
Reinforcement Learning
and Trustworthy Autonomy

Jieliang Luo, Sam Green, Peter Feghali, George Legrady, and Çetin Kaya Koç

Abstract Cyber-Physical Systems (CPS) possess physical and software inter-
dependence and are typically designed by teams of mechanical, electrical, and
software engineers. The interdisciplinary nature of CPS makes them difficult to
design with safety guarantees. When autonomy is incorporated, design complexity
and, especially, the difficulty of providing safety assurances are increased. Vision-
based reinforcement learning is an increasingly popular family of machine learning
algorithms that may be used to provide autonomy for CPS. Understanding how
visual stimuli trigger various actions is critical for trustworthy autonomy. In this
chapter we introduce reinforcement learning in the context of Microsoft’s AirSim
drone simulator. Specifically, we guide the reader through the necessary steps for
creating a drone simulation environment suitable for experimenting with vision-
based reinforcement learning. We also explore how existing vision-oriented deep
learning analysis methods may be applied toward safety verification in vision-based
reinforcement learning applications.

1 Introduction

Cyber-Physical Systems (CPS) are becoming increasingly powerful and complex.
For example, standard passenger vehicles have millions of lines of code and tens
of processors [1], and they are the product of years of planning and engineering
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between diverse teams. In similar ways, both smaller CPS, like smart locks, and
larger CPS, like electric power transmission systems, require teams with diverse
skills. These modern systems are being augmented with full or partial autonomy.
Because of the physical aspect of certain CPS, it is critical that they operate reliably
and safely. However, the interdisciplinary nature of CPS makes them difficult to
design with safety and security guarantees. When autonomy is incorporated, design
complexity and, more importantly, the difficulty of providing safety and security
assurances are increased. Yet because of the benefits of autonomy, we will continue
to see its use expand.

Reinforcement learning (RL) is a family of machine learning algorithms
aimed at providing autonomy, and these algorithms are being used to provide
autonomous capabilities to CPS. RL has historic roots in dynamic programming
and the psychological concepts of operant conditioning, or learning by trial and
error. RL methods are flexible. For example, an RL policy may be developed using
simulation and then transferred to a physical agent, or a policy may incorporate prior
knowledge about the environment, or a policy may be trained tabula rasa. Because of
the flexibility of these methods, RL with CPS is ideally suited for interdisciplinary
development, with each field bringing distinct capability-enhancing contributions.
On the other hand, an individual can develop basic autonomous methods with RL
which may later be improved.

In mammals, vision processing accounts for a high percentage of neural activity.
Likewise, in CPS, visuomotor control will be an important area of research, e.g., for
self-driving cars or package delivery drones. Understanding the visual stimuli that
influences behavior is critical for safe autonomy. Advanced RL methods typically
process visual inputs with convolutional neural networks (CNNs). In 2012, CNNs
gained popularity when the AlexNet architecture became the first CNN method
to win the ImageNet competition [2]. At that time, CNNs were treated like black
box functions that worked well, but it was difficult to determine why. Since then, a
number of visualization algorithms have been devised to provide introspection into
the behavior of a CNN. Such methods may also be applied in the context of RL in
order to provide insight into the reliability of a particular CNN.

In this chapter we introduce reinforcement learning in the context of Microsoft’s
AirSim drone simulator. AirSim is a physics-based simulator which enables experi-
mentation with self-driving and flight applications. We have extended the simulator
to support teaching a drone how to autonomously navigate a sequence of waypoints
(Fig. 1). The source code for these experiments is available at https://github.

Fig. 1 In this chapter we train a drone to use its camera to perform path planning. Training is
performed via reinforcement learning, and the goal is to learn vision-to-action mappings which
allow the drone to collect cubes

https://github.com/RodgerLuo/CPS-Book-Chapter
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com/RodgerLuo/CPS-Book-Chapter. After an introduction to RL and AirSim, we
explain how to use CNN visualization techniques to increase trust in the safety of
RL-based drone control.

2 Reinforcement Learning Preliminaries

Reinforcement learning is a family of methods aimed at training an agent to collect
rewards from an environment. At each time step t , the agent is given information
about the state of its environment in the form of an observation st and then makes
an action at . The agent’s policy π(st ) is the logic which takes state observations
and returns action selections. After each action the environment will return a new
state observation st+1 and reward rt+1. This cycle is illustrated in Fig. 2.

