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 Introduction

Since the first use of the word “robot” by a 
Czechoslovakian author Karel Čapek in a drama 
as Rossum’s Universal Robots in 1920, it spread 
quickly all over the world and became a common 
term for artificial beings. Robots have been used 
in surgery since 1978; however, to justify the cost 
of robotic surgery, a quest for proven advantage 
over existing surgical techniques remains ongo-
ing. Artificial intelligence (AI) is understood to 
be near-human intelligence exhibited by a 
machine for pattern recognition and decision-
making. Future systems posing a certain degree 
of intelligence together with the increased possi-
bility of connectivity will provide the answer for 
the questions being raised by traditional sur-
geons. Building these new intelligent robots will 
be one of the future tasks for humanity.

 Artificial Intelligence

Nowadays, vast amounts of data are being gener-
ated in every field of medicine, making data anal-
ysis an immense task for humans. However, the 
level of analysis by humans alone of this big data 
has clearly been surpassed by artificial intelli-
gence (AI) in an age where healthcare is depen-
dent on human precision more than ever. An AI 
machine displays qualities of human intelligence 
by using algorithms to perform pattern recogni-
tion and decision-making. AI is broadly classi-
fied as general AI and narrow AI where the 
former describes machines that exhibit and imi-
tate human thought, emotion, and reason (i.e., 
machines that can pass the Turing test remain 
elusive for now), whereas the latter is used for 
technologies that can perform as well or better 
than humans for specific tasks (like analyzing 
vast medical data in diverse fields).

AI, by eliminating human error, is expected to 
significantly reduce the number of misdiagnosis 
cases, excessive waste of resources, errors in 
treatment, and workflow inefficiencies and also 
increase (not subtract from) the interaction times 
between patients and clinicians. It is, therefore, 
important for surgeons to know about AI and to 
understand its effect on modern healthcare as 
they will be increasingly interacting with AI sys-
tems within the healthcare environment.

AI currently serves many purposes as a power-
ful tool in various areas – such as renewable energy 
systems, economics, weather predictions, manu-
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facturing, and medicine  – helping researchers 
worldwide. Its roots are found in robotics, philoso-
phy, psychology, linguistics, and statistics [1, 2]. 
The popularity of AI soared with the major 
advances in computer science, mainly processing 
power and speed, which enabled the efficient 
implementation of long developed algorithms 
within the area. AI can be divided into four main 
subfields. They are (a) machine learning, (b) natu-
ral language processing, (c) artificial neural net-
works, and (d) computer vision. Although it seems 
complicated, we will try to explain each field sepa-
rately and connect them  – especially for robotic 
surgery applications [1–3]. These four subfields 
are the very foundation of digital surgery.

 Machine Learning

Machine learning (ML) is a subfield of AI which 
can be described as the practice of solving a 
problem by enabling the machines to learn and 
make predictions by using a dataset and algorith-
mically building a statistical model. ML is useful 
for identifying subtle patterns which are impos-
sible to be seen by humans in large datasets. 
There are four types of learning algorithms which 
are termed as follows: supervised, semi- 
supervised, unsupervised, and reinforcement [4].

In supervised learning, human-labeled train-
ing data are fed into an ML algorithm to teach the 
computer a function such as recognizing an organ 
(stomach, duodenum, colon, liver, etc.) in an 
image. This kind of learning is useful in predict-
ing known results or outcomes, as it focuses on 
classification.

In unsupervised learning, the training dataset 
consists of unlabeled examples and this unla-
beled data is fed into the learning algorithm. 
Unlike supervised learning, unsupervised learn-
ing does not involve a predefined outcome; 
hence, it is exploratory and used to find naturally 
occurring undefined patterns or clusters within 
datasets. The significance of such groups learned 
through unsupervised learning is evaluated by its 
performance in subsequent supervised learning 
tasks (i.e., are these new patterns useful in some 
way?).

