Hardware Trojans in Incompletely Specified On-chip
Bus Systems

Nicole Fern, Ismail San, Cetin Kaya Kog¢, and Kwang-Ting (Tim) Cheng
University of California, Santa Barbara
Email: {nicole, timcheng}@ece.ucsb.edu, {ismail.san, koc}@cs.ucsb.edu

Abstract—The security, functionality, and performance of the
on-chip bus system is critical in an SoC design. We highlight
the susceptibility of current bus implementations to Hardware
Trojans hiding in unspecified functionality. Unlike existing Trojans
which aim to disrupt normal bus behavior and are often designed
for a specific protocol and topology, we present a general model
for creating a covert Trojan communication channel between
SoC components. From our channel model, which is applicable
to any topology and protocol, one can create circuitry allowing
information to flow covertly by altering existing bus signals only
when they are unspecified. We give the specifics of this circuitry
for AMBA AXI4, then create a system comprised of several master
and slave units connected by an AXI4-Lite interconnect to quantify
the overhead of the Trojan channel and illustrate the ability of our
Trojans to evade a suite of protocol compliance checking assertions
from ARM.

I. INTRODUCTION

Hardware Trojans are a concern for both semiconductor
design houses and the U.S. government [4]. The design, man-
ufacturing, testing, and deployment of silicon chips involves
many parties. If a single party involved deems it advantageous
to insert malicious functionality into the chip, referred to as
Hardware Trojans, the consequences can be catastrophic [12].

This work focuses on Trojans targeting SoC on-chip buses.
The ability to manipulate the bus system is extremely valuable
to an attacker since the bus controls communication between
critical system components. A denial of service Trojan halting
all bus traffic can render an entire SoC useless. Any information
transferred to/from main memory, the keyboard, system display,
network controller, etc. can be passively captured or actively
modified by Trojan circuitry inserted in the interconnect.

While bus protocols clearly define the desired values for each
data or control signal during valid transactions, the values of
these signals during idle cycles are unspecified and largely
ignored by bus protocol checkers, formal verification properties,
and scrutiny during simulation-based verification making Trojan
behavior during these cycles difficult to detect.

The Trojans we propose in this work operate entirely within
idle bus cycles, with the goal being to provide a covert com-
munication channel built upon existing bus infrastructure. This
Trojan channel can be used to connect Trojan components
spread across the SoC in addition to enabling information
leakage from legitimate components.

In Section II we will review the current solutions addressing
bus architecture security issues. Section III outlines the threat
model, Section IV introduces the Trojan Channel model and
circuitry, and Section V further refines this circuitry for AMBA

AXI4. A case study examining the overhead of creating a 2-
way information leakage channel between slaves in an AXI4-
Lite interconnect is presented in Section VI, and Section VII
summarizes our results and contributions.

II. RELATED WORK

The following are bus security issues being addressed in
literature and industry:

1) Malicious snooping of bus data

2) Enforcing bus slave access control policies

3) Deadlock prevention (malicious and accidental)
4) Data integrity, data tampering prevention

Previously proposed bus Trojans include denial of service
attacks, observing bus transactions between other components,
corrupting bus data, and allowing a master to access forbidden
address ranges [8].

In [8], the authors present a secure AHB bus architecture
to detect the above mentioned Trojans at runtime. A watchdog
timer is added to detect bus deadlock, and to prevent snooping
multiplexors are added on all data lines to zero the lines visible
to components uninvolved in the current transaction, however
this additional circuitry was shown to have significant impact
on the maximum bus operation frequency.

Encryption of bus data [7, 13] has been proposed as a
method to prevent bus snooping. Key maintenance, along with
the overhead of encryption circuitry limits the widespread
adoption of this countermeasure. While encryption of bus data
prevents snooping, it does not prevent the existence of a Trojan
communication channel.

To prevent illegal peripheral access, ARM TrustZone Con-
trollers are commercial IP blocks which provide access con-
trol mechanisms to memory regions and bus peripherals by
monitoring valid bus transactions for violations [1]. Since our
proposed Trojans never modify existing or create new valid bus
transactions, TrustZone will not detect communication between
unauthorized masters and slaves on the Trojan channel or rouge
communication between 2 slaves.

