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Abstract—The Schönhage-Strassen Algorithm (SSA) is an
asymptotically fast multiplication algorithm with the complexity
of O(l log l log log l) where l is the operand size. It outperforms
other multiplication algorithms when l is large enough. One pos-
sible usage of such long integer multiplication is for cryptography.
Innovated from SSA, the Interleaved Spectral Montgomery Mod-
ular Multiplication (ISM3) algorithm is proposed to accelerate
the modular multiplication. ISM3 algorithm primarily interleaves
the Montgomery modular multiplication algorithm between time
and spectral (frequency) domain. We show that the tasks in
each step of the proposed algorithm have little data dependency,
and hence, extremely suitable for hardware implementation. We
present the parallel ISM3 architecture and implement it on
Xilinx Virtex-II and Virtex-6 FPGAs. Experimental results show
that our 3838-bit ISM3 is faster than the previous Montgomery
multiplier. Moreover, our design can complete a 7678-bit modular
multiplication in 3398 cycles in 17.98 µs on a Virtex-6 device.

I. INTRODUCTION

Cryptography provides a way to protect the information’s
confidentiality, integrity, and authenticity. In order to provide
sufficient security level, the key size of the cryptographic
systems has been growing continuously. For instance, for the
cryptosystem whose security relies on integer factorization
problem (e.g. RSA [1]), the recommended key size is 3248
bits for a long term protection for 30 years [2]. This means to
utilize RSA to provide a long term protection, one needs to
perform 3248-bit modular multiplications, and consequently,
a high-performance long integer multiplier is in demand.

The most popular algorithm to perform modular arithmetics
to date is Montgomery Modular Multiplication (MMM) [3].
MMM has been extensively studied, and several variants have
been proposed for both hardware and software platforms [4]–
[8]. MMM has the same order of complexity as a multiplica-
tion (In fact, the original MMM [3] involves 3 multiplications).
Therefore, the acceleration of the multiplications can also
benefit the performance of MMM.

The multiplication algorithms faster than the schoolbook
multiplication are listed in Table I. A good summary of these
multiplication algorithms is in [9]. The GMP library [10]
shows their efficiency in real implementations. However,
both [9] and the GMP library [10] only focus on software

Table I
MULTIPLICATION ALGORITHMS AND THEIR COMPLEXITY

Algorithm Complexity
Schoolbook O(n2)

Karatsuba [11] O(nlog 3/ log 2)

Toom-Cook [14] O(nlog(2k−1)/ log k)
Schönhage-Strassen [15] O(n · logn · log log n)
Fürer [16] O(n · logn · 2O(log ∗N))

realization; the hardware realization of these multiplication
algorithms is only limited to the schoolbook [6]–[8] and
Karatsuba method [11]–[13] to our knowledge.

On the other hand, the Schönhage-Strassen Algorithm
(SSA) basically transforms the presentation from time do-
main to spectral domain (a.k.a. frequency domain) using Fast
Fourier Transform (FFT), and performs the multiplication in
the spectral domain. We observe that there are extensive paral-
lelisms in SSA multiplication, which can be explored by a par-
allel architecture on hardware platforms. The parallelization,
and consequently, the acceleration may benefit the modular
multiplications which used extensively in cryptography.

In this paper, we analyze the characteristics of the SSA
arithmetic, and apply its idea in MMM to perform modular
multiplications by interleaving the computation between time
and spectral domain. The main contributions of this paper are
as follows:

• The primitives of Interleaved Spectral Montgomery Mod-
ular Multiplication (ISM3) algorithm is proposed for
efficient modular multiplication computation;

• The suitable parameter sets for different operand sizes are
provided for fast computations;

• A fast and area-efficient architecture is designed for the
proposed algorithm;

• The prototype implemented on FPGA demonstrates that
such architecture can finish one 7678-bit modular multi-
plication in 17.98 µs.

The rest of this paper is organized as follows. Section II
introduces the background information. Section III proposes
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the interleaved spectral Montgomery modular multiplication
and analyzes its parameter requirement. In Section IV, the
hardware architecture of ISM3 is designed. Section V provides
the FPGA implementation results and the comparison with
other works. Section VI concludes this paper.