In semi-supervised learning, the training data-
set contains a small amount of labeled data and a 
large amount of unlabeled data. It can be viewed 
as a mix between supervised and unsupervised 
learning. Training data is clustered similar to 
unsupervised learning and the labeled training 
data is used to classify these clusters in a super-
vised learning fashion. It has been found that 
unlabeled data can produce significant improve-
ment in learning accuracy when used in conjunc-
tion with a small amount of labeled data. 
Semi-supervised learning is similar to supervised 
learning in its goals.

Reinforcement learning consists of learning 
algorithms where the machine attempts to accom-
plish a specified task (playing games, driving, 
robotics, resource management, or logistics) with 
the help of a specifically designed reward func-
tion. Through its own mistakes and successes, the 
reinforcement learning algorithm assigns a nega-
tive or a positive reward to the agent which learns 
a policy to perform a task. A policy defines the 
learning agent’s way of behaving at a given time, 
and it maps the state that the agent is in, to the 
action the agent should execute in that state. 
Reinforcement learning is suitable for particular 
problems in which the decision-making is 
sequential, and the goal is long term.

 Natural Language Processing

Natural language processing (NLP) is the sub-
field of artificial intelligence where the ability to 
understand human language is built into a 
machine [5]. For this purpose, NLP recognizes 
words and understands semantics and syntax. 
NLP has been used to identify words and phrases 
in operative reports and progress notes for surgi-
cal patients that predicted anastomotic leak after 
colorectal surgery. Although the majority of these 
predictions coincided with simple clinical knowl-
edge (operation type and difficulty), the algo-
rithm was also, quite interestingly, able to adjust 
predictive weights of phrases that describe patient 
temperament such as “irritated” or “tired”  relative 
to the post-op day to predict a leak with a sensi-
tivity of 100% and a specificity of 72% [6].
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 Artificial Neural Networks and Deep 
Learning

Artificial neural networks (ANNs) are of out-
standing importance in many AI applications. 
ANNs are based on layers of connected nodes 
(artificial neurons) which model the basic func-
tions of a biological neuron. In this regard, each 
connection is a pathway to transmit signals to 
other nodes (neurons) similar to synapses in the 
brain. In deep learning, a special structure of 
neural networks is used that are called deep neu-
ral networks (DNNs) with multiple layers 
between the input and output layers as opposed 
to simple 1 or 2-layer ANNs, and this complexity 
in structure enables them to learn more complex 
and subtle patterns (Fig. 3.1). Deep learning’s 
autodidactic quality is what sets it apart from the 
other subtypes of AI. The neural network is not 
predesigned, but instead, the number of layers is 
determined by the data itself with this quality. A 

DNN consists of digitized inputs (i.e., speech or 
image data) which go through multiple layers of 
connected nodes that detect features progres-
sively and provide an output (i.e., label) in the 
end. For example, a DNN achieved an unprece-
dentedly low error rate for automated image clas-
sification by analyzing 1.2 million carefully 
annotated images from over 15 million in the 
ImageNet database [3, 5, 7].

 Computer Vision

Computer vision, also known as machine vision, 
is an area of science that focuses on how comput-
ers gain high-level understanding of images and 
videos. Image acquisition and interpretation in 
axial imaging with applications such as image- 
guided surgery, virtual colonoscopy, and 
computer- aided diagnosis are all important utili-
zations of computer vision from a healthcare per-

y

An artifical neuron is the building block of ANNs

Input “u” is passed through an activation function to obtain
output “y”
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Fig. 3.1 (a) Model of a single neuron in machine learning. (b) An example of a deep neural network with multiple 
layers

3 Artificial Intelligence for Next-Generation Medical Robotics



28

spective. Current work in computer vision 
concentrates on understanding higher-level con-
cepts. In surgery, real-time analysis of a laparo-
scopic video has yielded 92.8% accuracy in 
automated identification of the steps of a sleeve 
gastrectomy and noted missing or unexpected 
steps [3]. In addition, recent research efforts exist 
in the field in hopes of “digitizing surgery.” This 
consists of observation of the surgical team and 
equipment in the operating room and perfor-
mance of the surgeon with the help of computer 
vision (real-time, high-resolution, AI-processed 
imaging of the relevant anatomy of the patient) 
and integration of a patient’s comprehensive pre-
operative data which includes full medical his-
tory, labs, and scans [5].