Extensive research on formal verification of bus protocols
has been performed to ensure deadlock avoidance and fairness
[9, 11]. The properties checked using formal methods can
be re-used during protocol compliance checking of specific
bus implementations using either formal or simulation based
methods. The availability of commercial compliance checking
verification IP (ex. [3] for AMBA protocols) and pre-packaged

SystemVerilog assertions suites [5] illustrate the importance of
verifying the correctness of specified bus functionality.

During idle bus cycles, when VALID signals are de-asserted,
there are no properties/assertions to capture what the correct
behavior is, because it is not relevant to the protocol. Our
proposed Trojans exploit this fact, and operate exclusively
during these cycles to avoid violating assertions or detection
during property checking.

III. THREAT MODEL

Since a covert communication channel is useless without a
sender and receiver of information, we assume that at least
one component connected to the system bus contains a Trojan
utilizing the information received on the channel, and that there
is another Trojan to either leak data from the component it
resides in or snoop bus data otherwise not visible to the receiver
and send it over the channel. Our proposed Trojans do not
suppress, alter, or create valid bus transactions, but instead re-
use existing bus protocol signals to define a new “Trojan” bus
protocol allowing communication between different malicious
components across the SoC.

Trojan Insertion Stage: It is assumed the Trojans are
inserted in the RTL code or higher-level model, meaning no
golden RTL model exists to aid in Trojan detection at later
stages in the design cycle. A complex SoC requires hundreds
of engineers to design and test, and relies on third party IP cores
and tools to meet time to market demands. A single rouge design
engineer or malicious 3rd party IP or CAD tool vendor has the
potential to implement a Trojan communication channel.

IV. TROJAN COMMUNICATION CHANNEL

The structure and size of the Trojan communication channel
circuitry depends on the following:

1) Bus Topology: Determines necessity of FIFO and extra
Leakage Conditions Logic at receiver interface

2) Bus Protocol: Defines Leakage Conditions Logic and
selection of signal(s) to mark valid Trojan transactions

3) Trojan Channel Connectivity: Channel can be one-way
or bi-directional, contain an active or snooping sender,
and involve information leakage between two masters, two
slaves, or a master and a slave

4) Data Width of Trojan Channel (k): number of bits
leaked during a Trojan transaction

5) FIFO Depth (d): FIFO used to buffer Trojan channel data
if the receiver is busy accepting valid bus transactions

Bus topology and protocol are selected by the system de-
signer, whereas Trojan channel connectivity is chosen by the
attacker. Data width (k) and Trojan FIFO depth (d) are pa-
rameters selected by the attacker to trade-off performance and
overhead of the Trojan channel. Figure 1 shows the components
necessary to create a Trojan channel in the most complicated bus
topology (MUX-based). A Trojan channel can easily be created
in other bus topologies by simplifying the circuitry in Figure 1.

The sender and the receiver can be any master or slave
component on the interconnect. The goal of the Trojan channel
is to use only pre-existing interconnect interfaces to pass data

Interconnect Receiver

Original

Data & i
Trojan

FIFO Read

Leakage
Conditions
(Sender)

Leakage
Conditions
(Receiver)

Original —| 0] Control | |
Trojan 1 i E

leak r

FIFO Write

Original

Trojan

Fig. 1: Trojan Channel in a MUX-based Configuration

Interconnect

Write Data Crossbar
w / h w
Mo J S0
R R
0
1
0
w w
M1 r(s1
R Q / R
Read Data Crossbar

Fig. 2: MUX-based Interconnect Topology [14]

from the sender to the receiver. Since Trojan data is sent using
the same lines as normal bus traffic, additional signaling must
mark when valid Trojan data is being transmitted. These signals
are labeled as Control in Figure 1, and like the Trojan data, are
mapped to pre-existing data/address/control signals, meaning no
additional interface ports are created by the Trojan.

