
Algorithm Name:

Spectral Hash

Principal Submitter:

Çetin Kaya Koç

koc@cs.ucsb.edu

Tel: (805)-893-8565

Fax: (805)-893-8553

University of California Santa Barbara
Santa Barbara, CA 93106

Algorithm Inventors/Developers:

G. Saldamlı, C. Demirkıran, M. Maguire, C. Minden, J. Topper,

A. Troesch, C. Walker and Ç. K. Koç

Algorithm Owner:

Çetin Kaya Koç

SPECTRAL HASH: SHA-3 CANDIDATE

G. SALDAMLI, C. DEMIRKIRAN, M. MAGUIRE, C. MINDEN, J. TOPPER,
A. TROESCH, C. WALKER AND Ç. K. KOÇ

UNIVERSITY OF CALIFORNIA SANTA BARBARA
SANTA BARBARA, CA 93106

Abstract. We describe a new family of hash functions using the discrete Fourier transform and
a nonlinear transformation constructed via data dependent permutations. The discrete Fourier
transform is a well-known cryptographic primitive perfect for generating diffusion and confusion.
Due to the usage of the discrete Fourier transform with a nonlinear transformation, the proposed
hash generation method is immune to known attacks. Since spectral methods yield efficient and
highly parallel architectures, spectral hash is highly suitable for hardware realizations.

1

Contents

1. Introduction 3
2. Mathematical Background 3
2.1. The Field GF (24) 3
2.1.1. Addition 3
2.1.2. Multiplication 3
2.1.3. Inversion 4
2.2. The Field GF (17) 4
2.3. Discrete Fourier Transform 4
3. Design Rationale 5
4. Spectral Hashing Algorithm 6
4.1. Data Structures and Organization 6
4.1.1. State Prism 7
4.1.2. Permutation Prism 8
4.1.3. “H” Prism 8
4.2. Initialization 9
4.2.1. Message Padding 9
4.2.2. Prism Initialization and Initial Swap 9
4.3. Compression Function 9
4.3.1. Affine Transform 10
4.3.2. Discrete Fourier Transforms 11
4.3.3. Nonlinear Transformation 14
4.4. Hash Generation 15
5. Security Considerations 18
5.1. General Birthday Attacks 18
5.2. Differential Attacks 18
5.3. Linear Cryptanalysis 18
5.4. Further Comments 18
6. Implementation Efficiency 19
6.1. Hardware and 8-bit Processors 19
References 19

2

1. Introduction

In this document we describe the spectral hashing algorithm. We start with the mathematical
background and corresponding arithmetic followed by a design rationale and a detailed descrip-
tion. In Section 5 we turn our attention to the security considerations and discuss spectral hash’s
immunity to known attacks. We conclude with a discussion of the efficiency of s-hash.

2. Mathematical Background

We now present the following material as mathematical background necessary to describe and
implement the spectral hashing algorithm, referred to hereafter as the s-hash algorithm. The
necessary operations consist of finite field arithmetic in the fields GF (24) and GF (17), as well as
discrete Fourier transforms.

2.1. The Field GF (24). The field GF (24) is a binary extension field of 16 elements. Its elements
are polynomials of the form a3t

3 + a2t
2 + a1t

1 + a0t
0, where the ai are binary coefficients (i.e. 0

or 1). This means that any element of GF (24) is expressible in binary as a string a, of the form
a = a3 || a2 || a1 || a0, where x || y notates the concatenation of the binary strings x with y. Addition-
ally we will denote the individual bits in a binary string a as a[i], where i is an integer greater than
or equal to zero, and larger i are associated with more significant bits. There are three operations
that s-hash employs in GF (24): addition, multiplication, and inversion.

2.1.1. Addition. Addition in the field GF (24) is performed as polynomial addition with coefficients
modulo 2. Since the addition of elements in GF (24) is not the same as conventional addition, we
will notate it as ⊕ to distinguish it from traditional addition.

Example 1. Let x = t3 + t + 1 and y = t2 + 1 be elements of GF (24). Then,

x ⊕ y = (t3 + t + 1) + (t2 + 1)

= t3 + t2 + t.

In binary notation, one gets (1011)2 + (0101)2 = (1110)2. It is apparent that x ⊕ y may be
computed by simply computing x XOR y at the bit level.

2.1.2. Multiplication. Multiplication in GF (24) involves performing polynomial multiplication mod-
ulo an irreducible binary polynomial of degree four. There are several such acceptable irreducible
polynomials, but s-hash employs

f(t) = t4 + t3 + t2 + t + 1.

Since multiplication in GF (24) is not traditional multiplication, we denote it by ∗.