AI is a powerful tool in medicine and different 
methods are used from diagnostics to patient 
care. Figure 3.2 provides a summary of different 
methods and their respective application areas.

 History of Robotic Surgery

The word “robot” was first defined by the Robots 
Institute of America in 1979 as “a reprogram-
mable, multifunctional manipulator designed to 
move materials, parts, tools, or specialized 
devices through various programmed motions 
for the performance of a variety of tasks” [8]. 

The first robot used in a real surgery was PUMA 
(programmable universal machine for assembly) 
developed by Scheinman in 1978 [9]. It was used 
by Kwoh in 1985 for neurosurgical biopsies and 
then by urologists in 1988 [10]. It was changed 
to surgeon-assistant robot for prostatectomy 
(SARP). This robot could only be used on some 
fixed anatomic targets and was not suitable for 
operations like gastrointestinal surgery where 
the surgical targets are dynamic and fluid.

At the Stanford Research Institute, Richard 
Satava, a military surgeon, developed an operat-
ing system for instrument tele-manipulation 
after the introduction of laparoscopic cholecys-
tectomy. In 1988, Satava and his group started 
working on a robotic system for laparoscopic 
surgery. In 1993, AESOP (automated endo-
scopic system for optimal positioning) was 
developed by Yulin Wang and his company, 
Computer Motion, Inc., in Goleta, CA, 
USA. This was the first  FDA- approved surgical 
robot [11]. In 1998, ZEUS, the new robot capa-
ble of reproducing the movements of the arms of 
the surgeon, was developed by DARPA (Defense 
Advanced Research Projects Agency). It was 
later used in 2001 by Prof. Marescaux to per-
form transcontinental telesurgery, a landmark 
achievement [12]. Computer Motion, Inc. was 
eventually acquired by Intuitive Surgical, Inc., 
which retired the development of the ZEUS 
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Fig. 3.2 AI, machine learning, and their use in medicine
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robot, supplanting it with a new system. Intuitive 
Surgical then developed da Vinci as a master–
slave robot, which received CE mark in 1999 and 
the full FDA approval in 2001. The da Vinci 
Surgical System is currently the most widely 
used, which has the models of S, Si, Xi, and, 
more recently, SP. This master–slave system 
overcame the limitations of laparoscopic sur-
gery, its technical improvements including mag-
nified 3D optics, precisely controlled wristed 
instruments with tremor filtration, and seven 
degrees of freedom. With the preservation of 
natural eye–hand–instrument alignment, it made 
the robotic platform highly suitable for a wide 
range of surgical procedures. The da Vinci Xi, 
the robotic effectors, have a much slimmer 
design than previous renditions as well as a lon-
ger “arm span,” which greatly minimizes instru-
ment clashing and collision. Adjunctive tools 
and accessories include stapling devices with 6 
degrees of freedom (dof) or 6-dof flexible instru-
ments, single site, firefly system, Tilpro system, 
and double console. Recent advancements on 
robotic technology also resulted in the develop-
ment of the VeSPA single- port system. However, 
the VeSPA system has suboptimal ergonomics 

with clashing of instruments and provides only 
4-dof instruments. The SP system designed for 
single-port access has a single arm that delivers 
three multi-jointed instruments and a fully 
wristed 3D HD camera for visualization and 
control in narrow surgical spaces [10]. Robotics 
surgery devices such as these are used in many 
areas in medicine and new applications are 
emerging with each technological development 
(Fig. 3.3).

