001 F0(t) = 00001

A(t) A1(t) = 01111 A0(t) = 00101

B(t) B1(t) = 01001 B0(t) = 01011

If we compute FIKO as usual, we would obtain all Karatsuba-Ofman prod-
ucts, bipartite terms, reduced terms, and final sum. However, since F0(t) = 1, we
can observe that the lower word of the Montgomery quotient is just the lower reg-
ister of C0(t) since a (mod 1) is always a. Similarly, we observe that the Blakely
quotient for the entire product C2(t) is just the most significant [k − 2 : r − 1]
bits of C2(t). Note that the Blakely quotient will always fit in less than r-bits.
Because we are working with half-size words and we are only concerned with the
upper register of the standard quotient Q(t), we can easily see that this is just
C2(t)[k − 2 : r − 1]. Because A1(t) and B1(t) are prefixed and their product is
of degree at most 2(r − 2), it can be observed that the (k − 1) − 2(r − 2) bits of
C2(t) will always be zero and that the upper register of the quotient is found in
the specified bits. However, the full upper register of C2(t)[k−1:r] can be taken
as Q1(t) if we multiply it by t or shift it left by one. This is illustrated in Fig. 3;
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the left side shows RF-FIKO quotients taken directly from C0(t) and C2(t) and
the right side shows the quotients we obtain after we apply bipartite reduction.
They are the same.

Fig. 3. RFFIKO and FIKO with a RFT.

There is no need for the Blakely and Montgomery reduction circuits, we can
just take the quotients from the Karatsuba-Ofman terms C0(t) and C2(t). RF-
FIKO, illustrated in Fig. 4, reduces to a total of three distinct multiplications,
namely those to compute the Karatsuba-Ofman products C0(t), C1(t), and C2(t).
The bipartite products and reduction terms are all computed with shifts and
additions on the last clock cycle. In Example 1, our desired answer C(t) =
(C ′

2t
2r + C ′

0 + C ′
1t

r + C ′
0t

2r + C ′
2)t

−r is 1000010100. We can easily obtain the
result in the standard domain by re-adding the r Montgomery zeroes (degrees we
knocked down) to this bipartite residue and employing standard reduction. Our
result is C(t)t−r (mod F (t)) ≡ A(t)B(t)(tr)−1 (mod F (t)). Now, from closer
inspection of Fig. 4, we can see that Q′

0(t)F0(t) = Q′
0(t) since F0(t) = 1.

For an RFT, the cross term is simply computed as the sum of the quotients
with multiplication by (F1(t)⊕F0(t)) implemented as a shift left by r−1. Hence,
we have a fully interleaved reduction-free modular multiplier with a total of three
half-size word multiplications and six sums (two k-bit sums, three r-bit sums,
and one 1-bit sum). The sums can be implemented differently, for example to
reduce an r-bit sum to a 1-bit sum at the cost of space. In either case, the metrics
are the same and we kept the original implementation with three k-bit sums and
three r-bit sums.

7 Test Inputs

We consider finite fields of the form GF (2n) where the degree of the defining
polynomial corresponds to an ECDSA binary field or a Mersenne exponent [6,13,
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Fig. 4. Reduction-free fully interleaved Karatsuba-Ofman (RF-FIKO) algorithm.

29,38]. We consider three different types of trinomials, namely, RFTs of special
form xn +x�n/2� +1, special trinomial type 1 of form xn +x�n/2� +1 and special
trinomial type 2 of form xn + x + 1.

Table 2. Test curves

Curve type Exponents

ECDSA 163, 233, 283, 409, 571

Mersenne 107, 127, 521, 607, 1279, 2203, 2281, 3217

Table 2 shows the curves used and Table 3 shows our test field groups. For
example, test group F2 from Table 3 consists of finite fields of the form GF (2n)
where n varies over the ECDSA exponents listed in table Table 2 and the defining
polynomial for all such fields is an RFT. More explicitly, the F2 group consists
of fields: GF (2163), GF (2233), GF (2283), GF (2409), and GF (2571) each of which
is defined by a corresponding RFT F (t) = t163 + t82 + 1, F (t) = t233 + t117 + 1,
F (t) = t283 + t142 + 1, F (t) = t409 + t205 + 1, and F (t) = t571 + t286 + 1,
respectively. RF-FIKO is completely defined by an RFT and hence, we only
test it with finite fields in groups F1 and F2. Blakely, Montgomery, FIKO, and
BMM are independent of the defining polynomials and can be tested with all
test groups.
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Table 3. Test groups

Group Curves F (t)

F1 Mersenne RFT

F2 ECDSA RFT

F3 Mersenne Type 1

F3′ ECDSA Type 1

F4 Mersenne Type 2

F4′ ECDSA Type 2

8 Hardware Implementation

In this section, we present two bit-parallel hardware implementations in GF (2n).
The algorithms implemented were Interleaved Montgomery, Interleaved Blakely,
BMM, FIKO, and RF-FIKO. We implemented in Verilog and SystemVerilog and
prototyped on a Virtex-7 FPGA. The ASIC design synthesis was done using
TSMC 28-nm CMOS technology.