The agent’s policy is parameterized by the tensor θ , giving it a more explicit
notation of πθ(st ). For example, in a linear model, the policy would have the form:

πθ(s) = θ1s1 + θ2s2 + · · · + θmsm = θ#s, (1)

where the time step t has been dropped for notation clarity and m is the number
of features in the state space. In a similar manner, a neural network would be
parameterized by a parameter tensor. The goal of the agent is to maximize collection
of rewards from the environment. In a finite time horizon, the goal is accomplished
by finding parameters θ� which provide this maximization:

θ� = arg max
θ

T−1∑
t=0

r(st , at ), (2)

where T − 1 is the number of time steps experienced and r(st , at ) is the environ-
ment’s reward function. In many real-world cases, the reward function is not given as
a closed-form expression, but must be sampled by the agent’s interactions with the
environment. One of the strengths of RL is its ability to learn using this experiential
method.

Agent

Environment

Fig. 2 In reinforcement learning, an agent interacts with an environment. At each time step, the
agent receives a state and reward signal from the environment. Based on this information, the agent
selects its next action

https://github.com/RodgerLuo/CPS-Book-Chapter
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In the remainder of this section, we describe attributes of the environment in
which RL agents are assumed to exist, and we introduce a common method to solve
the objective given in Eq. (2). This background will prepare the reader for drone
control tasks described in Sect. 3 and for approaching more efficient methods found
in literature.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are the environments which reinforcement
learning was developed to solve. A major aspect of MDPs is that they have states
in which an agent exists, and the outcomes of actions depend only on the current
state, not on past states and actions; in this sense MDPs are memoryless. The
memoryless property is captured in the environment’s state-transition and reward
function notation:

p(st+1|st , at , st−1, at−1, . . . , s0, a0) = p(st+1|st , at ),

r(st+1|st , at , st−1, at−1, . . . , s0, a0) = r(st+1|st , at ).
(3)

The state-transition and reward functions in Eq. (3) state that function outcomes
depend only on the current state and action and are independent of past states and
actions.

A second major aspect of MDPs is that the state-transition and/or reward
functions may be stochastic, which means their return values are drawn from some
underlying probability distributions. In standard RL settings, these distributions
must be stationary which means the probabilities do not shift over time. Methods
exist for using RL in nonstationary environments. Investigating such advanced
methods is critical for using RL in safety-critical CPS applications. For example,
state-transition and reward distributions may shift from what was observed during
training in the event of an anomalous situation, e.g., an emergency. In which case
it could be disastrous were the agent to follow its policy decisions blindly. For that
reason, consider the methods introduced in this chapter as an introduction to what
is possible, but safety mechanisms would be put in place for a real-world RL+CPS
application.

Within an MDP, agents may observe their current state and make actions which
attempt to affect the future state. The agent’s objective is to maximize collection of
rewards. An example three-state MDP1 is given in Fig. 3. In this example, the initial
state is s0, and the agent has two action options: a0 and a1. If the agent chooses
action a0, it is guaranteed to stay in state s0, denoted by p(s0|s0, a0) = 1. If the agent
chooses action a1, there is a 25% probability that it will transition to s1, denoted

1In the notation for this example, the subscripts denote “options,” versus the usual meaning, which
is time in this chapter.
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Fig. 3 Example Markov Decision Process. There are three states and two actions. Unless
otherwise indicated, the state-transition probability is 1 and reward is 0. Transition from s0 to
s2 is the most interesting with r(s2|s0, a1) = 1 and p(s2|s0, a1) = 0.75

by p(s1|s0, a1) = 0.25, and a 75% probability it will transition to s2, denoted by
p(s2|s0, a1) = 0.75. The environment returns reward of 0 for all state transitions
except for s0 → s2, and in this case it returns r(s2|s0, a1) = 1.