 Emerging Robotic Surgical Systems

The Italian healthcare company Sofar, Milan, 
Italy (which was later acquired by TransEnterix, 
Morrisville, NC, USA) developed an alternative 
robotic system, the Telelap ALF-X (currently 
known as Senhance). The design featured a 
remote surgeon workstation and three cable- 
actuated robotic arms featuring instruments and a 
telescope mounted on three separate carts. The 
device utilizes an open console design with 3D 
polarized glasses and a monitor with an inte-
grated eye-tracking system which controls cam-
era movements (e.g., the image is zoomed in, 
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Pancreatic, Urological,
Gynecological Surgery

Robots assisted
eye surgery
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Fig. 3.3 Applications 
of robotic surgery
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when the surgeon’s head approaches the screen). 
Two handles similar to laparoscopic effectors 
manipulate instruments with 4 dof and 6 dof 
attached to the robotic arms. Tuebingen Scientific 
(Tuebingen, Germany) developed instruments 
based on Radius technology. Haptic feedback 
together with eye tracking is a unique feature of 
Senhance, when compared to standard da Vinci 
robots. Haptic feedback is realized by counter-
movements of the laparoscopic handle at the con-
sole according to force and direction applied at 
the tip of the instrument [13, 14].

 Upcoming Robotic Systems

Robotic surgical systems are evolving to include 
specific features and improvements of the bed-
side cart and effector arms (lightweight, smaller 
size, mounted on operating table or on separate 
carts, single arm with a variety of instruments 
inside), instruments (tactile feedback, micro- 
motors), console (open, closed, semi-open) or 
without a console, and 3D HD video technology 
(polarized glasses, oculars, mirror technology).

Several modifications of master–slave sys-
tems have been developed and the implementa-
tion of the console is one design aspect which 
separates these systems (discussed below). 
Intuitive Surgical and Avateramedical have cho-
sen to design their robotic systems with a closed 
console, with in-line 3D video technology. An 
advantage of this is that polarized glasses are not 
needed, but an important disadvantage is that 
closed consoles are generally associated with 
loss of brightness at the periphery of the field of 
view. An open console system may provide better 
communication with the team at bedside and the 
flexibility to integrate future technologies such as 
ultra-HD (4K) video or full HD 3D screens.

 Avatera
Avateramedical (Jena, Germany), in collabora-
tion with Force Dimension (Nyon, Switzerland) 
and with Tuebingen Scientific (Tuebingen, 
Germany), has been developing Avatera which, 
as previously mentioned, was designed with a 
closed console configuration with an integrated 

seat using microscope-like technology with two 
adjustable oculars for in-line 3D image with full-
 HD resolution. Four robotic arms are mounted on 
a single cart and 6 degrees of freedom (dof) 
instruments with a diameter of 5mm are used. 
The system has no force feedback and only been 
used in preclinical experimentation [15].

 Medicaroid
In 2016, Medicaroid (Kobe, Japan) started a cor-
poration in Silicon Valley to prime the US market 
for medical robots made in Japan with the R&D 
and manufacturing expertise of Sysmex and 
Kawasaki Heavy Industries. The device features 
three robotic arms attached to the operating table; 
a semi-closed console with ocular-like in-line 
technology, which still requires polarized glasses; 
and a telescope with 3D HD technology. 
However, the system has no force feedback. 
Clinical launch is expected in 2020 [16].

 Medtronic
In 2013, Covidien (Dublin, Ireland, later in 2015 
Medtronic) acquired the license for versatile sys-
tem by MiroSurge (German Aerospace Centre, 
Oberpfaffenhofen, Germany) and included fur-
ther developments including instruments in their 
two research and development centers in the 
USA and announced the robot in 2019. The sys-
tem comprises three to four modular robotic 
arms, an open console with an autofocusing mon-
itor, 3D HD telescope and 3D glasses, fingertip- 
controlled handles, clutch mechanism, and foot 
switches to activate bipolar energy. The robotic 
arms are composed of seven joints with serial 
kinematics, comparable to human arms, and the 
instruments are driven by micro-motors option-
ally providing tactile feedback via potentiome-
ters [17].