Example 2. As before, let x = t3 + t + 1 and y = t2 + 1. Then,

x ∗ y = (t3 + t + 1) · (t2 + 1)

= t5 + t3 + t2 + t3 + t + 1

= t5 + t2 + t + 1

= t2 + t.

Unfortunately, there is no simple operation at the bit level as there is for addition. However,
there is more than one valid way to implement multiplication. It is clear that when two elements

3

of GF (24) are multiplied together, the resulting unreduced polynomial will never have a degree
greater than six. Therefore one could simply use the fact that

t4 ≡ t3 + t2 + t + 1 (mod f(t))

t5 ≡ 1 (mod f(t))

t6 ≡ t (mod f(t)).

One can then substitute these values into any unreduced polynomial to obtain the equivalent
reduced polynomial. An example of this technique is as follows.

Example 3. Let x = t3 + t2 + 1 and y = t2 + 1. Then,

x ∗ y = (t3 + t2 + 1) · (t2 + 1)

= t5 + t4 + t2 + t3 + t2 + 1

= t5 + t4 + t3 + 1

= 1 + t3 + t2 + t + 1 + t3 + 1

= t2 + t + 1.

Another option is to simply use look-up tables, since the sizes of the tables are quite small.

2.1.3. Inversion. The field GF (24) has a multiplicative identity element, namely 1. All the ele-
ments of GF (24) have an multiplicative inverse, except for 0, which we define to be 0. If x is an
element of GF (24), its inverse is the element x−1 such that x ∗x−1 = 1. One can calculate inverses
directly since x−1 = x14 (modulo f(t) of course) in GF (24), but we can also employ look-up tables,
which is much more efficient.

2.2. The Field GF (17). The field GF (17), a field of the integers 0, 1, 2, 3, ..., 16, employs standard
arithmetic modulo 17. It is also the structure where all the discrete Fourier transform computations
take place. We remark that the field GF (17) is also small enough to employ look-up tables for its
arithmetic. In fact, two or more operations can be performed in parallel by merging the look-up
tables.

2.3. Discrete Fourier Transform. As part of the s-hash algorithm, we employ discrete Fourier
transforms, hereafter referred to as DFTs. All our DFTs are performed in GF (17). We apply two
types of DFTs, 4-point DFTs and 8-point DFTs. Below is the equation for the DFT.

Xi = DFTd(x) :=
d−1
∑

j=0

xjω
i·j
d mod 17,

where i = 0, 1, 2, . . . d−1, and d is either 4 or 8. Here ωd is the d-th root of unity in GF (17), and
x is an input string of d numbers. Additionally X is the output string of d numbers where each
is between 0 and 16 inclusive. For the 4-point DFTs (d = 4), ω4 = 4, and for the 8-point DFTs
(d = 8), ω8 = 2.

A fast Fourier transform (FFT) is an efficient algorithm used to compute the DFT and its inverse.
In practice, s-hash employs FFTs for their greater computational efficiency. Specifically radix-2
and radix-4 FFTs are suitable for use in s-hash.

4

Table 1. Mathematics Reference

GF (24) A field of 16 binary polynomial elements.
GF (17) A field of 17 elements, with standard arithmetic modulo 17.

f(t) t4 + t3 + t2 + t + 1. An irreducible polynomial in GF (24).
a[i] The i-th bit of the binary string a, where a[0] is the least significant bit.
⊕ Addition in GF (24) equivalent to a bitwise XOR.
∗ Polynomial multiplication modulo f(t) in GF (24).

Computable with the following relations,
t6 ≡ t (mod f(t)),
t5 ≡ 1 (mod f(t)),
t4 ≡ t3 + t2 + t + 1 (mod f(t)).

ωd The d-th root of unity in GF (17). Recall ω4 = 4 and ω8 = 2.
DFTd(x) Discrete Fourier transform of the list of points x of length d.

3. Design Rationale

When designing the spectral hashing algorithm, our main concern was to create an algorithm
that was resistant to all known cryptographic attacks. Therefore the main components of the s-hash
algorithm were chosen to support this goal. These components are as follows:

• The discrete Fourier transform, which has been shown to be a perfect cryptographic prim-
itive for generating diffusion and confusion by Schnorr [1]. Here we employ a multi-
dimensional DFT in order to enlarge the DFT length while enjoying the smaller field
arithmetic that can be carried out with tiny look-up tables.

• The inverse map, which has the best known nonlinearity [2] in the field GF (24). The inverse
map is used in several places to build up a strong infrastructure against differential and
linear attacks.

• A nonlinear system of equations, which is constructed by selecting system variables using
a permutation table generated by data dependent permutations. The nonlinear transfor-
mation is the main protection against pre-image attacks; without knowing the state of the
data dependent permutation table one has to trace all possible permutations to find the
pre-images.