The agent’s only goal is to maximize collection of rewards. In the context of
Fig. 3, the agent should always select action a1, as it is the only action that leads to a
non-zero reward. While we can see that is the solution, an agent must learn it. There
are two general approaches for learning in RL: value iteration methods and policy
gradient methods. Value iteration is the classical approach to RL and includes the
Q-learning algorithm and its descendents. Policy gradient methods directly optimize
a policy through gradient ascent. Policy gradient methods perform well in many
situations, they are relatively straightforward to implement, and we focus on them
in this chapter. More advanced methods combine value iteration and policy gradient
methods.

2.2 Reinforce Method

In the context of reinforcement learning, our first-order objective was defined in
Eq. (2) as the sum of rewards, but here we will refine it. As stated in the previous
subsection, MDPs often have stochastic state-transition and reward functions; for
that reason the objective J (θ) of the agent is actually to maximize the expected sum
of rewards under the trajectory probability distribution (defined in Eq. (9)). This
is achieved by discovering optimal policy parameters θ� for the objective function
J (θ):

θ� = arg max
θ

Eτ∼pθ

T−1∑
t=0

r(st , at ) = arg max
θ

J (θ), (4)

where τ is the trajectory of state-action pairs (s0, a0, s1, a1, . . . , sT , aT ) and pθ is
the trajectory probability distribution.

The REINFORCE method uses gradient ascent to adjust the policy param-
eters in a direction which increases J (θ) [3]. For notation convenience let
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r(τ ) = ∑T−1
t=0 r(st , at ), and by the definition of expectation, the objective can

be written as:

J (θ) = Eτ∼pθ r(τ ) =
∫

pθ(τ )r(τ )dτ, (5)

where pθ(τ ) is the probability of a specific trajectory. Taking the gradient of J (θ)

with respect to θ then gives:

∇θ J (θ) = ∇θ

∫
pθ(τ )r(τ )dτ =

∫
∇θpθ (τ )r(τ )dτ. (6)

For reasons that will become clear, we recall the following identity:

∇θpθ (τ ) = pθ(τ )
∇θpθ (τ )

pθ (τ )
= pθ(τ )∇θ log(pθ (τ )), (7)

allowing us to rewrite Eq. (6) as:

∇θ J (θ) =
∫

pθ(τ )∇θ log(pθ (τ ))r(τ )dτ,

= Eτ∼pθ ∇θ log(pθ (τ ))r(τ ).

(8)

We now explain why the identity in Eq. (7) was used. The probability of a
sampled (i.e., experienced) trajectory τ has a probability that can be explicitly
calculated only if the underlying state-transition function is known:

pθ(τ ) = p(s0)

T−1∏
t=0

πθ(at |st )p(st+1|st , at ), (9)

where p(s0) is the probability of starting the trajectory in state s0 and is independent
of θ and πθ(at |st ) is the probability of the selected action given the state observation
st . To better understand the notation πθ(at |st ), note that the policy is stochastic. In
other words, when the policy is given a state observation st , the output of πθ(st ) is a
vector of probabilities derived from the sof tmax function.2 In the discrete action-
space environments considered here, there is one output probability per possible
action. A random action is then drawn from the given probability distribution, and
the probability of the selected action is denoted πθ(at |st ).

2sof tmax(xi |x) := exi∑|x|
j=1 e

xj
, where x is a vector of reals.
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In real-world problems, p(st+1|st , at ) is not known, so pθ(τ ) would be impossi-
ble to calculate. However:

log pθ (τ ) = log

(
p(s0)

T−1∏
t=0

πθ(at |st )p(st+1|st , at )

)

= log p(s0)+
T−1∑
t=0

log πθ(at |st )+ log p(st+1|st , at ),

(10)

and replacing log pθ(τ ) in Eq. (8) with its expanded form gives:

∇θJ (θ) = Eτ∼pθ ∇θ

[
log p(s0)+

T−1∑
t=0

log πθ(at |st )+ log p(st+1|st , at )

]
r(τ ),

= Eτ∼pθ

T−1∑
t=0

∇θ log πθ(at |st )r(τ ).