The Leakage Conditions Logic is protocol dependent and
examines signals at the sender’s interconnect interface to deter-
mine when it is “safe” to replace the original bus signal values
with Trojan values. Further detail is presented in Section V.

The interconnect topology specifies the degree of parallelism
between read, write, data, address, and control signals, and
the connectivity between masters and slaves [10]. Figure 2
shows the read and write data channels for a MUX-based
topology, which supports multiple simultaneous transactions at
the expense of extra circuitry. A key feature to note is that since
data cannot be snooped by a bus component uninvolved in the
transaction due to the routing provided by the MUX circuitry,
the Trojan circuitry must provide this extra connectivity.

Simpler bus topologies which remove the MUX circuitry
on the data channels and broadcast read and write data to all
components are more area efficient, but can only support a single
transaction at a time. In a broadcast topology, a Trojan receiver
can already observe the sender’s data meaning only the circuitry
inside the Sender block in Figure 1 is necessary for successful
information leakage.

V. PROTOCOL SPECIFIC TROJAN CHANNEL DEFINITIONS

The specifics of the Leakage Conditions Logic, which pro-
duces leak_s and leak_r, and the selection of Data and Control
signals depend on the bus protocol used. We will present this
logic in detail for the commonly used AMBA AXI4/AXI4-
Lite protocol from ARM. Details are available for the Leakage

Conditions Logic in the AMBA APB protocol, but are omitted
due to space limitations.

AXI4 defines 5 independent transaction channels seen at the
interface of every master and slave: read address channel, read
data channel, write address channel, write data channel, and
write response channel [6]. Each channel uses a VALID/READY
handshake signal pair to indicate when the receiver is ready to
process bus data, and to mark when valid data is on the bus.
Such mechanisms exist in all bus protocols, and the Leakage
Conditions Logic definitions based on AXI4 VALID signals can
easily generalize to other bus protocols.

Typically, buses using AXI4 choose MUX-based configura-
tions such as those shown in Figure 2, meaning that all the
circuitry in Figure 1 is required to create the Trojan channel.

1) Master Sender: Data can be leaked through any bus
signals a master drives, mainly those on the read or write address
channels, or the write data channel. The values of all master
driven signals on these channels have no functional meaning
when the channel VALID signal is low, hence:

leak_s = troj_data_ready & ~VALID

Control Signals: The general criteria for selecting bus signals
and their corresponding values to act as Trojan Control signals is
that when leak_s is asserted, the normal behavior of the signal
is predictable, but also unspecified. For AXI4, master-driven
signals WSTRB and WLAST both meet these criteria.

WSTRB is used in both AXI4 and AXI4-Lite, and quoting
the specification, “A master must ensure that the write strobes
are HIGH only for byte lanes that contain valid data. When
WVALID is LOW, the write strobes can take any value...”

If the application uses all byte lanes in every transfer, it is
likely that all strobe bits would be kept HIGH, even when
WVALID is LOW, so a good indicator of a valid Trojan
transaction would be to set 1 or more bits LOW when leak_s
is asserted:

WSTRB = leak_s ? 4b1011 : WSTRB_ORIG

The signal WLAST is used to indicate the last transfer in a
write burst transaction. When WVALID is low, WLAST is not
used, however almost certainly will be de-asserted, meaning that
asserting this signal can also mark a valid Trojan transaction:

’WLAST = leak_s 7 1 : WLAST_ORIG

2) Slave Sender: Data can be leaked through any bus signals
a slave can drive (those on the read data channel or write
response channel). The logic for leak_s is identical to the logic
presented in the previous section since both channels employ
VALID signals.