• In order to avoid problems with the Merkle-Damgard construction, we employ the large-
pipe strategy described in [3]. The final hash value, if less than 512-bits, is generated from
an array punctured by the data dependent permutations.

• Every single operation in s-hash, either linear or nonlinear, is a one-to-one operator, with
the exception of the puncturing performed during the final hash generation. We state that
this makes s-hash strong against collision attacks.

Aside from these security oriented principles, efficiency, mainly due to parallelism, was our
major concern. For this reason, the multi-dimensional DFT structure was chosen as the foundation
of s-hash. If FFT methods are used for multi-dimensional DFT calculations, one only needs a
logarithmic number of steps to calculate the DFTs. To be more specific, the 3-dimensional DFTs
of s-hash may be calculated in 7 steps if a fully parallel hardware FFT is employed.

In order to complement the FFT calculations, the manipulations (swaps) on the data dependent
permutation table were also designed to be completed in 7 steps. Therefore, a fully parallel hardware
implementation of s-hash’s compression function would only require 7 steps of calculations. In fact,
with this novel design, s-hash becomes extremely suitable for hardware realizations.

5

4. Spectral Hashing Algorithm

Before going into the details of the spectral hashing algorithm, we note that s-hash adapts the
classical Merkle-Damgard scheme for hash generation as originally illustrated by the authors in
Figure 1. We have of course merely used this as a template for the s-hash algorithm; a more
complete idea of the process is depicted in Figure 2. Each component will be discussed in turn,
beginning with a summary of the data structures used throughout.

g g g g

IV

Hash

Message

chunk m0

Message

chunk m1

Message

chunk mn-1

Length

padding mn

Figure 1. Classical Merkle-Damgard hash scheme.

Message

Padding

m
0

m
1

mn-2 mn-1

H

Initial Swap

Control

Bit Marking

Message

Digest

Message

M

H

P P

S S S

S

Compression Compression Compression Compression

Figure 2. The augmented Merkle-Damgard scheme used in s-hash.

4.1. Data Structures and Organization. We now present the data structures and overall or-
ganization necessary to understand the s-hash algorithm. We begin with the initial message M ,
which consists of an arbitrary binary string of length ℓ, where ℓ 6 264 bits. Since s-hash operates on
512-bit blocks, the initialization includes a padding scheme which results in an extended message
whose length is a multiple of 512. The padded message string M ′ = m0 ||m1 || · · · ||mn−1 consists
of n chunks where each mi (i = 0, 1, 2, . . . , n − 1) has a 512-bit length.

6

4.1.1. State Prism. For each mi we construct a 4 × 4 × 8 array, or state prism, in the following
fashion. This process need not be done until the chunk mi is ready to be compressed. We break the
chunk into 128 4-bit words. Formally, let mi = s0 || s1 || · · · || s127, where each sN is a 4-bit binary
number for all N in the index set {0, 1, . . . , 127}. We then re-index the binary string mi as follows:

S(i,j,k) = sN ,

where

N = 32i + 8j + k,

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. For ease of reversal we also note that

i =

⌊

N

32

⌋

mod 4,

j =

⌊

N

8

⌋

mod 4,

k = N mod 8.

In fact, this re-indexing corresponds to a filling of a 4 × 4 × 8 prism as shown in Figure 3. We
refer to this array as the state prism, or s-prism. In every iteration of the Merkle-Damgard scheme
this state prism is filled with a message chunk and then processed. We note that even though the
data held in the s-prism consists of only 4-bit words initially, throughout the compression function
a fifth bit of data may be needed for any particular word.

s7
s15

s23

s39 s71 s103
s103

s111
s119

s127

s126

s125

s124

s123

s122

s121

s126

s118

s117

s116

s115

s114

s113

s112

s110

s109

s108

s107

s106

s105

s104

s102

s101

s100

s99

s98

s97

s96

s127s95s63s31

s55 s87 s119
s111s79s47

s31

s30

s29

s28

s27

s26

s25

s24

s63

s62

s61

s60

s59

s58

s57

s56 s88

s89

s90

s91

s92

s93

s94

s95 s127

s126

s125

s124

s123

s122

s121

s120

k

j

i

Figure 3. State Prism in the initial state.

7

4.1.2. Permutation Prism. Similar to s-prism, we employ another 4× 4× 8 array holding a permu-
tation table that is used for setting up the nonlinear system of equations used in the compression
function. This permutation array is referred to as the permutation prism, or p-prism, which is
initially configured as

P(i,j,k) = N

where i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7 and N = 32i + 8j + k as before. (see Figure 4). Clearly
the p-prism holds the permutations of the index set, where each index is a 7-bit string.