 Raven
The Raven Project (Universities of Santa Cruz, 
Berkeley, Davis) has an open-source system that 
would allow two surgeons to operate on a single 
patient simultaneously. The prototype system 
included two portable surgical robotic arms, each 
offering 7 dof, and a portable surgical console. 
Raven III offers four robotic arms and (option-
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ally) two cameras. Raven III is one of the most 
advanced surgical robotic research platforms, 
focused on battlefield and underwater remote sur-
gery [18].

 Revo-I
In collaboration with Yonsei University and multi-
ple Korean academic and industry groups, 
Meerecompany (Hwasong, Korea) designed the 
Revo-I platform which features an open console, 
two handles, and foot controller for clutch mode 
and cautery. The four-arm system mounted on a 
single cart uses a 3D HD stereoscope and 6-dof 
instruments with a diameter of 8mm. In 2016, the 
first results of animal studies were published in col-
laboration with Samsung and approval for human 
trials in South Korea has been received [19].

 SPORT™
After the unsuccessful introduction of the Amadeus 
RSS, Titan Medical focused on the SPORT™ 
Surgical System as a platform for robotic laparo-
endoscopic single-site surgery (LESS). SPORT™ 
has an open console with 3D HD vision control-
ling, a 3D flexible telescope with fiber-optic-based 
illumination, and two flexible instruments on a 
single robotic boom. Its main application is 
expected to be LESS cholecystectomy. Recently, 
robotic single-port partial nephrectomy was per-
formed in animal models requiring additional tro-
cars for retraction. The FDA approval for the 
system is currently pending [20].

 Da Vinci SP
The da Vinci Xi system also allows the use of the 
robotic single-port SP 1098 platform including a 
3D HD flexible telescope and three flexible 
instruments. This system has a master console 
and slave patient cart with a single arm. Once 
introduced into the abdominal cavity (or, alterna-
tively, through a natural orifice), the flexible 
instruments, with a snake-style wrist, can sepa-
rate to achieve triangulation [10, 14].

 Verb Surgical
Verb Surgical was formed in 2015 as an indepen-
dent start-up company, backed by Google and 
Johnson & Johnson to harness the unique capa-

bilities of both companies [21]. It is detailed else-
where in this textbook.

 EndoMaster
Developed in Singapore originally for endo-
scopic resection of gastrointestinal polyps and 
tumors, EndoMaster has been used for natural 
orifice transluminal endoscopic surgery (NOTES) 
as well as transoral robotic surgery. This system 
has been designed with robotic arms (a grasper 
and a probe for monopolar diathermy) that are 
incorporated into the end of a flexible endoscope. 
It consists of a master telesurgical workstation 
and a slave manipulator (endoscope with robotic 
arms). Thus far, EndoMaster has only been used 
for preclinical trials on cadavers and animal mod-
els [22].

 Computer Technology Drives Progress 
in Robotics
Innovation in robotic surgery will continue to 
parallel advancements in technology; especially 
with the considerable progress in computer sci-
ence and AI. Novel distinct features, such as hap-
tic gloves, cellular image guidance, or even 
autonomy might be the next step in the evolution 
of next-generation devices. Shademan et al. have 
described in vivo supervised autonomous soft tis-
sue surgery in an open surgical setting, enabled 
by a plenoptic 3D and near-infrared fluorescent 
imaging system that supports an autonomous 
suturing algorithm. A computer program gener-
ates a plan to complete complex surgical tasks on 
deformable soft tissue, such as suturing an intes-
tinal anastomosis based on expert human surgical 
practices [23]. Despite dynamic scene changes 
and tissue movement during surgery, they were 
able to show that the outcome of supervised 
autonomous procedures was superior to surgery 
performed by expert surgeons and robot-assisted 
techniques. The Smart Tissue Autonomous Robot 
(STAR) results show the potential for autono-
mous robots to improve efficacy, consistency, 
functional outcome, and accessibility of surgical 
techniques. By 2020, robotic surgery, once a sim-
ple master–slave device, is poised to merge fun-
damental concepts in AI as it evolves into digital 
surgery [24].