II. BACKGROUND

A. Number Theoretic Transform and Spectral Domain

Discrete Fourier Transform (DFT) is a critical operation to
transform the signals from time domain to spectral domain
for signal analysis and processing. It is usually defined over
complex field C. Number Theoretic Transform (NTT) is
similar to DFT, but over a finite ring Zq = Z/qZ [17]. We
still call the transformed domain as spectral domain, and the
normal representation as time domain.

In this paper, an integer x in time domain is represented by
a polynomial

x(t) = xs−1t
s−1 + . . . x1t+ x0

where xi are the base-b (a.k.a. radix-b) coefficients of x
(let b = 2µ, then it is µ-bit coefficient) satisfied x(b) =∑s−1

i=0 xi2
iµ ≡ x. For instance, x = (12345678)h can be

represented by a radix-28 polynomial as

x(t) = (12)ht
3 + (34)ht

2 + (56)ht+ (78)h

.
Let X(k) be the polynomial in spectral domain for x(t)

after transformation. Let xi, Xi be their i-th coefficients of
x(t), X(k), respectively. The definition of NTT and its inverse
(INTT) is given as follows:

Definition 1. Let ω be a principal d-th root of unity in Zq. Let
x(t) and X(k) be polynomials of degree less than a positive
number d − 1 with coefficient satisfied 0 ≤ xi < b for all
i = 0, 1, . . . , d − 1. The length-d number theoretic transform
defined modulo q from x(t) to X(k) and its inverse is defined
as

Xi = NTTω
d (x(t))i :=

d−1∑
j=0

xjω
ij mod q (1)

xi = INTTω
d (X(k))i := d−1

d−1∑
j=0

Xjω
−ij mod q. (2)

Pollard [17] proved that the Fast Fourier Transform (FFT)
is also available to NTT. The n-th stage decimation-in-time
equation for constant geometry FFT [18] is as follows (0 ≤
n ≤ log2 d− 1):

{
Xk = x2k + x2k+1ω

Pnk mod q
Xk+ d

2
= x2k − x2k+1ω

Pnk mod q
(3)

where Pnk = b k
2n c × 2n, k = 0, 1, · · · , d

2 − 1.
Another characteristic which NTT inherits from DFT is

the cyclic convolution. Let X(k) = NTTω
d (x(t)), Y (k) =

F F Tx ( t )

Conv ( x ( t) ,  y ( t) )
C o mp o n e n t -wi s e

mu l t i p l i ca t i o n
I F F T

F F Ty ( t)

Figure 1. Data flow of Depth-1 Schönhage-Strassen Algorithm.

NTTω
d (y(t)) and � be component-wise multiplication, then,

conv(x(t), y(t))i :=
d−1∑
j=0

x(i−j) mod d · yj

= INTTω
d (X(k)� Y (k))i (4)

Note that the existence of NTT and its inverse is not trivial
over finite rings. Naussbaumer [19] proved that the cyclic
convolution is available to a length-d NTT defined modulo a
prime q if and only if d|(q− 1). Naussbaumer also stated that
if NTT is defined modulo a composite number q, it supports
cyclic convolution if and only if the following conditions are
met:

• ωd ≡ 1 mod q;
• dd−1 ≡ 1 mod q;
• ωe and q are co-prime for every integer e such that d/e

is a prime.

B. Schönhage-Strassen Algorithm

The basic idea of SSA is to use FFT and IFFT to transform
the representations back and forth between time domain and
spectral domain, and to perform the multiplication in spectral
domain as shown in Figure 1. Because the complexity of FFT
and IFFT is O(d log d) and that of multiplications in spectral
domain is O(d), the entire complexity is sub-quadratic. This
technique is used recursively in the component-wise multipli-
cations in SSA.

In order to accelerate the operations involved in SSA, the
parameters to construct the ring Zq are of special form.

• q is Fermat number of form 2v + 1, where v is a power
of 2

• ω is a power of 2
• d is a power of 2
Since q is in the form of 2v + 1, there exists fast modular

reduction arithmetic as shown in Algorithm 1. The choice of
ω ensures that a multiplication by ω can be simply achieved
by shift operation. The selection of d as a power of 2 makes
the FFT structure available.