7

15

23

39 71 103

103

111

119

127

126

125

124

123

122

121

126

118

117

116

115

114

113

112

110

109

108

107

106

105

104

102

101

100

99

98

97

96

127956331

55 87 119

1117947

31

30

29

28

27

26

25

24

63

62

61

60

59

58

57

56 88

89

90

91

92

93

94

95 127

126

125

124

123

122

121

120

k

j

i

Figure 4. Permutation Prism in the initial state.

4.1.3. “H” Prism. Finally, in addition to the above prisms, there is another 4 × 4 × 8 array called
the h-prism. This prism holds the data from the s-prism of the previous iteration of the compression
function. It is initially configured as

H(i,j,k) = 0,

for all i, j = 0, 1, 2 and all k = 0, 1, . . . , 7. The h-prism holds data from only the final s-prism of a
round, so each cell of an h-prism consists solely of 4 bits.

Now that the proper data structures has been described, we begin describing the spectral hashing
algorithm.

8

4.2. Initialization. The following steps summarize the initialization process, beginning with the
message padding:

4.2.1. Message Padding. The following padding procedure is applied to the message, which has a
length ℓ before any padding occurs. The message is padded in the following manner:

i. Append the bit ‘1’ to the message M .
ii. Append k bits of ‘0’, where k is the smallest non-negative integer such that ℓ + k + 1 ≡

448 mod 512.
iii. Append the 64-bit big-endian binary representation of ℓ, returning the padded message

string m.

This is the same padding procedure as used in SHA-1 and will guarantee that the padded mes-
sage M ′ is multiple of 512 bits. It should be noted that any message M of length ℓ > 448 bits will
consist of at least 2 chunks.

4.2.2. Prism Initialization and Initial Swap. We start by processing chunk m0, which is the first
512 bits of M ′. First we break the chunk into 128 4-bit “words” and then map the words into the
s-prism as described above. The p-prism and h-prism are also filled with the appropriate values in
the aforementioned manner. Then during the initialization, after filing the s-prism with the words
of m0, we modify the p-prism by applying some simple entry swaps. Since the s-prism initially
holds 4-bit entries, we apply the following swaps to the p-prism:

swap(P(i,j,k), P(Sh(i,j,k),Sl(i,j,k),k)),

where
Sl(i,j,k) = S(i,j,k) mod 4

and
Sh(i,j,k) = S(i,j,k) div 4

for all i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. In other words, Sl(i,j,k) and Sh(i,j,k) represent the two least
and most significant bits of the s-prism entry S(i,j,k) respectively. The order in which these swaps
are performed is important, so the correct iteration over the p-prism P is given in the pseudocode
Algorithm 1. It should be noted that the p-prism is filled, and these initial swaps occur, only during
the processing of the chunk m0 and never again in the s-hash algorithm.

Algorithm 1. Initial Swap

Input: S and P , the initial s-prism and p-prism.

1: For{ each k (k = 0, 1, ..., 7);
2: For{ each i (i = 0, 1, 2, 3);
3: For{ each j (j = 0, 1, 2, 3);
4: swap(P(i,j,k), P(Sh(i,j,k),Sl(i,j,k),k)); } } }

After this setup, the s-prism and p-prism are passed into the compression function for the first
time, as we now describe.

4.3. Compression Function. The compression function of s-hash takes in a message chunk after
it has been placed into the s-prism, and the p-prism from the previous iteration. The compression
function also uses h-prism, which contains the s-prism data from the previous iteration. The
compression function consists of the following stages:

• Affine Transformation
• Discrete Fourier Transformations
• Nonlinear Transformation

9

We note that the naming convention of these stages mainly describes the actions on the s-prism;
the transformations on the p-prism are computed using the state of the s-prism.

Before going into detail, we sketch how the compression function works (Algorithm 2). In Figure
5, the left-hand column illustrates the consecutive transformations applied to s-prism. The right-
hand column illustrates the modifications on p-prism, which are controlled by the intermediate
entries of the s-prism derived from the outputs of each stage. In total p-prism goes through 5
different types of swaps and rotations as shown in the figure.

Algorithm 2. Compression of a chunk mi

Input: S, the s-prism filled with chunk mi.
P and H, p-prism and h-prism after compressing mi−1.

1: S = AffineTransform(S);
2: P = SwapControl1(S,P);
3: P = SwapControl2(S,P);
4: S = kDFT(S);
5: P = SwapControl3(S,P);
6: S = jDFT(S);
7: P = SwapControl4(S,P);
8: S = iDFT(S);
9: S = NLST(S,P ,H);
10: H = S;
11: P = PlaneRotate(P);

We now describe in detail each main stage of the compression function.

4.3.1. Affine Transform. The following affine transform is applied to each entry of the s-prism:

S(i,j,k) := α(S(i,j,k))
−1 ⊕ γ,

where

α =









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









and γ =









1
1
1
0









.