3 Artificial Intelligence for Next-Generation Medical Robotics
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 Autonomous Robotic Surgery

 What Is Autonomy?

Physical, mental, technical variables dictate the 
performance of the surgeon and these factors 
affect the outcome. Surgical robots have the 
advantage of tremor cancellation, scalable motion, 
insusceptibility to fatigue, and greater range of 
axial movement which should, in turn, positively 
impact the quality of surgical care rendered.

Autonomy is defined as “an ability to perform 
intended tasks based on current state and sensing 
without human intervention.” Although da Vinci 
is a master–slave robot and completely depen-
dent on human control, to some extent, it has a 
variable degree of autonomy, since there is “built-
 in” tremor resistance and scalable motion. If 
equipped with cognitive capabilities, surgical 
robots could accomplish more supervised tasks 
and thus provide a greater level of assistance to 
the surgeon. Partially autonomous robots such as 
TSolution-One (Think Surgical, Fremont, CA), 
Mazor X (Mazor Robotics, Caesarea, Israel), and 
CyberKnife (Accuracy, Sunnyvale, CA) are cur-
rently in clinical use.

A robot is not a single device; rather it is a 
system with three components, sensors, end 
effectors, and control architecture, that process 
data and perform actions. During the procedure, 
there is continuous interaction between the robot, 
the surgeon, and the patient. A learning system is 
augmented with a process that allows a surgeon 
to watch the robot and provide feedback based on 
the behavior of the robot.

Combining AI (machine learning, natural 
language processing, artificial neural networks, 
and computer vision) with surgical robots may 
reduce technical and human errors, operative 
time, and rates of complications and improve the 
outcome as an ultimate end point. The robots can 
be taught specific procedures. There are certain 
methods proposed to “teach” the robots either by 
directly programming it (explicit learning) or by 
having the robot observe a surgeon or video 
directly (implicit learning); in this case, the robot 
may even be trained in simulation or virtual 
reality.

Prior knowledge (collected data) is of key 
importance in machine learning, and in surgery, 
prior knowledge is typically obtained from an 
experienced surgeon. The skills, in this case, are 
collected from robotic surgery videos and from 
the data provided by the robot’s sensory appara-
tus during similar procedures that were per-
formed by a skilled surgeon. A surgical activity 
dataset by Johns Hopkins University and Intuitive 
Surgical Inc. consisting of motion and video data 
is available for researchers interested in this 
problem [24, 25]. However, having access to all 
this data and video content is not enough for a 
robot to perform surgery autonomously. The 
learning model would also need a large database 
of explicit knowledge on how to accomplish a 
specific task in surgery. This sort of database 
would (and should) depend on the inputs from 
the surgical community, based on the interna-
tional surgical consensus for each type of opera-
tion. In any case, it is highly unlikely that either 
implicit or explicit learning alone would be suf-
ficient for automation in robotic surgery. 
However, a merger of both techniques with con-
stant reinforcement and adjustment by human 
surgical experts could achieve acceptable levels 
of autonomy in surgical robotics.

 Machine Learning in Autonomous 
Robotic Surgery

Future surgical robots will have the ability to vir-
tually see, think, and act without active human 
intervention. Certain surgical tasks (suturing, 
cauterizing a leak in gastric bypass, clamping a 
certain area, etc.) could be autonomously per-
formed with varying levels of human  supervision. 
Of course, this would only be considered when 
an automated robotic system has repeatedly dem-
onstrated its ability to achieve an acceptable level 
of performance in executing the necessary surgi-
cal tasks.