8.1 Non-recursive Decomposition

Figure 5 details the microarchitecture for RF-FIKO corresponding to our algo-
rithm in Fig. 4. A direct and näıve implementation of Fig. 4 would yield a residue
in k-CC with the KOA terms computed in r-CC followed by the bipartite reduc-
tion products in r-CC. However, a bit-parallel implementation allows for a fully
interleaved implementation with all terms computed in parallel, one bit per clock
cycle, in r-CC. Moreover, close inspection of Fig. 4 and the bipartite terms, allows
us to be concerned only with the KOA products of C0(t), C1(t), and C2(t) since
the bipartite and reduction terms can all be computed with shifts and additions.
The critical delay path is then the multiplication of the three KOA terms for
which there exist various techniques for improvement.

The fastest bit-parallel implementations are concerned with special trino-
mials and exploiting structure to compute the product A(t) × B(t) mod F (t)
while making efforts to simplify the reduction. We have explored the mathemat-
ical structure of the RFT together with noted observations so that we can solve
the problem A(t)×B(t) mod F (t) with only three multiplications, C0(t), C1(t),
and C2(t), and obtain a true reduction-free residue. Because of the nature of the
RFT, we obtain reduction-free quotients and compute the remaining terms with
some shifts and adds.

This work sets forth an initial presentation of RF-FIKO concerned with the
upper layer of recursion of Karatsuba-Ofman to compute the three multiplica-
tions using half-size operands. Further KOA layers imply more space and plat-
form constraints. This decomposition was selected as an initial step to improve
PIKO in time and space complexity and hence, obtain improvement over the
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Fig. 5. RF-FIKO microarchitecture

bipartite reduction technique by completely removing it. Moreover, implemen-
tations that apply non-recursive KOA (only the upper layer), usually use 1/4
less space compared to the fastest implementations [8–10,15,22,35–37]. Further
recursion and incorporation with other techniques is reserved for future work.

8.2 Register-Transfer Level Design

Close observation of Fig. 5 shows that the KOA terms are computed in a bit-
parallel fashion. The data path is controlled by a four state Moore machine.
In state zero all data registers are loaded with the value of zero and the down
counter, cnt, is loaded with r − 1. In state two, the multiplication control signal
controls the bit-parallel multiplication of C0(t), C1(t), and C2(t) to compute
them one bit per clock cycle. Sketched rectangles highlight the three differ-
ent arithmetic operations; the symbols GF (2)+, GF (2)x, and � correspond
to GF (2) addition, GF (2) multiplication, and shift left by r − 1. These oper-
ations are implemented as XORs, shift and add multiplication, and arithmetic
left shift to multiply by a power of two. When cnt reaches zero, the multiplica-
tion is complete and the final sum and done signals are generated by the FSM.
The remaining RTL details how the final sum is computed; all such registers are
assigned inside a procedural block.
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The r-bit quotients are assigned as Q1(t) = C2(t)[k−2:r−1] and Q0(t) =
C0(t)[r−1:0]. The reduced terms C ′

0(t) and C ′
2(t) are implemented as r-bits.

The final sum only concerns the upper register of C ′
0(t) and hence, there

is no need to compute the full C ′
0(t) term. Moreover Q′

0(t)F0(t) reduces to
Q′

0(t) for F0(t) = 1 which does not affect the upper register of C ′
0(t). We let

C ′
0(t) = C0(t)[k−1:r]. Similarly for C ′

2(t), we implement Q1(t)F1(t) as a left
shift by r − 1 added with Q1, and take only the lower register of C ′

2(t) =
C2(t) ⊕ (Q1(t) � (r − 1)) ⊕ Q1(t). For C ′

1(t) we require the full term, and
implement the cross-term X(t) as (Q1(t)⊕Q0(t)) � (r −1) since multiplication
by (F1(t)⊕F0(t)) reduces to a shift left by r−1. Finally, our sum of concatenated
terms, is Σ = C ′

0(t)||C ′
2(t) ⊕ C ′

1(t) ⊕ C ′
2(t)||C ′

0(t) which corresponds to the final
output in Fig. 5, A(t)B(t)t−r (mod F )(t).