Also, one must express the word S(i,j,k) = sN as a binary column vector in the following way

S(i,j,k) =









S(i,j,k)[0]
S(i,j,k)[1]
S(i,j,k)[2]
S(i,j,k)[3]









.

One can clearly see that the foremost component of the affine transform (i.e α(S(i,j,k))
−1) is the

inverse map, which has the best known nonlinearity [2] in the field GF (24). In support of this,
AES substitution boxes use the inverse map in GF (28) as its main nonlinear component to protect
against differential and linear attacks. Therefore, the inverse map in GF (24) is taken as a strong
function to build immunity from known successful attacks. Additionally, in order to eliminate the
weaknesses related to fixed points, the inverse map is coupled with a linear shift term γ. Due
to the cost of matrix computations, look-up tables are especially suited for calculating the affine
transform.

10

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Initialization

Compressing chunk m0

Map the chunk

m to the s-prism

Set the initial

state of the

p-prism
0

State Prism Permutation Prism
Initial Swap Control

A!ne

transformation

Apply initial swap

to p-prism

1 and 2 swap controlsst nd

Apply the k-DFTs

Apply the j-DFTs

Apply the i-DFTs

Apply the non-linear

system transform to

the s-prism

1 and 2 swap controlsst nd

Fill the s-prism with

data from chunk m1

Copy the s-prism

data into the h-prism

Apply the k-DFTs

3 swap controlrd

4 swap controlth

Non-linear system transform

and apply the a!ne

transformation

Apply the 1 and 2

swaps to the p-prism

Apply the 3 swap

to the p-prism

Apply the 4 swap

to the p-prism

Apply the plane

rotations

th

rd

st nd

The p-prism carries

on to the next round

Apply the 1 and 2

swaps to the p-prism

st nd

Compressing chunk m1

Figure 5. Overview of the compression function used in the spectral hashing algorithm.

4.3.2. Discrete Fourier Transforms. After the affine transforms, we simply apply the 3-dimensional
DFT to the s-prism. Since some intermediate DFT calculations are needed for p-prism modifica-
tions, s-hash may not allow for the implementation of all fast DFT methods. In particular, p-prism

11

swaps use the intermediate values of the standard row-column method of DFTs successively applied
through k, j and i axes as seen in Figure 6.

j

j

i

i

i

k

k

k-DFT

j-DFT

i-DFT

Figure 6. Three dimensional DFTs can be realized by the row-column method:
applying 1-dimensional DFTs to the s-prism through k, j and i axes successively.

As described in the previous sections, the DFT used is defined over the prime field GF (17),
permitting transforms of length 8 and 4 for the principle roots of unity ω8 = 2 and ω4 = 4
respectively. Moreover, observe that in the first iteration of the row-column method (i.e. DFT
through the k-axis) one has to compute 16 different 1-dimensional 8-point DFTs. However, through
the i and j axes, we need to calculate 32 different 4-point DFTs for each axis.

Unlike the DFT revisions of s-prism, p-prism modifications are a little bit more complicated.
We perform data (s-prism) dependent swaps on the p-prism similar to those done during the
initialization stage.

The first modifications after the initial swaps on the p-prism are performed using swap control
planes (sc-planes) of the s-prism. The 1st sc-plane is a 4×4 array created by XORing the two planes
(matrices) with k co-ordinates such that k ≡ 0 mod 4 (see Figure 7). This sc-plane is generated
before the 1-dimensional DFT through the k-axis. If explicitly written, the following gives the
swapping for all i, j = 0, 1, 2, 3:

12

1 sc-plane*st

1 sc-plane*st

2 sc-planendt

2 sc-planend

k

i

j

k

i

j

k

i

j

DFTs through k-axis DFTs through j-axis

3 sc-planerd

4

sc-

plane

th

Figure 7. Swap control planes (sc-planes) on the s-prism. (*) The 1st sc-plane is
computed by XORing these two.

if ((S(i,j,0)[0] ⊕ S(i,j,4)[0]) = 0) then, swap(P(i,j,0), P(i,j,7)),

if ((S(i,j,0)[1] ⊕ S(i,j,4)[1]) = 0) then, swap(P(i,j,1), P(i,j,6)),

if ((S(i,j,0)[2] ⊕ S(i,j,4)[2]) = 0) then, swap(P(i,j,2), P(i,j,5)),

if ((S(i,j,0)[3] ⊕ S(i,j,4)[3]) = 0) then, swap(P(i,j,3), P(i,j,4)).

Note that S(i,j,k)[n] is a bit from the word located at S(i,j,k), and 3 and 0 are the most and least
significant bits respectively. Also, it is important which order you check the bits and perform these
swaps as determined by the four swap control planes. It is necessary to check the bits and perform
the swaps from the least significant bit of S(i,j,k) to the most. The proper order is from top to
bottom as given.

