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Abstract—Reconfigurable platforms such as FPGAs and CPLDs
are used to implement flexible and lightweight embedded systems
often using soft-processors and a fixed instruction sequence stored
in block memories. The bitstream format is proprietary for most
vendors, however, in this work we demonstrate how to identify
and extract block memory contents within the bitstream, allowing
an adversary to learn and possibly modify the fixed instruction
sequence. Manipulating the instruction sequence by inserting a
Trojan in the bitstream as opposed to in the RTL code allows an ad-
versary to bypass many verification steps. Moreover, the proposed
Trojans only add extra instructions to the sequence to leak secret
information, and do not change the original program behavior,
making them virtually impossible to detect using functional tests.
We present a case study where a Trojan is injected into a MIPS
AES encryption program to leak internal state information by
adding extra instructions from the available ones without changing
the original program behavior.

Index Terms—Security, Trojan, System-on-chip, FPGA

I. INTRODUCTION

Reconfigurable platforms such as Field Programmable Gate
Arrays (FPGA)s and Complex Programmable Logic Devices
(CPLD)s are often used to implement flexible embedded sys-
tems. Due to the sophistication of adversaries [1] and increasing
use of soft-IP in applications [2], securing reconfigurable plat-
forms is critical and the task has become increasingly challeng-
ing. FPGA security has been explored from various perspectives
[3], [4] including bitstream integrity and confidentiality.

Typically programs in embedded systems are infinite loops,
meaning the instruction sequence will continue to execute on the
soft-core processor until the device is turned off. “Embedded
systems now refers to any system with fixed software on the
chip” [5]. Hence, there is fixed program code, alive for the
lifetime of the system, stored in the configuration bitstream,
which may contain sensitive information. This motivates pow-
erful adversaries to reverse-engineer and modify the bitstream
for such an embedded system.

Typically the instruction sequence is embedded in portions of
the bitstream which will be transferred to block memory when
the device is powered. In this work, we present an algorithm
to reverse engineer the bitstream format to learn the contents
of the block memory. In systems with soft-core processors, this
means any attacker able to examine the device bitstream can
learn the entire instruction sequence (provided the instruction
format is publicly available). This is a serious security flaw for
applications running proprietary algorithms assuming program
code is safely obfuscated within the bitstream.

Moreover, the attacker can deduce the desired functionality
of the program then insert a Trojan in the program instruction

sequence by adding extra valid instructions which do not
interfere with the original program behavior, but perform some
malicious functionality such as leaking information or establish-
ing timing or power side channels. Because these Trojans are
inserted in the bitstream as oppose to the C or register transfer
level (RTL) code for the soft-core processor, there are limited
verification mechanisms to detect the modifications which are
not cryptographically secure [6]. Most FPGA devices have a
cyclic redundancy check (CRC) mechanism to detect and correct
errors during transmission of the bitstream to the device, yet they
can be disabled, as shown by Chakraborty et al. [7] and easily
manipulated [8]. To protect against the proposed attack bitstream
compression and memory encryption can be employed, however
due to space limitations a detailed discussion of these techniques
is not included in this work.

II. LITERATURE REVIEW

A. Bitstream Reverse Engineering and Modification

There exist open-source Computer-Aided Design (CAD) tools
for the FPGA design process [9], [10] as well as methods to
reverse-engineer the bitstream format [4], [11]–[13]. However,
these studies only target a limited number of FPGA devices and
provide very limited information about the bitstream format.
Swierczynski et al. [14] provide practical content extraction
methods for look-up table (LUT)s and embedded memory in
order to detect the S-box used in cryptographic algorithms and
manipulate its contents to weaken the corresponding crypto-
graphic primitive. Their S-box modification completely changes
the behavior of the AES cipher, meaning even a single test
encryption will compute an incorrect ciphertext and reveal
the modification. In contrast, our case study focuses on the
instruction stream for the AES encryption algorithm stored in
block memory, not on the modification of S-boxes stored in
LUTs, and illustrates how an attacker can learn the AES key
without causing the computation of incorrect ciphertexts.
B. Program Code Integrity

Preventing hijacking of processor program code has been
addressed and studied extensively [15]. Chang and Atallah [16]
propose a method to protect program integrity by computing the
checksum of the program code in a distributed manner. Jacob et
al. [17] introduce a technique based on oblivious hashing for the
integrity of the program code. Instead of checking code integrity
prior to execution, their method provides a runtime verification
mechanism. These mechanisms for protecting program code are
costly, and applicable to code executing on high-performance
processors, but in lightweight embedded systems these dynamic
integrity checking mechanisms may be infeasible.