(11)

In this form, we are able to approximate the gradient. Recall that πθ is a neural
network (or some other differentiable function), so the gradient of its log may be
calculated explicitly given each at and st over the trajectory. Also, we know the sum
of rewards r(τ ) for each trajectory. Finally, the outer expectation is approximated by
performing N episodes, i.e., experiencing multiple trajectories, and then averaging
the sums giving:

∇θ J (θ) ≈ 1

N

N∑
n=1

T−1∑
t=0

∇θ log πθ(an,t |sn,t )r(τn). (12)

After having obtained an approximation of the objective’s gradient, we may use
it to update the neural network parameters with standard stochastic gradient ascent:

θ = θ + α∇θ J (θ), (13)

where α is the learning rate and whose appropriate value must be experimentally
found.

The REINFORCE method works surprisingly well for a broad range of problems,
and there are many improvements that have been made to it to increase its
performance. Understanding the method presented here is a good foundation for
approaching current literature. The source code we provide for this chapter at https://
github.com/RodgerLuo/CPS-Book-Chapter uses REINFORCE.

https://github.com/RodgerLuo/CPS-Book-Chapter
https://github.com/RodgerLuo/CPS-Book-Chapter
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3 Microsoft’s AirSim

3.1 Overview

Developed by Microsoft Research AI in 2017, AirSim is an Unreal Engine plug-in to
provide physically realistic simulations for autonomous vehicles in Unreal Engine
environments [4]. The goal of AirSim is to offer an open-source platform for arti-
ficial intelligence research, especially in developing and comparing reinforcement
learning algorithms.

The installation of AirSim is straightforward, and its official web page provides
explicit instructions: https://github.com/Microsoft/AirSim/blob/master/docs/build_
windows.md. AirSim delivers binaries and builds for Windows and for Linux.
We recommend installing AirSim using builds because it gives more freedom for
customizing environments in Unreal. For this chapter, we built AirSim on Windows
10 Pro version 1709. For the rest of the section, we will introduce the core features
of AirSim concerning reinforcement learning and its Python APIs. We will discuss
how to customize Unreal environments in the following section.

By default, AirSim has two built-in vehicle models: multirotor and car.
For the rest of the chapter, we will use “drone” to indicate multirotor mode.
Users can choose to either manually fly the drone or drive the car with a remote
control or programmatically control the vehicles in C++, C#, Python, Java, etc.
This section focuses on programmatic control, particularly using APIs in Python.
Readers can find the official document for remote control configuration on this
web page: https://github.com/Microsoft/AirSim/blob/master/docs/remote_control.
md. We chose AirSim for our studies mainly because of two features: (1) the
combination of AirSim and Unreal provides a more realistic training environment
than other existing RL environments such as OpenAI Gym or Unity ML library,
and (2) the support of software-in-loop and hardware-in-loop with popular flight
controllers provides a potential smooth transition from the simulator to the real
world. This chapter focuses on drone simulation in which AirSim provides four
different flight modes, discussed in Table 1.

To choose a simulation mode and configure other settings, users can edit
setting.json at Documents\AirSim on Windows or ~/Documents/AirSim
on Linux. The minimal configuration is as follows:

{
‘SettingsVersion’:1.0

}

Listing 1 The minimal version of AirSim configuration

SettingsVersion instructs AirSim to load default settings when the Unreal
Engine starts. It is the only item required in setting.json and is usually listed
as the first item in the file. Any items after the SettingsVersion override the
related parameters in the default setting.

https://github.com/Microsoft/AirSim/blob/master/docs/build_windows.md
https://github.com/Microsoft/AirSim/blob/master/docs/build_windows.md
https://github.com/Microsoft/AirSim/blob/master/docs/remote_control.md
https://github.com/Microsoft/AirSim/blob/master/docs/remote_control.md
~/Documents/AirSim
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Table 1 Drone simulation modes in AirSim

Simulation mode Description

Computer vision No vehicle physics and dynamics involved in this mode. Users can
use keyboards or APIs to navigate and position the virtual drone.
This mode is usually used for proof of concept and rapid
prototyping

Simple flight A built-in flight controller provides realistic drone-flying
experience in Unreal. It doesn’t require additional configurations

Hardware-in-loopa The flight controller runs on physical hardware, which
communicates with AirSim using the USB port. The mode is the
closest scenario in comparison to flying a real drone, but requires
additional setups and is usually hard to debug

Software-in-loopa This mode is similar to hardware-in-loop, except the firmware runs
on the computer as opposed to a separate board. Regarding the
relationship to flying the drone in the real world, this mode is
in-between the simple flight and hardware-in-loop

aHardware-in-loop and software-in-loop are usually for advanced users. By far, AirSim supports
PX4 flight controller and plans to support ROSFlight and Hackflight in the future

Listing 2 shows how to load the virtual drone and use the computer vision mode
in the environment.SimMode determines whether to load the drone or car by setting
the parameter to multirotor or car, respectively. Setting UsageScenario to
ComputerVision disables physical simulation, so the drone would hang in the
air. Readers can find a comprehensive description about the settings of AirSim from
this web page: https://github.com/Microsoft/AirSim/blob/master/docs/settings.md.