Control Signals: To mark when Trojan data is valid, RLAST
can be used in a similar manner as WLAST. RRESP and
BRESP are 2-bit error reporting signals and are typically set to
indicate “OKAY, normal access success” (all 0’s) when not in
use (channel VALID is LOW). Setting either RRESP or BRESP
to a non-zero state when leak_s is asserted can indicate the
presence of Trojan data on the bus, for example:

SO S1

8-bit 8-bit

Adder Adder
AXI4-Lite AXI4-Lite

Slave Slave

Y r Y

SystemVerilog Testbench

AXI4-Lite AXIBFM

Compliance
Checker

AXI4-Lite
Master

AXI4-Lite
Master

AXI4-Lite
Master

A 4 v

AXI4-Lite Interconnect Fabric

Fig. 3: AXI4-Lite Case Study Verification Infrastructure

Interconnect

SO

ageyea]

leak 1 WSTRB
(Original)

1’b1001

Leakage Conditions Logic

Fig. 4: Trojan Channel Logic for AXI4-Lite Interconnect

| RRESP = leak_s ? 2'b10 : RRESP_ORIG

3) Trojan Receiver: A Trojan master/slave receives informa-
tion on the same set of bus signals a Trojan slave/master sends.
Because of this symmetry, the selection of Data and Control
signals is identical to the previous sections. The only difference
is that before leaking data to a receiver, the FIFO must not be
empty, meaning:

’leak_r = fifo_not_empty & ~VALID

VI. CASE STUDY: AXI4-LITE INTERCONNECT

The infrastructure shown in Figure 3 is created, then infected
with two copies of the circuitry shown in red in Figure 4 to
allow S1 to snoop on read requests for SO and vice versa. The
two slaves are simple 8-bit adder coprocessors which receive
3 operands to add via an AXI4-Lite bus from 3 processors.
Since the specifics of the main processors are irrelevant, in
the example infrastructure, they are replaced by AXI4-Lite bus
functional models (BFMs) from [2].

The AXI4-Lite Interconnect Fabric IP block used is the
LogiCORE IP AXI Interconnect (v1.02.a) from Xilinx [14]
configured in Shared-Address Multiple-Data (SAMD) mode (the
topology shown in Figure 2). Without the Trojan, the read data
channel for SO is not visible to S1 and vice versa.

The waveform in Figure 5 first demonstrates how 3 read data
responses (values 42, 15, then 14) from S1 are snooped and
routed to SO’s write channel, then shows a single read data
response (value 96) from SO routed to S1’s write channel, and
finally another read data response from S1 (value 13) leaked
to SO. All Trojan transactions are highlighted in red in Figure
5. The WSTRB signal is used to indicate when leaked data is

S_AXI_BUS_A_RDATA [31:0]

a U UUUUTHUUTTUUUHUUUUUU UL

S_AXI_BUS_A RVALID

S_AXI_BUS_A_WDATA [31:0]

S0 Signals

S_AXI_BUS_A_WVALID T ﬁ [—

S_AXI_BUS_A_WSTRB_[3:0]

S_AXI_BUS_A_RDATA [31:0]

S_AXI_BUS_A RVALID

S1 Signals

S_AXI_BUS_A_WDATA [31:0]

S_AXI_BUS_A_WVALID ’—‘ ’—‘

S_AXI_BUS_A_WSTRB_[3:0]

Fig. 5: 2-way Information Leakage Waveform

TABLE I: Trojan-Free Design Results (After Place and Route)

TABLE II: Area Overhead of 2-way HW-Trojan Channel

. Frequency . % Increase in FF | % Increase in LUT
Configuration #FF | # LUT | # BRAM [MHz] Data Width | FIFO Depth —gyiog [4M6S 3M2S | 4MGS
[3 Masters 2 Slaves [1814 [2474 | 2 [250 | 2 0.8 0.5 0.9 0.4
[4 Masters 6 Slaves | 3071 | 4247 | 3 | 250 | 2 4 1.1 0.7 L5 0.6
8 1.4 0.8 1.8 1.1
. . . 2 1.0 0.6 1.4 0.7
on the bus. Normally WSTRB == 1, but when information is 4 a 3 0.3 50 03
leaked, WSTRB == 9. 8 1.7 1.0 2.0 L5
AXI4-Lite assertions packaged by ARM for protocol com- g i }g (1)3 ;i }g
pliance checking [5] are active during system simulation. For 3 31 12 30 7

AXI4-Lite, there are over 50 assertions, and none of them
are violated even when information is flowing through the
Trojan channel!