On the other hand, the 2nd sc-plane consists of two 4 × 4 arrays controlling the upper and
lower halves of the p-prism. These are the planes in the s-prism with k co-ordinates such that
k ≡ 1 mod 4, as seen in Figure 7. The lower sc-plane (k = 1) controls the permutations of the lower
half of the p-prism as follows:

if (S(i,j,1)[0] = 0) then, swap(P(i,j,0), P(i,j,1)),

if (S(i,j,1)[1] = 0) then, swap(P(i,j,2), P(i,j,3)),

if (S(i,j,1)[2] = 0) then, swap(P(i,j,1), P(i,j,2)),

if (S(i,j,1)[3] = 0) then, swap(P(i,j,0), P(i,j,3)).

The upper sc-plane (k = 5) controls the permutations of the upper half of the p-prism as follows:
13

if (S(i,j,5)[0] = 0) then, swap(P(i,j,4), P(i,j,5)),

if (S(i,j,5)[1] = 0) then, swap(P(i,j,6), P(i,j,7)),

if (S(i,j,5)[2] = 0) then, swap(P(i,j,5), P(i,j,6)),

if (S(i,j,5)[3] = 0) then, swap(P(i,j,4), P(i,j,7)).

Notice that the 1st and 2nd sc-planes control the swapping of 16 vectors on the p-prism. Each
of these vectors has 8 entries and is parallel to the k-axis.

The 3rd and 4th sc-planes are obtained from the s-prism after the 1-dimensional DFT calculations
through the k and j axes respectively. In fact, the 3rd sc-plane is chosen as S(i,2,k) where the 4th
sc-plane is S(3,j,k).

Although the input values for the DFT belong to the binary field GF (24) (i.e. values represented
by at least 4-bits), the DFT operates over the prime field GF (17) and may return 5 bit entries.
We select the least significant 4-bits of the sc-plane entries as the swap control bits. Moreover, in
order to balance the distribution of the swaps, we involve the index in the calculations. To be more
concrete, the following swaps are applied to the p-prism for all i = 0, 1, 2, 3 and k = 0, 1, . . . , 7:

if ((S(i,2,k)[0] ⊕ k[0]) = 0) then, swap (P(i,0,k), P(i,1,k)),

if ((S(i,2,k)[1] ⊕ k[1]) = 0) then, swap (P(i,2,k), P(i,3,k)),

if ((S(i,2,k)[2] ⊕ k[2]) = 0) then, swap (P(i,1,k), P(i,2,k)),

if ((S(i,2,k)[3] ⊕ i[0]) = 0) then, swap (P(i,0,k), P(i,3,k)).

Similarly, the following swaps are applied to the p-prism using the 4th sc-plane for all j = 0, 1, 2, 3
and k = 0, 1, . . . , 7:

if ((S(3,j,k)[0] ⊕ k[0]) = 0) then, swap(P(0,j,k), P(1,j,k)),

if ((S(3,j,k)[1] ⊕ k[1]) = 0) then, swap(P(2,j,k), P(3,j,k)),

if ((S(3,j,k)[2] ⊕ k[2]) = 0) then, swap(P(1,j,k), P(2,j,k)),

if ((S(3,j,k)[3] ⊕ j[0]) = 0) then, swap(P(0,j,k), P(3,j,k)).

4.3.3. Nonlinear Transformation. At this step of the compression function we collect and combine
the data from the s-prism and p-prism to set up a nonlinear transformation that acts on the s-
prism. The nonlinear transformation is specifically designed to resist pre-image attacks and related
weaknesses.

The nonlinear transformation applies the following map to each entry of the s-prism.

S(i,j,k) := (S′

(i,j,k) ⊕ Pl(i,j,k))
−1 ⊕ (S′

P(i,j,k)
⊕ Ph(i,j,k))

−1 ⊕ H(i,j,k),

for all i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. We now define the elements S′

(i,j,k), Pl(i,j,k), and Ph(i,j,k).

As we discussed earlier, DFTs operate over the prime field GF (17) and outcomes of the DFTs
may be 5-bit entries. We assign the least significant 4-bits of the s-prism entries to S′. In other
words:

S′

(i,j,k) = S(i,j,k) mod 16, for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7.
14

Similarly, we pick the least significant 4-bits of the p-prism entries and assign them to Pl;

Pl(i,j,k) = P(i,j,k) mod 16.

Also, Ph is the concatenation of the 5th bit of S(i,j,k) and the remaining 3-bits of P(i,j,k) (recall
that the entries of p-prism are 7-bit numbers).

Ph(i,j,k) = (S(i,j,k) div 16) ||(P(i,j,k) div 16).

