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Abstract

The Spectral Hash algorithm is one of the Round 1 can-
didates for the SHA-3 family, and is based on spectral arith-
metic over a finite field, involving multidimensional dis-
crete Fourier transformations over a finite field, data de-
pendent permutations, Rubic-type rotations, and affine and
nonlinear functions. The underlying mathematical struc-
tures and operations pose interesting and challenging tasks
for computer architects and hardware designers to create
fast, efficient, and compact ASIC and FPGA realizations.
In this paper, we present an efficient hardware architec-
ture for the full 512-bit hash computation using the spectral
hash algorithm. We have created a pipelined implemen-
tation on a Xilinx Virtex-4 XC4VLX200-11 FPGA which
yields 100 MHz and occupies 38,328 slices, generating a
throughput of 51.2 Gbps. Our fully parallel implementation
shows that the spectral hash algorithm is about 100 times
faster than the fastest SHA-1 implementation, while requir-
ing only about 13 times as many logic slices.

1. Introduction

In many areas of engineering and applied mathematics,
spectral methods provide powerful tools for solving and an-
alyzing problems. For instance, large to extremely large
sizes of numbers can efficiently be multiplied by using dis-
crete Fourier transform (DFT) and convolution property.
Such computations are needed when computingπ to mil-
lions of digits of precision, factoring composite integersand
also big prime number search projects. The most (asymptot-
ically) efficient algorithm for multiplication two large num-
bers is called the Schönhage-Strassen algorithm [1] which
is a spectral algorithm. Spectral techniques (also named

“frequency domain techniques”) have recently been used
in certain special applications in cryptography, including in
hash function computation [2, 3], modular arithmetic for the
RSA cryptosystem [4], and finite field arithmetic for elliptic
curve cryptography [5, 6, 7].

Cryptographic applications require exact arithmetic and
the underlying mathematical structures (groups, rings, and
fields) have finitely many elements. Typically, the finite
ring of integers modulon, the finite field ofp (wherep is
a prime) or2k elements are used, respectively represented
asZn, GF(p) and GF(2k). Furthermore, in cryptographic
applications, the DFT computations are performed in a fi-
nite ring or finite field; this differs from many applications
of the Fourier transformations in digital signal processing
where floating-point or fixed-point arithmetic is used.

In response to recent advances in the cryptanalysis of
hash functions, National Institute of Standards and Technol-
ogy (NIST) started an international competition for a new
hash standard, called SHA-3, which will eventually replace
SHA-1 and SHA-2 family of hash functions [8]. In this
paper, we present an efficient hardware architecture for the
Spectral Hash algorithm [3] which is one of the Round 1
candidates. It is based on spectral arithmetic over a finite
field, involving the DFT over a finite field, data dependent
permutations (swaps), Rubic-type rotations, and affine and
nonlinear functions. The spectral hash algorithm was par-
ticularly designed for hardware, and it is relatively slower
in software compared to other hash functions. However,
it is still a challenge to create a fast and efficient hard-
ware implementation due to the size of the operands and
diversity of the mathematical functions involved. The in-
put size of the compression function (which is the heart of
the hash function, iteratively applied to every chunk of data
to be hashed) is 512 bits; subsequently, the spectral hash
algorithm computes 512 bits of output, from which a hash
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Figure 1. The augmented Merkle-Damgard
scheme used in the spectral hash algorithm.

value of length that is an integer multiple of 32, from 128
up to 512, can be selected. The 512-bit input data is bro-
ken into 128 blocks, arranged as a 3-D array of dimension
4 × 4 × 8 with 4-bit entries. The spectral hash algorithm
makes use of 4-point and 8-point DFTs over the finite field
GF(17), and also treats its 4-bit data chunks as elements of
the finite field GF(24) generated by the primitive polyno-
mial p(x) = x4 + x3 + x2 + x + 1.