III. THREAT MODEL

The attack model targets FPGA-based embedded systems
containing peripherals, a bus interconnect, and a soft-processor.
The soft-processor has an instruction memory whose contents
are loaded from the FPGA bitstream. Our threat model assumes
the attacker is capable of introducing a Trojan at the bitstream
level to modify the instruction sequence and injects extra
instructions to leak information without altering the original
functionality of the program.

There are several scenarios in which the attacker is able to
access and modify the bitstream. For example, if the bitstream
for the system is provided by an untrusted third party, it
may contain a Trojan. Because our threat model assumes the
Trojan preserves the functionality of the device from the user’s
perspective, even if thorough functional testing is performed by
the user, it is unlikely they will detect such Trojan modifications.

In another scenario, the adversary can obtain access to the bit-
stream by having physical access to the FPGA device, as in [18],
where the bitstream is intercepted while being transferred from
non-volatile to volatile memory during start-up.

In order to check the data integrity of the configuration data,
bitstreams usually come with a built-in CRC. However, there
are ways to disable it. Chakraborty et al. [7] describes how to
disable CRC verification. Another way of stopping our proposed
attack is to encrypt the configuration data with a cryptographic
algorithm. Two dominant leaders in the FPGA market provide
bitstream encryption mechanisms to stop Intellectual Property
(IP) counterfeiting and related issues [3]. However, there exist
many practical attacks [19]–[21] to leak the cryptographic keys
used by the device for this bitstream encryption.

IV. RETRIEVING BLOCK MEMORY CONTENT EMBEDDED IN
CONFIGURATION DATA

Block memory units are used to store register files, state infor-
mation, first-in first-out (FIFO) buffers, and algorithm look-up
tables and constants. When the system is running cryptographic
algorithms or processing private information, the security of
these memory units is essential.

In the configuration bitstream, a fixed mapping is used for the
contents of block memories. Algorithm 1 shows the methodol-
ogy used to understand this mapping. To perform Algorithm 1,
the attacker must be able to generate bitstreams for the specific
FPGA device targeted. To learn the mapping, the attacker
will create several versions of an RTL design instantiating
block memory with known contents then compare how these
differences are reflected in the bitstream. Once this analysis
is performed for a particular device, block memory contents
residing in any bitstream generated for the device can be learned
by the attacker. Block memories for a given FPGA device
support several configurations, each having different depths and
data word widths. Memory depth is the total number of words
that one can store in a block memory while the bit length of each
word is determined by the width. We denote bit positions within
each memory word as columns while rows define the location of
each word. Algorithm 1 extracts the column and row decoding
information for a given block memory configuration.

Algorithm 1 Revealing the row and column encodings of block
memory contents embedded in the FPGA bitstream
Input: An RTL level design consisting of a memory instan-

tiation of block memories for a selected configuration;
B[Nr][Nc] (a block of data in the design), Nr (number of
rows) and Nc (number of bits in a row).

Output: Dc[Nc] (Decoding information for the columns) and
Dr[Nr] (Decoding information for the rows).

1. for i← 0 to Nr − 1 do (Block Initialization)
2. B[i]← 0;
3. end for
4. Place and Route the design; Write the bitstream (B0);
5. B[0]← 1;
6. Place and Route the design; Write the bitstream (B1);
7. Bdiff ← B1

⊕
B0;

8. Find the address (Addr1) of 1 in Bdiff
9. Dc[0]← Addr1

10. for j ← 1 to Nc − 1 do (Decoding Column Mapping)
11. B[0]← (1 << j);
12. Place and Route the design; Write the bitstream (Bj+1);
13. Bdiff ← Bj+1

⊕
B0;

14. Find Addrj+1 in Bdiff
15. Dc[j]← Addrj+1

16. end for
17. B[0]← 0;
18. for i← 1 to Nr − 1 do (Decoding Row Mapping)
19. B[i]← 1;
20. Place and Route the design; Write the bitstream (Bi);
21. Find the bit location (l) of the 1 in Addr1 of Bi
22. Dr[j]← l
23. end for
24. return Dc and Dr;

First, Algorithm 1 initializes the block memory contents
with zeroes in the attacker-generated RTL design consisting of
instantiations of block memories for a selected configuration. A
bitstream, B0, is generated and over the course of the Algorithm
we compare this initial bitstream with bitstreams generated with
different, but known, block memory contents.

We observe that there is a row and column encoding which
can be revealed by only examining a few bit locations, meaning
our method avoids an exhaustive search of all possible bit
decodings (which would entail assigning 1 to every bit to get as
many bitstream files as the number of bits in a block memory).