{
‘SettingsVersion’: 1.0,
‘SimMode’: ‘Multirotor’,
‘UsageScenario’: ‘ComputerVision’

}

Listing 2 A configuration of AirSim to load the drone model and activate the computer vision
mode

3.2 Python APIs

In this section, we introduce two major features of the AirSim Python APIs: drone
navigation and image processing.

In the APIs for drone navigation, except for computer vision mode, all simulators
need to obey the rules of flying a real drone. Namely, the drone needs to be armed
before taking off and disarmed after landing. All other navigation commands
should wait until the drone takes off and hovers at a stable height. Table 2 shows five
auto-flight modes in the Python APIs that facilitate the drone navigation process. In

https://github.com/Microsoft/AirSim/blob/master/docs/settings.md
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Table 2 Five auto-flight modes in AirSim Python APIs

Auto-flight command Description

armDisarm Mandatory before taking off or after landing the drone

takeoff Take off and ascend to default height

land Land drone at its current position

goHome Move drone to its take-off location, followed by land command

hover Hover the drone at its current position

the computer vision mode, however, the drone is spawned directly in the air with no
physics and dynamics and doesn’t need to obey any aforementioned rules. We can
consider the drone as a non-gravity block with visual inputs in the computer vision
mode.

Before we discuss more sophisticated APIs to navigate the drone, it is necessary
to introduce four aircraft terms: pitch, roll, yaw, and throttle. Unlike driving a car,
controlling a drone is performed by making it rotate in three axes: normal axis,
lateral axis, and longitudinal axis. Figure 4 illustrates these axes.

The normal axis, also known as the vertical axis, is perpendicular to the body of
the drone and is directed toward the bottom. Yaw is the motion for this axis. Positive
yaw moves the head of the drone to the right.

The lateral axis is directed to the right of the drone and parallel to an invisible
line drawn from the left edge to the right edge. Pitch is the motion for this axis.
Positive pitch raises the head of the drone and lowers the end.

The longitudinal axis is directed forward, parallel to the body of the drone. Roll
is the motion for this axis. Positive roll lifts the left side of the drone and lowers the
right ride.

Besides the three motions, throttle controls the vertical movements of the drone.
Positive throttle raises the drone vertically.

Fig. 4 An illustration of the
four drone axes: roll, yaw,
pitch, and throttle

Roll

Yaw

Throttle -

Throttle +

Pitch
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Table 3 Five common navigation methods in AirSim

Methods Parameters

moveByAngle pitch, roll, z, yaw, durationa

moveByVelocity vx, vy, vz, duration, drivetrainb, yaw_modec

moveByPath path, velocity, max_wait_secondsd, drivetrain,
yaw_mode, lookaheade, adaptive_lookaheade

moveToPosition x, y, z, velocity, max_wait_seconds,
drivetrain, yaw_mode, lookahead,
adaptive_lookahead

moveByManual vx_max, vy_max, z_min, duration, drivetrain,
yaw_mode

aMethods taking the duration parameter are usually followed by a time.sleep function,
because the methods release control immediately. Without the time.sleep function, the
methods would not have enough time to finish
bDrivetrain has two modes: ForwardOnly and MaxDegreeOfFreedom.
ForwardOnly keeps the drone’s front always pointing in the direction of travel, while
MaxDegreeOfFreedom doesn’t have such restriction
cYaw_mode has two fields: is_rate and yaw_or_rate. Usually, it is set to yaw_mode
(false, 0) to keep the yaw constant
dIn comparison to duration, max_wait_seconds blocks the amount of time, in order to
make sure the action completes
eMost of the time, we set lookahead= −1 and adaptive_lookahead= 0 to let the drone
auto-decide the path

AirSim Python APIs provide five commands to navigate the drone by taking
different physical parameters as inputs. Some commands also have simpler versions
that take less parameters. Table 3 lists the five commands and the parameters each
command takes.