Three parameters define the task of an autono-
mous surgical robot: complexity of the surgical 
task, environmental difficulty (properties of the 
surgical site), and human independence. Versatile 
autonomous surgical devices will require exten-
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sive R&D and integration of control algorithms, 
robotics, computer vision, and smart sensor tech-
nology  – in addition to extensive trial periods 
with surgeon-led vetting. Careful study is needed 
due to the highly deformable nature of soft tissue 
environments, the presence of hollow organs that 
are susceptible to rupture, and the delicacy of 
tissues.

There are certain autonomous systems that 
have been able to execute confined surgical 
tasks based on an exemplary dataset (provided 
by human input). For suture knot-tying tasks on 
a laparoscopic telesurgical workstation [26], 
faster and smoother trajectory executions were 
achieved (compared to a human) via trajectory 
smoothing of surgeon-provided motion exam-
ples. The parameters of a controller function 
were iteratively updated based on the error of a 
target trajectory (which is derived from the pro-
vided examples) to achieve faster trajectories 
[27]. The EndoPAR system (Technical 
University of Munich, Germany), a ceiling-
mounted experimental surgical platform, was 
able to execute knot-tying tasks autonomously 
using recurrent neural networks (RNNs) using a 
database of 25 expert trajectories [25]. RNNs 
are a class of artificial neural networks that 
allows previous outputs to be used as inputs 
(feedback connections) while having hidden 
states. In other words, such a machine remem-
bers from the past, and its decisions are influ-
enced by what it has learnt in the past – so the 
same input could produce a different output 
depending on previous inputs in the series 
(sequential memory). This means that RNNs 
can (in principle) approximate any dynamic sys-
tem and can be used to implement sequence to 
sequence mappings that require memory such as 
the set of trajectories involved in suture knot- 
tying [28]. The da Vinci Research Kit (DVRK) 
is used as a platform to apply learning by obser-
vation techniques with the aim of automating 
multilateral subtasks, such as debridement and 
pattern cutting. This approach involved seg-
menting motion examples by a human demon-
strator into structural gestures such as grasping, 
retraction, penetration, and cutting, which is 
then used to define a finite state machine (FSM). 

An FSM is a mathematical model for any sys-
tem that has a limited number of conditional 
states it can exist in for any point in time. In a 
study by Murali et al., 96% repeatability for 50 
trials were achieved for the debridement task of 
3D Viscoelastic Tissue phantoms and a repeat-
ability of 70% for 20 trials of pattern cutting of 
2D Orthotropic Tissue phantoms [29].

A novel endovascular surgery (ES) robot (cur-
rently experimental only) was recently used to 
test a convolutional neural network (CNN)-based 
framework to navigate the ES robot based on sur-
geons’ skills. The CNN-based method shows 
capability of adapting to different situations 
while achieving a similar success rate in average 
operating time compared to known standards. 
Compared to manual operation, robotic operation 
was observed to demonstrate similar operating 
trajectory and maintained a similar level of oper-
ating force [30]. Finally, STAR (mentioned pre-
viously) was used for performing supervised 
autonomous robot-assisted surgery in various 
soft tissue surgical tasks such as ex  vivo linear 
suturing of a longitudinal cut along a length of 
suspended intestine, ex vivo end-to-end anasto-
mosis, and in  vivo end-to-end anastomosis of 
porcine small intestine [31].

Although systems that can perform autono-
mous surgical tasks exist, considerable work will 
be required to bring fully autonomous surgical 
robots into fruition. The existing systems are 
only used in experimental setups on inanimate or 
animal models. However, the advances and 
improvements enabled by the power of machine 
learning cannot be neglected. The automation 
operations, with the aid of ML, will decrease the 
time of surgery, enhance the performance, and 
reduce miscommunication. As mentioned above, 
ML approaches have the potential to learn a 
model of surgical skills of experienced surgeons, 
provided by data points collected in the operating 
room. Such data could also be used for quantita-
tively evaluating surgical skills of trainees and to 
improve existing trainers by accurately modeling 
the interaction amongst surgeons, patients, and 
robots [32]. It is apparent that the future of sur-
gery and surgeons will be shaped by these 
improvements.
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 Limitations of Artificial Intelligence

Although AI and ML have the potential to revolu-
tionize the way surgery is taught and practiced, it 
is not a panacea that can solve all problems in 
surgery. In some cases, traditional analytical 
methods outperformed AI/ML.  Thus, the addi-
tion of ML does not always improve results [33].