Algorithm 1 A mod q where q = 2v + 1

Input: A, q where q = 2v + 1
Output: A mod q

1: while A > q or A < 0 do
2: A← (A mod 2v)− bA/2vc
3: end while
4: return A

Note that for polynomial multiplication, the result is the lin-
ear convolution of the coefficients, not the cyclic convolution.



In order to have enough dynamic range such that the cyclic
convolution is equivalent to linear convolution, SSA has the
following requirements for the operand to avoid overflow [20]:

Theorem 1. Suppose that x(t) and y(t) are base-b polynomi-
als with degree s = d/2. The product z(t) = x(t)y(t) can be
computed by SSA without overflow when q > sb2.

C. Montgomery Modular Multiplication

The modular multiplication is one of the basic arithmetic
for public-key cryptography [21], and the efficiency to per-
form such modular multiplication has a direct impact on the
performance of the cryptosystem. There exists fast modular
reduction arithmetic when the modulus is of a special form,
e.g. Fermat/Mersenne number [22]. However, such fast arith-
metic is not always available when the modulus n required
by the cryptographic protocols has no specific form. On the
other hand, Montgomery modular multiplication [3] can avoid
the trivial division to accelerate such modulo-n multiplication.
The MMM without conditional subtraction [5] is given in
Algorithm 2.

Algorithm 2 Montgomery Modular Multiplication [5]
Copirme integers n and r, r > 4n, x′ ≡ xr mod n, x′ < 2n,
y′ ≡ yr mod n, y′ < 2n, n′ ≡ −n−1 mod r.

Input: x′, y′, n, n′, and r
Output: z′ ≡ x′y′r−1 = xyr mod n, z′ < 2n

1: t← x′ · y′
2: m← (t mod r)n′ mod r
3: z′ ← (t+mn)/r
4: return z′

While MMM performs modular multiplication in time
domain, Saldamlı and Koç proposed the spectral modular
multiplication [23], which performs the multiplication and
modular reduction in the spectral domain. Essentially, the
Saldamlı and Koç spectral modular multiplication is derived
from the digit-serial Montgomery multiplication [4], and as its
name indicated, such algorithm is essentially sequential, thus
not friendly for massive parallel computation.

III. INTERLEAVED SPECTRAL MONTGOMERY MODULAR
MULTIPLICATION AND ITS PARAMETER SELECTION

A. Interleaved Spectral Montgomery Modular Multiplication

The SSA is only preferred for software implementation
when the operands are long enough. For instance, on a 64-
bit Intel Core 2 processor, the SSA is not faster than other
algorithms until the operand is 303,104 bits [10]. This is
because the advantage of O(d log d) is not obvious compared
to O(d2) when d is small, but SSA introduces extra additions
and shifts.

On the other hand, the SSA’s idea is more friendly to
hardware implementation on FPGA or ASIC; the overhead of
modulo-q operation can be hidden in pipeline, and the shift on
hardware platform is just routing, which is negligible. More

Algorithm 3 Interleaved Spectral Montgomery Modular Mul-
tiplication
Suppose that there exists a length-d NTT for some principal
root of unity ω in Zq. Let s = d/2, r = 2sµ, b > 0, gcd(b, n) =
1, x, y < 2n and n′ = −n−1 mod r. Let x(t), y(t), n(t), and
n′(t) be the time polynomial of x, y, n, and n′, which satisfied
x(b) = x, y(b) = y, n(b) = n, and n′(b) = n′. X(k), Y (k),
N(k), and N ′(k) are the spectral polynomials of x(t), y(t),
n(t), and n′(t), respectively.

Input: X(k), Y (k), N(k), N ′(k), q and r
Output: Z(k) = FFT(z(t)) where z = xyr mod n

1: T (k)← X(k)� Y (k) mod q
2: t← IFFT(T (k))
3: g ← t mod r
4: G(k)← FFT(g)
5: M(k)← G(k)�N ′(k) mod q
6: m← IFFT(M(k))
7: m← m mod r
8: M(k)← FFT(m)
9: K(k)←M(k)�N(k) mod q

10: Z(k)← T (k) +K(k) mod q
11: z ← IFFT(Z(k))
12: z ← z/r
13: Z(k)← FFT(z)
14: return Z(k)

importantly, the component-wise multiplications and the oper-
ations in each stage of FFT/IFFT have no data dependency, and
consequently, parallelization can accelerate the computation.