The column decoding is revealed by (1) assigning 1 to each
bit only for the first memory word, (2) generating corresponding
bitstream files Bj , (3) comparing them with B0 and (4) storing
the address of the difference as a column decoding (Dc)
(Algorithm 1, lines 5 through 16). Note that it is sufficient to
only examine a single word since all column decodings are
identical within a memory block. To reveal the row decoding,
(1) assign 1 to the least significant bit of each word, (2) generate
corresponding bitstream files Bi and (3) examine the word at
address Addr1 in Bi and store the bit position of the 1 as a row
decoding (Dc) where Addr1 is computed during the column
decoding process (lines 18 through 23 of Algorithm 1).



Algorithm 2 Retrieving the contents of the instruction memory
embedded in FPGA bitstream
Input: Dc[Nc] (Decoding information for the columns) and
Dr[Nr] (Decoding information for the rows), Nr (number
of rows) and Nc (number of bits in a row); The bitstream
(B) is to be modified, Configuration frame size (Nbcf ),
Number of Frames (Nf ), Header size (NbH ), HEXDUMP
utility is to view binary data in hexadecimal view.

Output: Contents of the Instruction Memory (IM)
1. Remove NbH bits in B.
2. for i← 0 to Nf − 1 do (Decoded Block Initialization)
3. for k ← 0 to Nr − 1 do
4. DB[i][k]← 0;
5. end for
6. end for
7. for i← 0 to Nf − 1 do (Retrieving All Frames)
8. F[i]← HEXDUMP B in blocks of Nbcf bits;
9. end for

10. for i← 0 to Nf − 1 do (Decoding Frames)
11. for j ← 0 to Nc − 1 do (Decoding Columns)
12. c← F[i][Dc[j]]
13. for k ← 0 to Nr − 1 do (Decoding Rows)
14. m← 1 << Dr[k]
15. DB[i][k]← (c⊕m) >> Dr[k]
16. end for
17. end for
18. end for
19. Search possible instruction sequences in decoded blocks.
20. IM[i][k]← Instruction Sequences in DB[i][k]
21. return

For a specific block memory configuration (example depth=8,
width=32) this mapping is fixed, therefore the mapping revealed
for a single block applies to all blocks with the same configura-
tion on the device. One can use this fixed mapping to read the
contents of the block memory sequentially from the bitstream.

Algorithm 2 operates on the bitstream the attacker wishes
to maliciously modify, and describes a method to extract the
instruction sequences embedded in the block memories. Once
one knows the encoding of the block memory configuration
by applying Algorithm 1, Algorithm 2 searches for possible
instruction sequences in the contents of the block memories.

For a given bitstream B, Algorithm 2 first removes the header,
zeros the temporary decoded block (DB) variable, and dumps
the bitstream B in blocks of Nbcf bits as a hex file (F).
Algorithm 2 then decodes each frame in the bitstream file using
the column and row decoding information (Dc and Dr, respec-
tively) and stores the decoded contents in DB (Algorithm 2,
lines 10 through 18). As a final step, Algorithm 2 searches for
possible instruction sequences in DB. Instruction sequences are
recognizable due to fixed opcodes for a given instruction set
architecture. Additionally, high level knowledge of the algorithm
also makes identification of meaningful instruction sequences
possible. For example, in many cryptographic applications round
constants, initial key values, and S-box mapping information are
commonly stored in block memories.

V. TROJANS MODIFYING INSTRUCTION MEMORY
EMBEDDED IN AN FPGA BITSTREAM

Block memories in an FPGA device are a natural choice for
storing instruction sequences for a given processor. Instructions
carry complete information about the algorithm being executed,
and control the information flow in the data-path. Once the block
memory contents are known using the Algorithms presented in
Section IV, the functionality of the instruction sequence can be
understood by the attacker, and places where extra instructions
can be advantageously inserted can be identified.

The following section details this methodology for a MIPS-
based instruction sequence performing AES encryption. Trojans
created through the addition of extra malicious instructions
which do not disturb the original program functionality are not
limited to information leakage in cryptographic applications.
One can easily extend the ideas in the proposed attack to
different applications.

A. Case Study: Trojan Insertion in AES Instruction Sequence

1) MIPS-based Platform Overview: In order to demonstrate
the operation of the proposed Trojans, we implement a Trojan
infested MIPS based system on an AC701 evaluation board fea-
turing the XC7A200T FPGA device. The system consists of data
and instruction memories residing in a dual-port block memory,
a MIPS processor, and several peripherals for communication
outside the FPGA including an LCD controller, switches, LEDs,
and a UART serial interface. The methodology given in the
following section is applicable to similar platforms which have
instruction memory embedded in block memories of an FPGA
device. The MIPS processor runs an AES-128 algorithm and
drives the LCD display, LEDs, and UART channel. For our case
study, the processor encrypts a 128-bit text with a 128-bit key
and then the encrypted text is sent through a UART channel.