Overhead: To determine the area and timing overhead of
implementing a 2-way Trojan channel between SO and S1, the
SystemVerilog Testbench in Figure 3 is replaced by several
simple bus masters. Table I shows results for the Trojan-free
design, after placement and route, assuming 3 masters and 2
slaves (labeled as 3M2S) as well as 4 masters and 6 slaves
(labeled as 4M6S) for a Virtex-7 FPGA (7vx330t-3).

Table II illustrates how the selection of Trojan channel
parameters Data Width (k) and FIFO Depth (d) affect the results.
The Trojan channel does not affect the operating frequency of
the design, and stays within 3% of the original FF and LUT
utilization. As the number of masters and slaves increases, the
size of interconnect increases as does the overall design area,
but the size of the Trojan circuitry does not change meaning
the Trojan channel is easier to hide as the complexity of
the interconnect and the components connected increases. The
master and slave components used to generate the results in
Tables I and II are far simpler than those in a typical SoC, so
the results in Table II give a loose upper bound on the expected
percentage of area increase caused by the Trojan channel in a
modern design.

VII. CONCLUSION

We present a new type of Hardware Trojan which creates
a covert communication channel between components spread
across an SoC using only existing on-chip bus interface signals
without affecting normal bus functionality. This Trojan can
capture and send sensitive data to attacker-controlled modules
during idle bus cycles. We illustrate how our general model
of Trojan channel communication can be mapped to any bus
topology and protocol, and give details for AMBA AXI4. Our
Trojan channel circuitry is shown to avoid detection by a

protocol compliance checking suite from the IP vendor, and
confirmed to have manageable area overhead. Due to space
limitations, detection strategy details are not included, but
preventing the insertion of bus Trojans requires refinement of
the bus specification, meaning an increase in area/timing/power
overhead and design verification effort.

Acknowledgements: This work was supported by NSF/SRC

STARSS (1526695).
REFERENCES

[1] ARM TrustZone Controllers: http://www.arm.com/markets/
trustzone-controllers.php.

[2] AXI4 BEM: https://code.google.com/p/axi-bfm/.

[3] Synopsys VIP for ARM AMBA: http://www.synopsys.com/
tools/verification/functionalverification/verificationip/amba/
pages/default.aspx.

[4] S. Adee. The Hunt for the Kill Switch. IEEE Spectr., May 2008.

[5] ARM. AMBA 4 AXI4, AXI4-Lite and AXI4-Stream Protocol
Assertions BP063 Release Note (rOpl-00rel0), 2012.

[6] ARM. AMBA AXI and ACE Protocol Specification, 2013.

[71 M. Henson and S. Taylor. Memory encryption: a survey of
existing techniques. ACM Computing Surveys, 46(4):53, 2014.

[8] L.-W. Kim and J. D. Villasenor. A System-On-Chip Bus Ar-
chitecture for Thwarting Integrated Circuit Trojan Horses. VLSI
Systems, IEEE Transactions on, 19(10):1921-1926, 2011.

[9] R. Luo and H. Tan. Formal Modeling and Model Checking

Analysis of the Wishbone System-On-Chip Bus Protocol. In

Information Computing and Applications. Springer, 2012.

S. Pasricha and N. Dutt. On-Chip Communication Architectures:

System on Chip Interconnect. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2008.

A. Roychoudhury et al. Using Formal Techniques to Debug the

AMBA System-On-Chip Bus Protocol. In DATE, 2003.

M. Tehranipoor and F. Koushanfar. A Survey of Hardware Trojan

Taxonomy and Detection. /EEEDT, 2010.

A. Waksman and S. Sethumadhavan. Silencing Hardware Back-

doors. In IEESP, 2011.

Xilinx. LogiCORE IP AXI Interconnect (vi.02.a), 2011.

(10]

(11]
[12]
[13]

[14]