However, the modulo-r reduction and division-r operation
in Algorithm 2 are not trivial in spectral domain. But such
operations can be simply performed in time domain by bit
selection because r is chosen as a power of 2. Therefore, in
order to optimize the performance, we propose to interleave
the long integer multiplication in spectral domain, and the
modular reduction and division in time domain. The Inter-
leaved Spectral Montgomery Modular Multiplication (ISM3)
algorithm is shown in Algorithm 3. In Algorithm 3, the FFT
and IFFT are in demand to transform the representation back
and forth between time and spectral domain.

The ISM3 is less complex than 3 SSA multiplications when
the modulus n is fixed. This is because N ′(k) and N(k)
only need to be computed once. Also, for exponentiation
using the MSB-first square-and-multiply algorithm, it is either
multiplication by a fixed number or squaring, and only one
multiplicand needs FFT. Therefore, there are 6 FFT/IFFT in
ISM3 instead of 9 in 3 SSA multiplications.

B. Parameter Selection

Before we choose parameters, we first identify the bound-
aries for the parameters to yield correct results in ISM3. The
following corollary is derived from Theorem 1 and [5], [23] .
The detailed proof is skipped due to the limit of page length.



Table II
PARAMETER SELECTION FOR SPECTRAL MODULAR EXPONENTIATION BY

USING ISM3

Bits Ring NTT length Root Wordsize Words
l Zq d ω µ s

206 232 + 1 32 4 13 16
414 232 + 1 64 2 13 32
926 264 + 1 64 4 29 32

1790 264 + 1 128 2 28 64
3838 2128 + 1 128 4 60 64
7678 2128 + 1 256 2 60 128

Corollary 1. ISM3 can apply to compute modular exponenti-
ation without overflow if the parameters s, b and q satisfied

2sb2 < q (5)

while modulus n should satisfy the following inequality,

n < 2sµ−2. (6)

To make sure that the length d of NTT/INTT enable the
regular FFT/IFFT, the best choice for q is Fermat numbers
Ft = 22

t

+ 1. It is proved in Section 8.3 of [19] that when
Ft is composite (t ≥ 5), one can always define NTT modulo
q = Ft of length d = 2t+1−i with root ω = 22

i

where i is
integer. This indicates that for a fixed Fermat number q = Ft,
a smaller root ω is accompany by a longer length d. In order to
have a larger operand size of ISM3 with a fixed q, we usually
set the value of ω small.

We summarize the parameter specifications for ISM3 as
follows:

1) q is Fermat number of form 2v + 1 where v = 2t.
2) ω, the d-th principle root of Zq, is a power of 2.
3) d is a power of 2 for FFT, and s = d/2.
4) The greatest b = 2µ such that 2sb2 < q.
5) l = µs− 2, where l is the maximum operand size of n.
The selection of parameters begin with the determination of

ring Zq. With a fixed q, one can find the NTT length d and its
correspondent root ω. After we get s = d/2, the largest b =
2µ that satisfied Inequality (5) can be found. The maximum
operand size l of ISM3 can then be determined. Following
the selection method above, we carefully select six example
parameter sets for spectral modular exponentiation by using
ISM3 as shown in Table II. For a larger l, v will be larger,
and one can use the SSA recursively for the component-wise
multiplications. Therefore, the ISM3 follows the complexity
of SSA, which is O(l log l log log l).

C. Fast Computation for Modulo-r and Division-r Operations

For the IFFT computation in Algorithm 3, we need to
accumulate the coefficients and generate the time domain
integer by using the following equation

z = z(b) = zd−1b
d−1 + . . . z1b+ z0.

After IFFT produces the time polynomial, it shifts and accu-
mulates the coefficients to generate the time domain integer.
Since b = 2µ is a power of 2, the whole accumulation can
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Figure 2. Generate time domain coefficients using serial adders.

be easily accomplished by shift and add in hardware. The
shift bias of each coefficient is a multiple of µ, one can
separate each coefficient zi into 3 µ-bit trunks zi2, zi1, zi0 and
accumulate them as shown in Figure 2.

The modulo-r operations in Step 3 and 7 of Algorithm 3
can be accomplished simply by selecting the s coefficients
with lower degrees. Therefore, half of the accumulation time
can be saved by omitting the accumulation process for the
other coefficients.