These mathematical structures and operations pose in-
teresting and challenging tasks for computer architects and
hardware designers to create fast, efficient, and compact
ASIC and FPGA realizations of the spectral hash algo-
rithm. Furthermore, the experience and knowledge obtained
from implementing the spectral hash algorithm will be also
highly valuable for creating other cryptographic, algebraic,
and number-theoretic applications of spectral arithmetic.

2. Spectral Hash Algorithm

The spectral hash algorithm is based on the classical
Merkle-Damgard scheme for hash generation; the aug-
mented scheme used in the spectral hash algorithm is shown
in Fig. 1. The input message is first padded to make its
length an integer multiple of 512. It is then processed one
block at a time using the compression function. In this pa-
per, we present our implementation of the full hash function
mapping any length data into a 512-bit hash value.

Once the initialization is completed, the spectral hash al-
gorithm configures three prismsS, P , H which are 3-D
arrays of dimension4 × 4 × 8 consisting of 4-bit or 7-bit
numbers. The input data is 512 bits, and is mapped into a
prism shown in Fig. 2. This prism is a three-dimensional
data structure ini, j, andk directions. Given theith block
of datami (of length 512 bits), these prisms are updated
according to the following compression function steps:

Inputs:mi, P -prism,H-prism

Outputs:P -prism,H-prism
P andH were updated in previous step withmi−1

Take chunkmi and formS-prism
S = AffineTransform(S)
P = SwapControl1(S, P )
P = SwapControl2(S, P )
S = k-DFT(S)
P = SwapControl3(S, P )
S = j-DFT(S)
P = SwapControl4(S, P )
S = i-DFT(S)
S = NLST(S, P, H)
H = S

P = PlaneRotate(P )

In this paper, we describe our implementation of the full
512-bit spectral hash algorithm, involving all mathemati-
cal operations over the finite fields GF(24) and GF(17),
the 3-dimensional DFT operations, the affine and nonlin-
ear transformations, and data dependent permutations. The
main contributions of this paper are as follows:

• we propose a new architecture for the spectral hash al-
gorithm;

• we propose a new architecture for multidimensional
DFT over a finite field;

• we review and compare hardware architectures for
hash algorithms, with varying degrees of parallelism;

• we present our experimental results targeting Xilinx
FPGAs to illustrate, evaluate, and compare our ap-
proach.

This paper is organized as follows. Section 3 shows the ar-
chitecture for different stages of the proposed design. Sec-
tion 4 evaluates the proposed architecture, provides FPGA
implementation results, and discusses strategies for obtain-
ing minimal area cores. Concluding remarks are given in
Section 5.

3. Proposed Hardware Architecture

The general structure of the spectral hash algorithm is
very suitable for hardware implementation. The whole de-
sign can be mapped into a 11-stage datapath. An overview
of the proposed architecture is illustrated in Fig. 3. A
straight arrow refers to the input to a particular stage, and
a dotted arrow refers to a bypass to a stage. For instance,
only theS-prism is used in the affine transformation stage.
At the end of whole datapath, the content of all three prisms
are updated.

3.1. Affine Transformation

The input to this stage isS-prism. For alli, j, k in the
S-prism do the following. We take a block ofS-prismSijk
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Figure 3. Overview of the proposed architecture.
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Figure 2. Example of the Prism.

and compute its inverse using

U = S−1
ijk ∈ GF (24)

The architecture of the affine transformation is described
in Fig. 4. Each block is transformed using an affine Trans-
form Table which has 16 entries. We can iterate the trans-
form for 128 times and use a single table lookup for the
transformation. For the proposed design, each block in the
S-prism is connected to an individual ROM for the table
lookup. The output of the affine-ROM is a 4-bit data, thus
128 affine tables are used in this stage.
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Figure 4. Architecture of affine transforma-
tion.