If the message consists of a single chunk, the hash value is deduced from the s-prism at this
point. Otherwise, s-hash algorithm behaves according to Merkle-Damgard scheme. The entries of
s-prism are stored in h-prism as defined below, and the s-prism is refilled in the successive round.

H(i,j,k) := S′

(i,j,k).

However, the p-prism undergoes some rotations, called rubics rotations (see Figure 8), which are
described as follows:

if (k ≡ 0 mod 4) then P(i,j,k) := P(i,j,k),

if (k ≡ 1 mod 4) then P(i,j,k) := P(3−j,i,k),

if (k ≡ 2 mod 4) then P(i,j,k) := P(j,i,k),

if (k ≡ 3 mod 4) then P(i,j,k) := P(j,3−i,k).

j

i

k

rot - 3

rot - 3

rot - 2

rot - 1

rot - 0

rot - 2

rot - 1

rot - 0

Figure 8. Rubics rotations on p-prism.

4.4. Hash Generation. The spectral hashing algorithm can be configured to return hash values
of 32-bit multiples in between 128-bits and 512-bits. These lengths clearly include the bit sizes 224,
256, 384 and 512.

The procedure is quite simple, and is applied whenever the final states of the s-prism and p-prism
are reached. In other words, the desired hash string is generated after s-prism goes through the
nonlinear transformation and p-prism is modified via the rubics rotations at the end of the final
chunk’s processing.

15

The bits of the hash value are selected from the s-prism entries determined by the s-hash gen-
eration table (sg-table). The sg-table is a co-ordinate matrix with rows corresponding to the bit
positions of S(i,j,k) and columns corresponding to the least significant two bits of P(i,j,k). To deter-
mine which bits of the s-prism entries are used in the hash value, one iterates through the p-prism
as follows.

For each P(i,j,k), one determines the least two significant bits. Then one looks at the corresponding
column of the sg-table, and for each cell in this column that has a star, one marks the corresponding
bit of S(i,j,k) and adds it to the hash value. One continues in this manner for each P(i,j,k) in the
p-prism. For example, Table 3 states that if the two least significant bits of P(i,j,k) are “00” (observe
that 32 such entries exist) then the 0th bit of S(i,j,k) is marked and assigned to the hash value.

Notice that Table 3 presents a generation of 32 ∗ 4 = 128-bit hash value. The number of stars
in the sg-table determines the length of the hash value. In fact, each star adds 32-bits to the final
hash value. Therefore by adding more stars to the sg-table, one can generate longer hash values, up
to 512-bits long (i.e. the s-prism itself). Specifically, a 224-bit hash generation requires an sg-table
with 7 stars.

To create an sg-table, one places the desired number of stars in the table according to Table 2.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 15 12 7 4
position 2 11 6 3 10

on 1 5 2 9 14
S(i,j,k) 0 1 8 13 16

Table 2. Method of generating sg-tables.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 *
position 2 *

on 1 *
S(i,j,k) 0 *

Table 3. 128-bit hash generation.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * *
position 2 * *

on 1 * *
S(i,j,k) 0 *

Table 4. 224-bit hash generation.

After the selection process, the resulting s-prism is called a punctured s-prism and resembles a
swiss cheese. The final hash value is simply deduced from the final state of the punctured s-prism
by reversing the message map indexing. Formally, the hash string

h := H0 ||H1 || . . . ||H127,

consists of the 4-bit words HI = S(i,j,k), where S(i,j,k) is now the punctured s-prism, and I =
32i + 8j + k for i, j = 0, 1, 2, 3, k = 0, 1, . . . , 7.

16

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * *
position 2 * *

on 1 * *
S(i,j,k) 0 * *

Table 5. 256-bit hash generation.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * * *
position 2 * * * *

on 1 * * *
S(i,j,k) 0 * *

Table 6. 384-bit hash generation.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * * * *
position 2 * * * *

on 1 * * * *
S(i,j,k) 0 * * * *

Table 7. 512-bit hash generation.

17

5. Security Considerations

In a nutshell, the security of the s-hash algorithm is derived from the three main mechanisms
employed, namely the 3-dimensional DFTs, the inverse map in the field GF (24), and the nonlinear
transformation. As we mentioned earlier, the 3-dimensional DFT is the foundation of the s-hash
compression function, which is shown to be a perfect cryptographic primitive for generating diffusion
and confusion [1]. In order to build up security against differential and linear cryptanalysis, we
augmented the compression function with the inverse map which has the best known nonlinearity [2]
in the field GF (24). Moreover, with the addition of the nonlinear transform, which is constructed by
selecting system variables using a permutation table generated by data dependent permutations,
s-hash becomes immune to pre-image attacks. We further discuss the resistance of these three
structures to known cryptanalysis methods.