Similarly, for the division-r operation, we can simply per-
form by eliminating the computation of the s coefficients with
lower degrees. However, the result z in Step 12 of ISM3 may
have an ε difference from the correct result. This is because the
carry from the lower degree coefficients is missed. Note that
MMM algorithm guarantees that (t + mn) is divisible by r,
thus, the least significant sµ-bit of z in Step 11 of ISM3 should
all be zero. Using this characteristic, we can determine ε
from the summation of the two most significant bits of trunks
z(s−1)0 and z(s−2)1, i.e. δ = b4z(s−1)0/bc+ b4z(s−2)1/bc:

ε =

⌈b4z(s−1)0/bc+ b4z(s−2)1/bc
4

⌉
. (7)

This is because the carry-in from the lower bits could only
be 0, 1, or 2, and δ mod 4 must be 0. Therefore, a look-
ahead logic could accelerate the computation of the corrected
division-r result.

IV. ARCHITECTURE FOR ISM3

A. Architecture Overview

It can be observed that ISM3 algorithm has the same
operation combination throughout the algorithm (component-
wise multiplication, IFFT, mod/div, and FFT) by 3 times.
Thus, an area saving architecture which supports this operation
combination can be designed by reusing the architecture under
data flow control. Furthermore, since the data flow of FFT
and IFFT are similar, they can share the same computation
resources. The top level architecture of ISM3 is shown in
Figure 3. The multiplier and FFT/IFFT module are working
in pipeline.
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B. Modulo-q Arithmetic

Modulo-q reduction is in great demand in ISM3, hence a
fast computation can speedup the whole system significantly.
Redundant number representation can be utilized in the com-
putation. If |A| < 22v , one time computation of Step 2 in
Algorithm 1, the result will stay in the range [−2v+1, 2v−1].
Thus, the residue only needs (v+1)-bit for storage including
a sign bit. This operation can be finished by one adder in
one cycle, thus we use this method in most of the modulo-
q cases in the system. The overhead is that the following
operators should support signed operations. Therefore, using
the redundant number representation can save the correction
step with negligible overhead. The signed coefficients are
corrected to positive integers before the accumulation in IFFT.
Therefore, the data range for storage is [−2v − 1, 2v], and the
memory data-width is (v + 2)-bit.

The coefficients of the polynomial are needed to be stored
during the ISM3 computation, and the total size of the coef-
ficients is (v + 2) · d, which is quite a big size when q and
d is large. Therefore, these coefficients are better stored in
Memory blocks rather than registered on the fly.

C. Karatsuba Multiplier

We use Karatsuba’s method [11] [13] to optimize the con-
struction of the (v+2)-bit multiplier. To explain the Karatsuba
method, we let A and B be two 2k bits integer and divide them

Stage 0 Stage 1 Stage 2
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Figure 5. Example of a length-16 constant geometry FFT. The shadow area
is used as the primitive for the sub-stage FFT/IFFT architecture design.

into higher half and lower half as follows

A = 2kAH +AL, Y = 2kBH +BL.

Multiplication of A and B in traditional way require four
k-bit multiplication and a few additions as shown below

AB = 22kc2 + 2kc1 + c0

where

c2 = AHBH

c1 = ALBH +AHBL

c0 = ALBL.

Karatsuba found that c1 can be computed by using only one
multiplication with a few additions and subtraction as can be
shown below

c1 = (AH +AL)(BH +BL)− (c2 + c0).

Therefore, to compute a 2k-bit multiplication, instead of the
traditional four k-bit multiplication, one only needs two k-bit
and one (k + 1)-bit multiplication.

The hardware architecture of the Karatsuba multiplier is
shown in Figure 4. In order to use less registers and shorten the
output delay, we parallel the computation of (AH+AL)(BH+
BL) with (c2+c0). Instead of compute 2kc1+c0 by shift and
add, we can achieve the same goal by adding only the high half
of c0 to c1. Similar approach can be use for the computation
of 22kc2 + (2kc1 + c0). This method can reduce the usage of
shift registers as well as shorten the carry chain of adders.
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D. Architecture for FFT/IFFT

To shorten the computation clock cycles of ISM3, one can
design a FFT/IFFT architecture to make all the d coefficients
compute in parallel. However, the trade-off is that this ar-
chitecture will cost a large amount of hardware resources.
Furthermore, long routing of the large design will drag down
the operating frequency of the whole system. To balance
the number of computation clock cycles with the operating
frequency, a pipelined architecture is preferred.