3.2. 3-Dimensional Simultaneous DFTs

After the affine transforms, simultaneous 3-dimensional
DFTs are applied to theS-prism. The standard row-column
method of DFTs is successively applied throughk, j and
i axes as shown in Fig. 5. The DFT used is defined over
the prime fieldGF (17). For thek-axis DFT, we have to
compute 16 different 1-dimensional 8-point DFTs. For the
i-axis andj-axis, we need to calculate 32 different 4-point
DFTs for each axis. The equation for the DFT is as follows:

Xi = DFTd(x) :=

d−1
∑

j=0

xjω
ij
d (mod 17) , (1)

wherei = 0,1,2,. . .,d − 1, and d is either 4 or 8. Additional
technical details on the finite field DFT can be found in [3].
• k-axis DFT

In thek-axis DFT stage, the inputS-prism is indexed
from block 0 to block 127. Eight consecutive blocks
are computed in one computing block which eight out-
put are produced in one clock cycle assuming there is
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Figure 6. Architecture of k-axis DFT.

no pipeline register. As shown in Fig. 6, 16 8-point
DFT blocks are used in parallel. The output blocks are
concatenated and stored back to theS-prism for the
next stage.
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Figure 7. j-axis DFT wiring pattern. The index
on the right (00k) refers to i = 0, j = 0, k =
0 . . . 7.

• j-axis DFT

In order to performj-axis DFT, the data stream of the
original inputS-prism should be rearranged. Previ-
ously, the data is transversal from block 0 to block 127.
As shown in Fig. 7, data is rearranged into a sequence
of block 0, block 8, block 16, block 24 and so on. As
a result, every four data blocks are feeded into the 4-
point DFT block as described in Fig. 8 for computa-
tion.

• i-axis DFT

In the i-axis DFT design stage, two main components
are the wiring block and the 4-point DFT block. Sim-
ilarly, the wiring block as shown in Fig. 7 is then to
group the block 0, 32, 64, 96 inS-prism into a longer
multiple blocks data for the 4-point DFT block. The 4-
point DFT component is identical to the one we used
in j-axis DFT stage.
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Figure 8. Architecture of i-axis & j-axis 4-
point DFT.

3.3. Multi-way Swapping

Additional swapping steps for theP -prism are per-
formed using swap control planes (sc-planes) of theS-
prism after each DFT steps as shown in Fig. 9. The first
sc-plane is a4× 4 array created by XORing the two planes.
Each bit of the four bits in theS-prism controls one swap-
ping, as a result, four swapping steps are performed for the
8 blocks in thek-axis. For example, the first sc-plane is
generated using these explicit formulae:

if Sij0[0] ⊕ Sij4[0] = 0 then swap(Pij0, Pij7)

if Sij0[1] ⊕ Sij4[1] = 0 then swap(Pij1, Pij6)

if Sij0[2] ⊕ Sij4[2] = 0 then swap(Pij2, Pij5)

if Sij0[3] ⊕ Sij4[3] = 0 then swap(Pij3, Pij4)

• k-axis Swapping

Fig. 10 shows the top control path and the bottom data
path for the swapping block. Each swap module con-
tains two inputs, one control signal, and two outputs.
For the k1-swapping step, the selection block uses item
1 and 5 while using item 2 and 6 for the k2-swapping
step. These two signals from the selection block are
XORed to become the swap select signal for the swap-
ping block. Note that 128 blocks of theS-prism and
P -prism are divided into 16 rows for differenti andj

values. Thek-axis swapping are performed in parallel.

• j-axis andi-axis Swapping

For thej-axis andi-axis swapping, control path and
data path are constructed in a similar manner. The
main difference for the control path is the use of dif-
ferenti, j, andk values. For the data path, multiple
swapping steps as shown in Fig. 11 may be applied to
the sameP -prism block, which means the delay path
is longer.
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Figure 10. Architecture of the multi-way
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3.4. Nonlinear System Transformation

The nonlinear system transformation (NLST) is used to
combine the data from theS-prism andP -prism and store
the output to theS-prism. Note that the intermediate result
computed in this stage is used to index one of the data block
in the inputS-prism. The design component contains the
most hardware resources of the whole architecture. For all
i, j, k do the following on S-prism:

Sijk =
(

S′

ijk ⊕ PLijk

)

−1
⊕

(

S′

Pijk
⊕ PHijk

)

−1

⊕ Hijk

where

S′

ijk = Sijk (mod 16) for all i, j, k

PL′

ijk = Pijk (mod 16) for all i, j, k
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Figure 12. Parallel NLST architecture.