5.1. General Birthday Attacks. There are various cryptanalytic methods used to break hash
functions, some of which are also related to block cipher cryptanalysis. These cryptanalytic methods
generally focus on the collisions of a hash function, namely finding two messages m and m′ such
that h(m) = h(m′) and m 6= m′. The general birthday attack is a generic method of breaking hash
algorithms that is reliant on the so called birthday paradox. A hash function is considered to be
broken if the probability of collision is below the bound of 2(n/2) messages. In s-hash, if 512-bit
hash values are considered, one has to employ a search in a message space having cardinality 2256.
One way of avoiding such a search may be by guessing the form of the p-prism and then reversing
the nonlinear transformation. However, such an attempt would require a search in the symmetric
group S128 which has a cardinality of 128! ≈ 2716.

5.2. Differential Attacks. When one goes through the steps of the compression function, it can
be easily seen that the first and third steps consist of bijective functions. It is known that the
inverse map in the field GF (24) has the best known nonlinearity which does not permit one to find
weak differentials such as those exploited in MD5, SHA-1, and other hash functions.

Moreover, being a perfect confusion and diffusion generator, the multi-dimensional DFT makes
finding a differential path on s-hash infeasible. With the use of 3-dimensional DFTs, it is immensely
hard to track the differential trails in order to find a collision, as even a one word (4 bit entry)
change in the data prism affects all the words of the output data prism of the DFT step.

5.3. Linear Cryptanalysis. When it comes to linear cryptanalysis, one has to bear in mind that
this attack has never been applied to hash functions. To use linear cryptanalysis, one has to
approximate a function by linear equations. In the s-hash compression function, we make use of
highly nonlinear functions like the inverse function. This function has the best known nonlinearity
in the field GF (24), which means that it is hard to correlate and has a high degree of nonlinearity.
Therefore, linear cryptanalysis seems infeasible to use on s-hash.

5.4. Further Comments. The internal states of spectral hash are bijective transformations. Go-
ing back through step 3 to produce an “internal hash value” from a pre-specified hash value is hard
because of the existence of the data dependent permutations in step 3. Thus, finding a matching
internal state in order to construct a collision is not possible due to the fact that constructing dif-
ferent internal states requires finding inverses of different permutations, each of which is specified
by a different message initially unknown to the adversary.

Moreover, the specification of data dependent permutations from a given message shows uniform
distribution, which means that each different 512-bit message block generates a different permuta-
tion. As a result, the probability of finding a pre-specified message from the hash is 1/2512.

In conclusion, we conjecture that the spectral hashing algorithm is resistant to known attacks
and it is not possible to find a collision under the complexity bound O(2(n/2)) required for the

18

birthday attack. It has pre-image resistance with complexity O(2n). Spectral hash also admits a
random distribution which makes it a suitable candidate for an ideal cryptographic hash function.

6. Implementation Efficiency

The performance figures for the current implementation of s-hash are listed in Table 8. In
our testing we found that the message digest length did not deterministically change the time
required to compute the hash. In other words, the time variance for the different lengths was both
negligible and inconsistent, and was not directly related to the size of the message digest. This
is unsurprising considering the design of s-hash. If look-up tables for the various field operations
are implemented memory usage is theoretically around 2KB; the reference implementation uses
approximately 380KB.

Although s-hash can benefit from using extra memory, the amount of extra memory that it needs
to reach its optimal speed is still very low and will scale linearly with the input message size. After
optimizations are better implemented, the algorithm can run in less time and memory than the
reference implementation does.

File Size Speed (Mbits/S) Cycles/Block
4 MB 38 29100
20 MB 38 29100
100 MB 38 29100

Table 8. Performance information for reference machine.

Processor 2.16GHz Intel Core Duo
Memory 1.5 GB 667MHz DDR2

OS Mac OS X 10.5.3

Table 9. Reference Machine Specifications

6.1. Hardware and 8-bit Processors. S-hash has an advantage over other hashing algorithms
when implemented on 8-bit processors or embedded type systems, because our optimal memory
usage is low. Also, due to the design of s-hash, the operations on both prisms may be fully parallel
and will compute in the same time, preventing wasted cycles. S-hash is also very well suited for
8-bit systems because it stores all of its data in fewer than 8 bit segments.

References

[1] C. P. Schnorr, “FFT-hashing: An efficient cryptographic hash function,” in rump session of the Crypto’91, Santa
Barbara. Aug. 1991, Springer, Berlin, Germany.

[2] K. Nyberg, “Differentially uniform mappings for cryptography,” in Advances in Cryptology, Proceedings Euro-
crypt’93, LNCS 765, T. Helleseth, Ed. 1994, pp. 55–64, Springer, Berlin, Germany.

[3] S. Lucks, “Design principles for iterated hash functions,” in Cryptology ePrint Archive 2004/253, 2004.

19