2) Trojan Insertion Methodology: First, the block memory
contents stored in the bitstream are extracted using Algorithms 1
and 2, then the contents are interpreted as program code and
disassembled using the freely available Online Disassembler
(ODA) [22] and the MIPS instruction sequence is extracted.

The next step in Trojan insertion is to identify possible attack
points in the program code. One should note that the AES
key may not be stored directly in the bitstream. For example,
a physically unclonable function (PUF) can generate the key
at runtime or it may be provided from outside the processor.
Therefore, we assume we do not have direct access to the
AES key from the bitstream, and the attack point selected is
the AddRoundKey transformation of AES which involves an
XOR operation with round keys. From the extracted program
code it is possible to distinguish AES transformations since
they have a fixed pattern. Listing 1 shows the AddRoundKey
step implemented in the MIPS processor. The code loads
state values of AES and round keys in 8-bit increments and
applies the XOR operation to them. After identifying necessary
code segments related to the sensitive information processed
in the device, we leak this information through a peripheral
observable by the attacker. In this case study, the output of the
UART communication controller is easily visible to anyone with
physical access to the device. Since systems often have memory



mapped Input/Output (I/O)s, one can easily identify a UART
write operation in the instruction sequence. After identifying the
subroutine corresponding to the UART write operation, data can
be sent through the UART channel by writing the data to register
a0 (argument to the subroutine) and calling the subroutine with
a jump and link instruction (jal 4b4 in Listing 1). To leak the
key information, we inject an instruction performing a UART
write operation during the AddRoundKey step (Listing 1).

518 : 3 c020000 l u i v0 , 0 x0
51 c : 8 c471308 lw a3 , 4 8 7 2 ( v0 )
520 : 00042100 s l l a0 , a0 , 0 x4
524 : 3 c020000 l u i v0 , 0 x0
528 : 24850004 a d d i u a1 , a0 , 4
52 c : 24421258 a d d i u v0 , v0 ,4696
530 : 00452821 addu a1 , v0 , a1
534 : 24 e80010 a d d i u t0 , a3 , 1 6
538 : 24 a 3 f f f c a d d i u v1 , a1 ,−4
53 c : 00 e01021 move v0 , a3
540 : 90640000 l b u a0 , 0 ( v1 )
544 : 90460000 l b u a2 , 0 ( v0 )
548 : 24630001 a d d i u v1 , v1 , 1
54 c : 00862026 xor a0 , a0 , a2
550 : 0 c00012d j a l 4b4 #UARTWriteByte
554 : a0440000 sb a0 , 0 ( v0 )
558 : 14 a 3 f f f a bne a1 , v1 , 5 4 0 #AddRoundKey+0x28
55 c : 24420001 a d d i u v0 , v0 , 1
560 : 24 e70004 a d d i u a3 , a3 , 4
564 : 14 e 8 f f f 5 bne a3 , t0 , 5 3 8 #AddRoundKey+0x20
568 : 24 a50004 a d d i u a1 , a1 , 4
56 c : 03 e00008 j r r a
570 : 00000000 nop

Listing 1. Code segment from MIPS instruction sequence corresponding to the
AddRoundKey step in AES (compiled with MIPS cross-compiler toolchain from
the C code in https://github.com/kokke/tiny-AES128-C). The red instruction is
the injected jump-and-link instruction to the UART channel write subroutine.

In our case study, we leak the intermediate results of the
AddRoundKey steps for each round, but the attacker can easily
recover the AES key using this information from the first
round only. It is also possible to leak the AES key directly by
calling the UART write subroutine before the XOR operation
if the register carrying the AES key is known. Adding extra
instructions into the program code after its been processed by
an assembler breaks branch and jump instructions due to the
fact that instructions following the injected code are shifted
in memory from their original locations. A final detail in our
attack is to increment the addresses in branch/jump instructions
to restore correct program behavior. The modified program code
is reintroduced to the bitstream using the information provided
by Algorithm 1. The instructions in the resulting bitstream still
correctly perform the functionality of the original instruction
sequence, however, the internal state of the AES algorithm is
leaked, allowing an attacker to recover the AES key.

VI. CONCLUSION

We present a methodology for reverse engineering soft-core
processor instruction sequences embedded in portions of the
bitstream corresponding to block memories. We then show
how to modify these contents to create an instruction sequence
which leaks sensitive algorithm information by inserting extra
instructions without affecting the functionality of the original
program code. Since our Trojans are introduced in the bitstream
after the place-and-route (PAR) process, we avoid most of the
verification and Trojan detection mechanisms at RT, synthesis,
and PAR levels. We provide an example of our proposed Trojans

by modifying the bitstream for a platform containing a soft-
core MIPS processor performing AES encryption and several
peripherals by injecting additional instructions into the encryp-
tion program to leak internal AES state information without
disturbing the encryption algorithm.
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