PH ′

ijk = (Sijk div 16) || (Pijk div 16) for all i, j, k

Note that GF(17) produces 5-bit numbers, in the range
[0, 16]. With the above nonlinear transformations, they are
reduced back to 4 bits. For the proposed architecture as
shown in Fig. 12, each NLISTi block uses two inverse ta-
ble lookups, and a three-stage MUX for selecting the input
S-prism. In order to produce a fully parallel design, this
block is replicated by 128 times. For the 3-stage MUX as
shown in Fig. 13, the three selection signals are controlled
by the 7 bits from one of the block in theP -prism that has
been bit selected into 3 segments, 2-bit fori, 2-bit for j and
3-bit for k. This 3-stage MUX produces a 4-bit element for
the NLST computation component.

3.5. Rubic Rotation

TheP -prism performs some special rotations according
to thek values, thekth plane useskth Rubic rotations as
shown in Fig. 14. We can describe the plane rotations along
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Figure 13. 3-stage MUX for the block selec-
tion.

thek-axis as follows:

if (k = 0 mod 4) then Pijk = Pijk

if (k = 1 mod 4) then Pijk = P(3−j)ik

if (k = 2 mod 4) then Pijk = Pjik

if (k = 3 mod 4) then Pijk = Pj(3−i)k

For the hardware architecture, it is basically simple wiring
patterns as shown in Fig. 15. For theP -prism is divided into
8 parts that undergo 4 types of wirings. One of the ROT3
wiring is described in this paper.

4. Experimental Results

The FPGA implementations presented in this section
use Xilinx System Generator 9.1.01i to generate VHDL
designs. The generated designs are mapped on a Xilinx
Virtex-4 XC4VLX200-11 device. Xilinx XST 9.1.03i is
used for synthesis and Xilinx ISE 9.1.03i is used for place-
ment and routing. The area comparison for different stages
of the datapath is shown in Table 4.Z−1 refers to adding
one additional pipeline stage into the datapath for improv-
ing the overall data throughput. Since each slice in FPGA
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Figure 15. Architecture of Rubic rotations.

architecture provides lookup tables and register elements,
for our design, adding extra pipeline stage do not consume
extra slices but shorten the critical delay path, thus further
improve the throughput of the design. In the table, mem-
ory slices refer to SLICEM block whose lookup table can
be configured as memory or shift register SRL16, while
slices refer to both SLICEM and SLICEL blocks whose
lookup table can only be used as logic. For instance in the

Table 2. Memory bits usage comparison.
Component Memory bits

affine transform 8 kbits
k-plane 8-pt DFT 200 kbits
j-plane 4-pt DFT 200 kbits
i-plane 4-pt DFT 200 kbits

NLST 16 kbits

Table 3. Related work comparison.

Design Throughput Area (slices) Clock
MCEvoy [9] SHA2-256 1,009 Mbps 1,373 Virtex2 133 MHz
MCEvoy [9] SHA2-512 1,466 Mbps 1,466 Virtex2 66 MHz

McLoone [10] SHA1-512 479 Mbps 2,914 VirtexE 38 MHz
Proposed SHA3-512 51,200 Mbps 38,328 Virtex4 100 MHz

NLST stage, the 8,192 SLICEM out of 17,920 total slices
are mainly used for the 3-stage MUX component. We can
see that the compression engine is able to run at a maximum
100 MHz for the proposed architecture. Note that for this
design, all the logic are placed into slice-only mode, so no
DSP block or Block RAM is used. For the fully parallelized
design, one computedS-prism is produced every clock cy-
cle with an initial latency of 11 cycles for the un-pipelined
design, whereas it takes 15 cycles for the pipelined design.