We use constant geometry architecture [18] for an area-
compressed pipelined FFT/IFFT design [24]. Figure 5 shows
an example architecture of a length-16 constant geometry FFT.
As shown in Figure 5, the architecture of each stage in the FFT
computation shares the same pattern of data path, thus we can
reuse this architecture for all the stages. Moreover, we can
further shrink the size of the architecture and only build one
sub-stage FFT architecture as shown in the shadowed area in
Figure 5. A pipelined architecture of this sub-stage FFT can
be reused for the whole FFT computation.

The proposed pipelined architecture of sub-stage FFT/IFFT
is shown in Figure 6. Note that the registers after the operators
are omit for a clear view. It has 4 butterfly structures and can
handle 8 inputs at each cycle. Shift operators is responsible
for multiplying ωPnk to x2k+1 in equation 3.

E. Memory Management

Simple dual-port Block RAM (BRAM), which has one
dedicated read port and one dedicated write port, is used
for coefficients storage. An example of coefficients storage
situation in BRAMs for a length-64 FFT/IFFT is depicted
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Figure 7. Architecture of Channel Selector. Control signals are omitted for
simplicity.

in Figure 8. Since our design attempt to compute eight
coefficients at each time, each eight successive coefficients are
stored in the BRAMs with the same address. With this design,
eight successive coefficients can be read simultaneously under
the control of the same address signal.

The write control is more complex because after each stage
of FFT/IFFT, the order of the coefficients is shuffled. The
input/output sequence for a length-64 FFT/IFFT is shown in
Figure 9. For instance, in Time 0, Coefficients 0–7 is fetched
from BRAMs 0–7. After i cycles, the FFT/IFFT module
finishes the processing. However, the outputs are Coefficients
x0–x3 and Coefficients x32–x35. Note that both Coefficients
x0–x3 and Coefficients x32–x35 belong to BRAMs 0–3, and a
direct write back will produce a collision. The similar situation
also happens to the other outputs.

In order to avoid collisions and pipeline bubbles caused
by the coefficient storage, a channel selector is designed as
Figure 7. The design of the channel selector is based on
the observation that the 4 outputs with lower orders at Time
i + j can be restored with the 4 outputs with higher orders
at Time i + j − 1 simultaneously (shown as bounding box
in Figure 9). With the architecture shown in Figure 7, the
channels represented by the dash lines can interleave the
outputs with the channels in the solid lines.

If the pipeline depth is relatively small for FFT/IFFT struc-
ture, a racing problem will occur. For example, at Time i+0,
Coefficients x32–x35 is not read out of BRAMs, while the new
Coefficients x32–x35 have already come. Since the address
for these coefficients in BRAMs is overlapped, the storage of
the new coefficients will overwrite the coefficients of current
stage. This problem occurs in the 7678-bit ISM3 design.
There are two ways to tackle this problem: using FIFOs to
lengthen the pipeline depth, or adding one more set BRAMs
for using ping-pong alternative storage mechanism. Observed
that the total stage number of 7678-bit ISM3 is an even number
(log2 d = 8). If using the second method, the control signal
for the ping-pong storage is simply the Least Significant Bit
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Figure 8. An example of a length-64 FFT/IFFT coefficients storage situation in BRAMs.
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Figure 9. Input and output orders of a length-64 FFT/IFFT. Eight successive coefficients are inputed at each clock cycle. After i (the pipeline stage of
FFT/IFFT) clock cycles the coefficients will be outputted.

(LSB) of the stage counter. Moreover, different with the first
method, the second method will not introduce pipeline bubbles
into the computation. Thus the second method is used in our
7678-bit ISM3 design.