9 Results

In this section we provide results for both FPGA and ASIC hardware imple-
mentations for sample ECDSA and Mersenne curves. In both implementations,
Blakely and Montgomery form our baseline for comparison. Bipartite reduc-
tion is the fastest reduction technique prior to this work. Our main targets for
comparison are BMM and FIKO for half-size words. A brief comparison with
some of the fastest bit-parallel multipliers in the field is also provided along with
estimates for FHE curves.

9.1 FPGA Results

Table 4 shows the FPGA results for sample curves in different groups–namely,
the clock cycle (CC) count, LUT count, slices, frequency (MHz), and the latency
in clock cycles × clock period (μs). For each sample field GF (2n), we list the
defining polynomial F (t) and the results for each algorithm. Blakely and Mont-
gomery show some slight variance in all metrics. In comparison to the other
three algorithms, these approximately double in the execution time but half the
space used. FIKO outperforms BMM for GF (2107) and GF (2163) curves using
several tens to hundreds more LUTs and slices. For the non-RFT curves, BMM
and FIKO behave similar. As expected, RF-FIKO in turn outperforms FIKO
which was our expected goal. For GF (2107), RF-FIKO is 1.026 times faster than
FIKO and 1.071 times faster than BMM using approximately half the LUTs.
For GF (2163) RF-FIKO computes the residue 1.064 times faster than FIKO and
1.076 times faster than BMM. This is more easily observed in Fig. 6 which shows
the execution time for all algorithms for sample fields.

9.2 ASIC Results

Table 5 shows the results from our ASIC implementation. As expected, the
results are significantly faster with the largest curve attaining a period of 0.41
ns for Montgomery. For 108-bit and 164-bit curves, FIKO outperforms BMM in
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Table 4. FPGA sample results

Algorithms CC LUT Slices f (MHz) Latency (μs)

F1 : F (t) = t107 + t54 + 1

Blakely 107 179 64 299.4 0.357

Montgomery 107 177 61 277.8 0.385

BMM 54 344 114 327.9 0.165

FIKO 54 400 150 342.5 0.158

RF-FIKO 54 235 108 350.8 0.154

F2 : F (t) = t163 + t82 + 1

Blakely 163 260 78 268.1 0.608

Montgomery 163 262 73 268.8 0.606

BMM 82 477 142 286.5 0.286

FIKO 82 768 259 289.9 0.283

RF-FIKO 82 512 212 308.6 0.266

F3 : F (t) = t521 + t260 + 1

Blakely 521 819 218 218.3 2.39

Montgomery 521 813 230 216.0 2.41

BMM 261 1492 435 219.3 1.19

FIKO 261 2,685 922 203.7 1.28

F ′
4 : F (t) = t571 + t + 1

Blakely 571 893 238 215.1 2.66

Montgomery 571 895 264 207.9 2.75

BMM 286 1,632 491 215.1 1.33

FIKO 286 2,772 942 199.7 1.432

time but not space. For 108-bit and 164-bit curves RF-FIKO outperforms BMM
in time and space. For 108-bit curves, BMM computes a residue in 54 CC × 0.36
ns × 10−3 = 0.01944 µs requiring 5,512 gates. RF-FIKO computes the residue
in 54 CC × 0.32 ns × 10−3 = 0.01728 µs with 4,876 gates. RF-FIKO differs by
2.16 ns and is more optimal in space with 636 fewer gates. In terms of execution
time, RF-FIKO is 19.44 ns / 17.28 ns = 1.125 times faster than BMM when
working in GF (2107). For 164-bit curves, BMM computes a residue in 0.03116
µs at the cost of 6551 gates and RF-FIKO in 0.02788 µs with 7059 gates. In
this case RF-FIKO requires 508 more gates but is 31.16 ns / 27.88 ns = 1.118
times faster than BMM when working in GF (2163). Figure 7 shows the latency
for 108 and 164-bit curves in clock cycle count by clock cycle time in μs for all
algorithms. For other curves, FIKO behaves similar to BMM.
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Table 5. ASIC sample results