The memory bits usage are presented in Table 4. The
memory bits fori-/ j-/ k-DFT come from the modular ta-
ble for the prime field, while from the inverse-table for the
NLST and affine-table for the affine transformation. Several
related publications have proposed various hardware opti-
mization techniques for the SHA-1 and SHA-2 hash family
as shown in Table 4. For example, the most efficient SHA2-
256 design is able to run at over 133 MHz and produces
a throughput at over 1,000 Mbps. Another previous publi-
cation has reported a SHA1 design running at 38 MHz and
producing a data throughput of 479 Mbps. Since there is yet
no existing SHA-3 hardware design reported in literature, in
this paper we do not provide a direct comparison with other
SHA-3 algorithms. We will compare our design to them as
they become available.

If the area usage has higher priority than the timing con-
cerns for particular embedded designs, our proposed archi-
tecture can meet such requirements by using multiple-cycle
components for each design stage. For example, the affine
transformation step can be reduced into one single compo-
nent for 128 iterations, using a rotation component. When
the table lookup is completed, andDONE signal will be
sent to the next design stage as anENABLE signal. The
key advantage of the proposed approach is its flexibility,
which gives the designer the option of obtaining higher



Table 1. Area usage using a Xilinx Virtex-4 LX200-11FF1513.
Component Area (slices) Area (memory slices) Delay

affine transform 256 0 6.676ns
k1-swap 952 0 9.935ns
k2-swap 616 0 9.705ns

k-axis 8-pt DFT 7,424 2,400 14.889ns
k-axis 8-pt DFT (Z−1) 7,424 2,400 9.631ns

j-swap 1,036 0 9.951ns
j-axis 4-pt DFT 4,288 640 13.446ns

j-axis 4-pt DFT (Z−1) 4,288 640 9.631ns
i-swap 1,036 0 9.951ns

i-axis 4-pt DFT 4,288 640 12.127ns
i-axis 4-pt DFT (Z−1) 4,288 640 8.932ns

NLST 17,920 8,192 14.094ns
NLST (Z−1) 17,920 8,192 9.983ns

ROT 512 0 5.710ns
Total 38,328 11,872 9.983ns

throughput at the cost of increased area. In fact the pro-
posed design uses about 43 % of the Virtex-4 LX200 FPGA,
and can be mapped into the Virtex-4 LX100 FPGA. One of
the limitation of the current design is the insufficient num-
ber of I/O pins for the FPGA chip in order to achieve very
high data throughput, however it can be readily surmounted
when the design is realized in an ASIC design flow.

5. Conclusions

We have presented a fully parallelized architecture for
the spectral hash algorithm. The pipelined design for the
compression engine is running at 100 MHz and provides a
data throughput at 51.2 Gbits per second for computing a
full 512-bit hash value. Current and future work includes
extending the design to the overall hashing, further opti-
mizing the proposed design throughput, and exploring the
tradeoffs between a fully parallelized design and an area-
efficient flexible architecture. For example, it is valuableto
calculate the right amount of hardware usage for each stage
that would give the best area-time hardware for the spec-
tral hash algorithm. We are also interested in comparing
our hardware implementation to other SHA-3 candidate al-
gorithms as their hardware implementations become avail-
able.

Furthermore, we believe the experience and knowledge
obtained from implementing the spectral hash algorithm in
hardware is highly valuable for creating other hardware de-
signs using spectral arithmetic, such as RSA and elliptic
curve cryptography [4, 5, 6, 7].

References

[1] A. Schönhage and V. Strassen, “Schnelle multiplika-
tion grosser zahlen,”Computing, vol. 7, pp. 281–292,
1971.

[2] C. P. Schnorr, “FFT-Hashing: An efficient crypto-
graphic hash function,” inRump Session of Crypto 91.
Springer, Aug. 1991.

[3] G. Saldamlı, C. Demirkıran, M. Maguire, C. Min-
den, J. Topper, A. Troesch, C. Walker, and Ç. K. Koç,
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