V. IMPLEMENTATIONS AND PERFORMANCE COMPARISONS

We implemented the proposed architectures on a Xilinx
Virtex-6 (xc6vlx130t) FPGA. Note that each DSP48E1 in Xil-
inx Virtex 6 device has a 18-bit signed multiplier, we use it as
the base multiplier to build the (v+2)-bit Karatsuba pipelined
multiplier. The base multipliers in DSP48E1s is pipelined with
3 stages in order to increase the frequency. Registers are used
both for the input and output of each operation. The delay
of the 34-bit, 66-bit, and 130-bit Karatsuba multipliers are 7
cycles, 11 cycles, and 15 cycles, respectively. In our design,
the 66-bit and 130-bit Karatsuba multipliers uses only 9 and
27 DSP48E1s instead of 16 and 64 by using the traditional
approach, respectively.

We describe the ISM3 architectures in Verilog-HDL and
use Xilinx ISE 13.3 to synthesize and place & route. The
7678-bit and 3838-bit ISM3 have the same q = 2128 + 1,
and therefore, the data-width for these two designs are the
same. One interesting point is that the 7678-bit ISM3 use
approximately 2% less LUTs than the 3838-bit design. This
is because in the 7678-bit design, the number of FFT stages
is even, and we can simply use the LSB of the stage counter

for BRAMs set selection. However, the controller for 3838-bit
design is more complex.

In order to have a fair comparison with the previous works,
we also implemented our 3838-bit ISM3 on a Xilinx Virtex-
II (xc2v6000) device using Xilinx ISE 10.1. We compare our
work with the famous Montgomery modular multiplication
architectures from [6]–[8]. As shown in Table IV, using
similar hardware resources, the architecture of McIvor [7]
can only compute 2048-bit modular multiplication while our
design can achieve a maximum operand size of 3838-bit with
approximately 6% reduction on computation time on average.

The architecture by Tenca and Koç [6] is implemented
on FPGA by Huang et al. [8]. Compared with the 3072-
bit Tenca-Koç MMM, our 3838-bit ISM3 use more hardware
resources but the latency is shorten by nearly 60%. We
also have approximate 30% speedup when compared with
Huang’s MMM [8]. The speedup mainly comes from the low
complexity of the proposed ISM3 algorithm and the pipelined
design, which reduces the clock cycles of the computation
significantly.

VI. CONCLUSIONS

We propose the Interleaved Spectral Montgomery Modu-
lar Multiplication algorithm in this paper, which combines
both the Schönhage-Strassen algorithm and the Montgomery
modular multiplication algorithm. The proposed low com-
plexity algorithm is friendly for hardware implementations.



Table III
VIRTEX 6 IMPLEMENTATION RESULTS AND COMPARISON OF THE INTERLEAVED SPECTRAL MONTGOMERY MULTIPLIERS

Max. operand LUTs Slice DSP48E1s RAMB36E1s/ Cycles Period Latency
size (bit) RAMB18E1s (ns) (µs)

926 9,355 3,055 9 19/12 1,046 4.49 4.70
1,790 9,419 2,986 9 19/12 1,775 4.58 8.13
3,838 20,759 6,779 27 46/4 1,787 5.20 9.29
7,678 20,347 6,607 27 46/4 3,398 5.29 17.98

Table IV
HARDWARE RESOURCE AND PERFORMANCE COMPARISON OF MODULAR MULTIPLIERS ON XILINX VIRTEX-II FPGA

Max. operand size (bit) Architecture Hardware resource Cycles Period (ns) Latency (µs) Speedup (%)
2,048 [7] (5 to 2) 20,986 slices - 11.10 22.76 6.6
2,048 [7] (4 to 2) 23,108 slices - 11.02 22.59 5.9
3,072 [6]’s architecture from [8] 19,110 LUTs 6,336 8.30 52.59 59.6
3,072 [8] (radix-2, ω=16) 16,331 LUTs 3,264 9.55 31.17 31.8
3,072 [8] (radix-2, ω=32) 15,197 LUTs 3,168 9.76 30.94 31.3
3,838 Our design 21,477 slices / 26,021 LUTs 1,787 11.89 21.25 -

The parameter requirements of the proposed algorithm are
analyzed. We also summarize the approach for parameter set
selection. Four ISM3 designs with different operand sizes are
implemented on FPGA. The experimental results show that
our 3708-bit and 7420-bit ISM3 designs are faster than the
previous Montgomery modular multipliers.

For future works, we will refine the architecture design,
and speedup the accumulation process in IFFT. We will also
investigate how the ISM3 arithmetic can benefit other public-
key cryptosystem such as elliptic curve cryptosystem.
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