A necessary component for vision-based deep reinforcement learning is
acquiring visual inputs from the drone. AirSim provides seven image types: scene,
depth planner, depth perspective, depth vis, disparity
normalized, segmentation, and surface normals. We used the scene
type to get images for our studies. The following line of code demonstrates how
to acquire raw image data from the AirSim Unreal environment:

rawData = self.client.simGetImages([ImageRequest(1,
AirSimImageType.Scene, False, False)])

Listing 3 A command using AirSim API to acquire image data. The command takes four
variables: camera_id, activating a particular camera on the drone; image_type, choosing
one of the seven image types mentioned above; pixels_as_float, determining whether the
data type of pixels is float or integer; and compress, determining whether the acquired image is
compressed or not. The above command chooses the front-center camera, uses scene image type,
encodes the pixel values as integers, and keeps the image uncompressed

AirSim embedded five cameras on the drone: three of them are in the front, one
is in the back, and one is on the bottom of the drone. The three front cameras are
located on the right, center, and left, respectively. Camera No.1 refers to the front-
center camera, which is the camera we used for our reinforcement learning tasks.
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The orientations and positions of the cameras are customizable in Unreal. Besides
APIs for drone navigation and image processing, other useful APIs consist of
Collision, Reset, SimGetObjectPos, and ApiControlEnabled. More
details about the AirSim Python APIs can be accessed from: (1) https://github.com/
Microsoft/AirSim/blob/master/docs/apis.md and (2) https://github.com/Microsoft/
AirSim/blob/master/PythonClient/AirSimClient.py

4 Reinforcement Learning in AirSim

In this section we give a detailed introduction of how to implement RL using the
AirSim extensions detailed in Sect. 3. Our task is to train the drone to automatically
“collect” cubes in the environment, which consists of (1) an Unreal level for
dynamically positioning the cubes and monitoring the interactions between the
drone and the cubes and (2) a Python library used as an intermediate to receive and
send data between the Unreal level and RL algorithms. In terms of the navigation,
we simplify the drone’s movements by constraining it to three actions: left action,
right action, and forward action. Figure 5 demonstrates the drone’s movements used
in the cube collection task.

4.1 Unreal Dynamic Environment

Our Unreal environment was designed specifically for the cube collection task.
The environment fulfills the following requirements: (1) for each episode in the
RL training, the cubes should be randomly positioned in a restricted area; (2)
the cubes should vanish when the drone hits them or bypasses them. We don’t
want the drone to accidentally collide with the cubes by moving to the left or
right when no cube is visible in the drone’s camera view, because it will result in

Fig. 5 Drone’s movements
were simplified to fulfill the
requirement for our cube
collection task

https://github.com/Microsoft/AirSim/blob/master/docs/apis.md
https://github.com/Microsoft/AirSim/blob/master/docs/apis.md
https://github.com/Microsoft/AirSim/blob/master/PythonClient/AirSimClient.py
https://github.com/Microsoft/AirSim/blob/master/PythonClient/AirSimClient.py
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Fig. 6 A screenshot from Unreal, immediately after the drone spawned in the environment

false rewards3; (3) the environment should have invisible boundaries on the front,
left, and right to constrain the drone’s movements; (4) the number of the cubes
should be dynamic, and the invisible boundaries should be automatically adjusted
according to the number of the cubes. We adapted the Block Unreal environment
created by AirSim (https://github.com/Microsoft/AirSim/blob/master/docs/unreal_
blocks.md) and removed the unnecessary environmental details to create a minimal
Unreal environment for our task. Users can also use AirSim in any other Unreal
environments. A documentation of how to install AirSim in Unreal environments is
here: https://github.com/Microsoft/AirSim/blob/master/docs/unreal_custenv.md.