Algorithm CC Time(ns) Gate# Area ∗ time

F1 : F (t) = t107 + t54 + 1

Blakely 107 0.33 1,941 640.53

Montgomery 107 0.37 2,039 754.43

BMM 54 0.36 5,512 1,984.32

FIKO 54 0.34 7,812 2,656.08

RF-FIKO 54 0.32 4,876 1,560.32

F2 : F (t) = t163 + t82 + 1

Blakely 163 0.34 3,115 1,059.1

Montgomery 163 0.38 3,835 1,457.3

BMM 82 0.38 6,551 2,489.38

FIKO 82 0.34 12,402 4,216.68

RF-FIKO 82 0.34 7,059 2,400.06

F3 : F (t) = t521 + t260 + 1

Blakely 521 0.4 9,240 3,696

Montgomery 521 0.41 11,785 4,831.85

BMM 261 0.39 20,690 8,069.1

FIKO 261 0.41 41,007 16,812.87

F ′
4 : F (t) = t571 + t + 1

Blakely 571 0.4 11,031 4,412.4

Montgomery 571 0.41 12,399 5,083.59

BMM 286 0.39 22,370 8,724.3

FIKO 286 0.41 43,346 17,771.86

Fig. 6. FPGA execution time in CC × T (μs) for 108 and 164-bit curves
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Fig. 7. ASIC execution time in CC × T (μs) for 108 and 164-bit curves

RF-FIKO removes the reduction part in modular multiplication simplifying
the solution to the problem A(t) × B(t) (mod F (t)) to three multiplications
followed by some shifts and additions on the last clock cycle; the results presented
showed improvement in time and space complexity for specific curves. Further
optimization can be obtained through experimentation and incorporation with
other techniques such as, varying parameters, Mastrovito matrix for KOA terms,
higher radices (e.g. 22, 23, etc.), refined and combined versions of KOA (e.g., with
Toom-Cook), and pipelining.

Both FPGA and ASIC results show that for k-bit fields, Montgomery and
Blakely can compute the residue in k CC, our main metric for time. BMM, FIKO,
and RF-FIKO compute in k/2 CC. The focus of this work was to highlight
the impact of our modulus polynomial. Hence, for comparison and additional
consideration noted earlier, all algorithms were implemented in the same base
and in a similar fashion. Results from state-of-the-art implementations, such
as [16] and [17] for BMM, confirm similar results with respect to clock cycle
count. For example in [17], for a radix-4 pipelined implementation, the residue is
computed in n

2 +4 CC for n-digit operands. A strict comparison in terms of time
and space for state-of-the-art implementations would require reproducing such
works and is considered for future work as there are different optimization levels
that can be applied. Moreover, besides the several variants and considerations for
comparison, such works also conform to particular modulus polynomials [21,23].

9.3 Bit-Parallel Multipliers and Fully Homomorphic Encryption

This subsection provides a brief comparison against some of the fastest bit-
parallel modular multipliers and estimates for FHE curves. Table 6 lists the total
gate count for similar works in the PB and Shifted PB. RF-FIKO space com-
plexity consists of 7059 total gates for GF (2163) which is six times less gates
compared to [9,36,37] and four times less gates than [35]. The estimated time
delay as a function of the signal propagation delay through total AND-gates
(TA) and XOR-gates (TX) is expected to be significant.
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Table 6. Bit-parallel multipliers in PB and SPB

GF (2147)

Work Gate# Time

Sunar & Koç, Wu [36,37] 43,217 TA + 10TX

Elia et al. [8] 33,045 TA + 11TX

Fan et al. [9] 43,217 TA + 9TX

Negre [28] 49,000 TA + 8TX

Li et al. [35] 29,154 TA + 8TX

On the other hand, the degrees of defining polynomials for FHE are much
larger than those of PQC, demanding more parallelism. Several functions
with fully-homomorphic properties work with polynomial rings of the form
Zq[t]/(tn + 1). These rings are applied to the FHE algorithms such as, CKKS
and RLWE BVG [4,7]. For RLWE BGV, the moduli can take values in the inter-
vals q ∈ [215, 2500] and n ∈ [29, 214]. CKKS works with polynomial rings of the
form Z[t]/φ(t)m for which the defining polynomial φ(t)m is the m-th cyclotomic
polynomial for m ∈ Z

+ and a power of 2. It also works with a ring Zp[t]/φ(x)m.
Table 7 lists estimates for RF-FIKO for sample n for F (t) that define rings for
RLWE BVG, CKKS, and similar functions such as, FV and BFV [5,11]. The
estimates for total gate count are based on the results for RF-FIKO for GF (2163),
as �n/163�×7059. The CC is n/2 as noted previously. We can easily see that for
GF (2512), BVG would require 22,174 gates which is approximately half of the
gate count for three of the fastest bit-parallel multipliers listed in Table 6 for a
much smaller field.