ML and other AI analyses are highly data 
driven and the outputs are naturally limited by the 
types and accuracy of available data. Hence, the 
patterns AI can recognize, or the predictions it 
can make, are susceptible to the systematic biases 
in clinical data collection. Furthermore, despite 
advances in causal inference, AI cannot yet deter-
mine causal relationships in data at a level neces-
sary for clinical implementation nor can it 
provide an automated clinical interpretation of its 
analyses as of yet. Instead of a single surgeon’s 
error resulting in single patient’s harm, in the era 
of digital surgery and AI, the potential exists for 
a machine algorithm to result in iatrogenic harm 
affecting multiple surgical patients. The possibil-
ity of such an inadvertent outcome must be care-
fully considered before AI/ML systems are 
deployed in operation theaters. Specifically, sys-
tematic debugging, audit, extensive simulation, 
and validation, along with prospective scrutiny, 
are required when an AI algorithm is introduced 
into clinical and surgical practice.

As Professor Stephen Hawking has warned, 
the creation of powerful AI will be “either the 
best, or the worst thing, ever to happen to human-
ity”. Hawking had praised the creation of an aca-
demic institute dedicated to researching the 
future of intelligence as “crucial to the future of 
our civilization and our species” [34].

 What Surgeons Should Do?

What does the future hold for surgeons as 
machine learning and deep learning technologies 
advance? Data will become increasingly volumi-
nous, and to properly interpret such vast datasets, 
AI and ML will be integral. Where engineers can 
provide automated, computational solutions to 
data analytics problems that would otherwise be 

too costly or time-consuming for manual meth-
ods, surgeons have the clinical insight that can 
guide data scientists and engineers to answer the 
right questions with the right data.

Technology-based advancements have the 
potential to empower every surgeon with the 
ability to improve the quality of global surgical 
care. Given that research has indicated that 
high- quality surgical techniques and skill sets 
correlate positively with patient outcomes, AI 
could help pool this surgical experience – simi-
lar to efforts in genomics and biobanks  – to 
standardize decision- making, thus creating a 
global consensus in operating theaters world-
wide. Surgeons can prove to be essential to data 
scientists by imparting their understanding of 
the relevance and importance of the relationship 
between seemingly simple topics, such as anat-
omy and physiology, to more complex phenom-
ena, such as a disease pathophysiology, operative 
course, or postoperative complications. AI 
needs to be held accountable for its predictions 
and recommendations in medicine; hence, it is 
up to the surgeons and engineers to push for 
transparent and interpretable algorithms to 
ensure that more professionals have an in-depth 
understanding of its implications. Next-
generation surgical robots will be integral in 
augmenting a surgeon’s skills effectively to 
achieve accuracy and high precision during 
complex procedures [35]. The next level of sur-
gery that will be achieved by surgical robotics 
will likely evolve to include AI and ML [36].

At the beginning of the twentieth century, 
robotics, machine learning, artificial intelligence, 
surgical robots, and telesurgery were the stuff of 
science fiction. Yet today, they are all proven real-
ity. We believe everything will change much faster 
in the twenty-first century as compared to the 
twentieth century. Although robots will become an 
indispensable part of routine life, in the field of 
medicine, surgical robots with artificial intelli-
gence will evolve to have at least some autonomy 
and ML-/AI-based decision analysis in the near 
future. Fully autonomous surgical robots probably 
remain far from reach. However, in the coming 
decade, the use of machine learning, deep learn-
ing, big data analysis, and computer vision, will 
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translate into (appropriately equipped) surgical 
robots capable of learning every step of an opera-
tion – a harbinger for the age of digital surgery.
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