Generally speaking, Unreal has two modes: (1) edit mode, for editing
the environment, and (2) play mode, for testing the environment. The drone
only appears in play mode and spawns at the origin in the environment. To
change the spawning position of the drone, users need to modify the position
of PlayerStarter, an object corresponding to the drone’s position. In play
mode, users can see different camera views by pressing 1, 2, or 3. Pressing F1
can activate a detailed help menu. Figure 6 shows an initial state after spawning the
drone in the environment.

The requirements mentioned above were implemented in Unreal’s own visual
programming language, called blueprints. We created two blueprints to manage the
drone-cube interactions in the environment. The first blueprint is applied to all the
cubes so that each cube would be removed immediately after the drone hits or passes
it. The second blueprint is to randomly spawn all cubes in a constrained space, once
the drone is reset to its origin. Given the visual complexity of the two blueprints,
we present the high-level abstract structure of the two blueprints in Algorithm 1 and

3This is because our RL policy is memoryless. If an RNN or LSTM were used, instead of a vanilla
CNN, the policy gains memory, and it would be possible for the drone to learn to bump into cubes
which it can no longer see.

https://github.com/Microsoft/AirSim/blob/master/docs/unreal_blocks.md
https://github.com/Microsoft/AirSim/blob/master/docs/unreal_blocks.md
https://github.com/Microsoft/AirSim/blob/master/docs/unreal_custenv.md
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Algorithm 1: Apply to all the cubes in the environment that each cube
would be removed immediately after the drone hits or passes it

1 while env is running do
2 if collision then
3 remove the cube
4 else if drone.xPosition > cube.xPosition then
5 remove the cube
6 end

Algorithm 2: Randomly reposition all the cubes in a constrained space,
once the drone is reset to its origin

1 while env is running do
2 if drone.position == origin.position then
3 remove_all_cubes()
4 for cube_index in range(num_cubes) do
5 spawn.xPos = cube_index * cube_distance + starting_pos
6 spawn.yPos, spawn.zPos = random(-bound, bound)
7 spawn_cube(spawn.position)
8 end
9 end

10 end

Algorithm 2, respectively. Readers can download the blueprint files from our source
code repository.

Usually, blueprints and models are located in Asset folder in Unreal. However,
since the drone is imported from AirSim rather than created in Unreal, it doesn’t
exist in the Asset folder. To modify the drone’s blueprint, we need to switch
to play mode in which an object called BP_FlyingPawn highlighted in gold
will appear in the World Outliner window. The blueprint exists at the Event
Graph menu after clicking Edit→ BP_FlyingPawn.

We also expanded the field of view of the original camera on the drone to better
keep cubes in the drone’s view. To modify the cameras’ attributes, we open the editor
of BP_PIPCCamera, by using the same method of accessing the drone’s blueprint.
The field of view can be found on the Details window, under the Projection
menu. We changed the field of view from 90.0 to 135.0.

4.2 Python Environment Library

Our Python environment library serves as an intermediate to send and receive
data between the Unreal environment and our reinforcement learning algorithms.
It is designed explicitly for the AimSim Python APIs and is compatible with any
automatic differentiation framework, such as TensorFlow or PyTorch.
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Table 4 A high-level description of the Python environment library

Function Description

__init__ Setup connections to the AirSim Python APIs. Parse the parameters
of the drone and the environment

reset Position the drone to the origin. Reset parameters

step Send the updated drone’s position to AirSim. Return state, reward,
done, and infoa

get_image Convert and process raw image data from AirSim to NumPy arrays
which are compatible with our convolutional neural network

aThe details of the four parameters will be introduced in the following paragraph

The library has four major functions: (1) initialize the environment; (2) reset the
environment; (3) for each step, navigate the drone based on the received action and
return the essential training data, such as state, reward, and done; and (4) process
raw image data from Unreal to make them compatible with the deep neural network.
Each function can be called independently during the training process. Table 4
shows a high-level description of the library.

The core part in the library is the step function of which the logic is presented
in Algorithm 3. The function is responsible for returning four essential values for
our RL training:

Algorithm 3: step function, a core function in our Python Environment
Library that takes action as the input and returns state, reward, done, and
number of collected cubes
Input: action
Output: state, reward, done, number of collected cubes

1 the drone’s current position = GetPosition();
2 distance = Move(action);
3 SetPosition(the drone’s current position + distance);
4 state = GetImage();
5 collision info = GetCollisionInfo();
6 if collided then
7 reward = 1;
8 num of collected cubes += 1;
9 end

10 if the drone out of the boundary then
11 done = 1
12 else if num of collected cubes == num of cubes placed in the env then
13 done = 1
14 else if num of steps == threshold then
15 done = 1
16 else
17 done = 0
18 end
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• state: represents the drone’s observation of the environment. In our case, the
states are the images captured by the camera on the drone.