10 Applications

Ring and finite field multiplication forms the fundamental operation in crypto-
graphic schemes. Public-key cryptography, symmetric key cryptography, FHE,

Table 7. Estimates for FHE curves [4,5,7,11]

n CC Gate#

RLWE BVG

29 256 22,174

214 8,192 709,538

CKKS and similar

215 16,384 1,419,076

216 32,768 2,838,152

217 65,536 5,676,303
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and primitives based on these, such as KEMs and HMACs, all employ modular
arithmetic. These schemes are particularly interested is fast modular multipli-
cation with polynomial rings and fields defined over different bases [18]. When
working in higher radices, intermediate operations may be performed in GF (2n)
for efficiency, such as eliminating carry propagations. In the modern regime,
our work is applicable to schemes, such as RSA and ECC (e.g. ECDSA) [29].
In the quantum regime, NIST PQC Third Round Lattice-based finalists which
share similar construction based on structured lattices, would benefit from our
work. FHE uses higher degrees than PQC and requires a higher level of paral-
lelism [4,26].

The arithmetic in Lattice-based schemes consists of matrix algebra and finite
field and ring arithmetic. Cryptographic hashing (SHA-3 and XOFs), random-
ness generation, and ring multiplication are among the most expensive computa-
tions in these schemes [30]. The Number Theoretic Transform (NTT) is employed
in all Lattice-based schemes for fast ring and field multiplication except in Saber
and NTRU. Tables 8 and 9 list sizes for keys and moduli used in modern and
PQC schemes. Table 10 lists rings used in different PQC schemes. Further details
regarding the schemes and varying instances can be obtained by accessing the
specification documents of each submission [31].

10.1 NTT-Unfriendly Rings

The polynomial arithmetic techniques applied to Lattice-based schemes can be
grouped into three categories, namely, NTT-friendly, NTT-unfriendly, and com-
binations of Karatsuba and Toom-N . Karatsuba-Ofman multiplication is par-
ticularly suitable when the defining polynomial of the ring has degree above 16
and within 256. Variants of Karatsuba and Toom-N are more efficient when the
degree is above 256. These variants are particularly suited for NTT-unfriendly
rings where the moduli are a power of two, Z2m [t] (e.g. Saber and NTRU).

NTTs can be adapted for NTT-unfriendly rings to obtain significant speed-up
through new implementations of the schemes and techniques (e.g., layering) [18].
However, improving NTTs by reducing the number of modular reductions is a
sought venue for improvement [27]. Moreover, NTTs may not be applicable in all
use cases (e.g. compression in Saber). Depending on the implementation, plat-
form, and techniques applied, a speed-up may not be possible [31]. For exam-
ple, in AVX2, a software speedup was not possible for n = 509 with NTT of
length-1024 due to selected strategy and vector layout [18]. A fast hardware
implementation uses schoolbook multiplication and highlights the difficulties of
implementing recursive structures in hardware, such as Toom-N [32].

10.2 Number Theoretic Transforms

Kyber, Dilithium, and Falcon use NTT-friendly rings. NTRU-HRSS is flexi-
ble and the latest specification allows for variants that use a prime q allowing
for security and size trade-offs not present when q is a power of two [31]. Fal-
con, based on NTRU lattices, uses a prime modulus q = 12289 of special form
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q = ((k × 2n) + 1) that makes it suitable for NTTs [31]. Hardware accelera-
tion of primitives through platform-specific ISA extensions and cryptographic
processors such as, single-cycle multiplication and vectorized NTTs on target
platforms, such as ARM Cortex-M4 and Intel AVX2 would improve all Lattice-
based schemes.

Table 8. Sample modern schemes [29]

Modern schemes Keys/Moduli (bits)

AES 128, 192, 256-bit keys

RSA 2048, 4096, 7680, 15,360-bit moduli

DH 2048-bit modulus

ECC 160–233, 224–255, 256–383, 384–511, 512+ moduli

The reduction-free property of RFTs is an extension from binomials. For
simplicity, if we consider a small field of the form Z2[t]/(x8 + 1), we can easily
see that with this binomial, elements can be split into even half-size words of
d-bits or 8/2 bits. F (t) can be split evenly by allowing the upper register to hold
the d most significant bits and the lower register can be truncated to d-bits since
it is 1 and reducing with (mod 00001) is equivalent to reducing with (mod 0001)
or just 1. We can easily observe that the Blakely quotient will just be the d − 1
most significant bits of C2 and Montgomery is just the least significant d-bits of
C0. Modular multiplication in finite fields and rings can apply the reduction-free
property when the defining polynomial is a binomial or trinomial that allows it.

When the coefficients of the polynomials are elements in a ring of field, such
as Zq, such as a ring of the form Zq[t]/(xn + 1), the reduction-free property
can be explored with respect to modulo q. For example, for q = 819210 =
100000000000002 and intermediate multiplications and additions of elements in
{0, 1, .., q−1} may be done in the binary base and we may exploit reduction-free
properties and split q into q1 = 1000000 and q0 = 0000000.

Table 9. Sample PQC keys [31]

PQC schemes Key size (Bytes) Security level

Kyber768 sk = 2400(32†), pk = 1182 3

FireSaber-KEM sk = 3040(1760‡), pk = 1312 5

NTRUhrss701 sk = 1452, pk = 1138 1, 3∗

Dilithium5 sk = 2592, pk = 4595 5

Falcon-1024 pk = 1793, σ = 1280 5

† indicates option for only 32 bytes of randomness with trade-
offs.
‡ indicates option to use compression to reduce the key size to
384 bytes. ∗ 1 for non-local models, 3 for local.
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Table 10. Sample PQC fields and ring parameters [31]

Scheme Zq[t]/F (t)

Saber Z3329[t]/(t256 + 1)

Kyber Z3329[t]/(t256 + 1)

NTRUhrss701 Z8192[t]/(t701 + 1)

Dilithium Z8380417[t]/(t256 + 1)

Falcon-1024 Z12289[t]/(t1024 + 1)

Improvements of Karatsuba and Toom-N that explore reduction-free
(mod q, F (t)) is applicable for cases where NTT cannot be applied. If NTT
can be adapted, there is no reduction (mod F (t)) and we are only concerned
with reduction (mod q) in which case, we can obtain reduction-free NTT if q
can be expressed accordingly. The polynomial arithmetic and techniques appli-
cable depend on the implementation type, software or hardware. In Saber, the
reference software implementation notes that 50–70% of the time is spent on
generating pseudorandomness [31]. Recent work also shows that optimization of
polynomial multiplication in Lattice-based schemes, controls computation time
to a large-scale [18]. Our work is specifically applicable to hardware implementa-
tions which are optimized through principled design. RF-FIKO can be designed
in different bases, radices, incorporated with other techniques (pipelining, paral-
lelism, refined KOA) and algorithms (e.g. Toom-N), and transformed into other
domains (e.g. NTT) to obtain a significant speed up in modern, PQC, and FHE
schemes.

Highly optimized software and specialized hardware implementations have
paramount applications on the Internet and computing systems in general. These
include embedded firmware (e.g. TPMs), cryptographic libraries (e.g. OpenSSL)
to secure the cloud and VPNs through transport layer security (TLS) and IPSec
implemented in the OS code on hosts and gateway routers, and devices in gen-
eral such as, cryptographic cores and modules (e.g., secure enclaves on SoCs).
Moreover, blockchain technology which is highly dependent on PKC, namely
digital signatures, is faced with protecting against quantum attacks. To remain
secure and practical in the quantum regime, blockchains must implement PQC
schemes efficiently. General adaption of PQC must also be applied in a timely
manner [26]. Being able to operate on encrypted data efficiently is also highly
desired for FHE applications such as, zk-SNARKs.

11 Conclusions

Efficient implementations of modern PKC and lattice-based schemes are sought
in both software and hardware. In this paper, we introduced two new algo-
rithms (FIKO and RF-FIKO) which are based on fully interleaved bit-parallel
Karatsuba-Ofman multipliers without the bipartite reduction circuits. Their
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FPGA and ASIC implementations were faster than FIKO and BMM and showed
promising results for PQC and FHE implementations. Moreover, further analysis
of a complete system that applies cryptographic primitives must account for soft-
ware and hardware attacks, such as side-channels. In this case, because RF-FIKO
is reduction-free, it eliminates timing leakage via modular reductions without
the need to recourse to alternative algorithms. This conforms to constant-time
implementation requirements.

Further optimization of RF-FIKO through incorporation with other tech-
niques or transforming NTT into reduction-free NTT, merits further research
and consideration.
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