• reward: the amount of rewards acquired by the previous action. We set the
reward to 1 for collecting a cube and 0 for any other actions.

• done: whether the episode ends. In our case, one episode ends when the
drone collects all the cubes in the environment or moves outside of the defined
boundaries.

• info: diagnostic information useful for debugging. We are particularly inter-
ested in the number of cubes collected by the drone.

4.3 REINFORCEMethod in AirSim

We now adapt the concepts of the REINFORCE method from Sect. 2.2 to the cube
collection task. A simple convolutional neural network is used to represent the
policy. We will refine the objective (from Eq. (2)) of finding network parameters
which maximize the expected sum of rewards across all time steps in the episode:

θ� = arg max
θ

Eτ∼pθ

T−1∑
t=0

r(st , at ).

In the cube collection task, a reward of 1 is provided by the environment each time
a cube is collected by the drone, and 0 reward when no cube is collected, so the
objective is to collect as many cubes as possible in each episode (i.e., during time
step t = 0 . . . T − 1, where T − 1 is the step when the last cube is collected or the
drone has gone out of bounds). In the context of REINFORCE, this objective was
discovered by taking its gradient (from Eq. (12)):

∇θ J (θ) ≈ 1

N

N∑
n=1

T−1∑
t=0

∇θ log πθ(an,t |sn,t )r(τn),

and then updating the neural network parameters based on the gradient. Recall that
πθ is the neural network, and, in the drone collection tasks, πθ(an,t |sn,t ) is the output
probability4 of going left, right, or forward, given input pixels from the drone’s
camera.

The weakness of Eq. (12) for our context is that the rewards are sparse, because
there are only three cubes total to collect in each trajectory. If r(τn) is used directly
as the reinforcing signal, then entire trajectory probabilities are increased or are
unchanged. This results in high variance in performance between each episode. An
approach to get faster results in the cube collection task is to “smooth” the attribution

4Softmax of the network’s logits.
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Algorithm 4: REINFORCE algorithm in the context of the AirSim cube
collection task
Input: Old policy parameters θ , learning rate α, tuple of (observations s, actions a,

rewards r) from last cube collection episode
Output: Updated policy θ

1 Apply Eq. (14) to obtain discounted rewards g from a

2 Normalize g

3 Set sumof grads = 0
4 for t = 0 . . . T − 1 do
5 sumof grads = sumof grads + gt∇θ log πθ (at |st )
6 end
7 θ = θ + αsumof grads

8 return θ

of rewards from later stages to earlier stages by applying a discounted return to the
gradient at each time step. Discounted return is defined as:

gt = rt+1 + γ rt+2 + γ 2rt+3 + γ 3rt+3 + γ t+T rt+T =
T−1∑
k=0

γ krt+k+1, (14)

where γ ∈ [0, 1] is the discount rate. The resulting g vector of Eq. (14) is also
normalized5 in the cube collection task. Using g we update Eq. (12) to give:

∇θJ (θ) ≈
T−1∑
t=0

∇θ log πθ(at |st )gt , (15)

where we are only collecting a single trajectory between applications of gradient
ascent. There are better approaches than using the discounted return, and our source
code example is parameterized to allow experimentation between other reward
function alternatives.

We summarize the use of the REINFORCE method in the context of our AirSim
cube collection task formally in Algorithm 4. This algorithm is implemented in the
provided source code.

5 Increased Trustworthiness Through Visualization

Machine vision algorithms have changed radically in the era of artificial intelli-
gence. For example, prior to the age of AI, if we asked a machine to look for a face in
an image, we knew what the machine would look at. With the development of deep

5Normalization is defined as g ← (g−μ(g))/σ (g), where scalar operations are applied element-
wise to the vector.
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neural networks, we significantly increased machine vision performance, surpassing
that of traditional methods, but we initially had limited understanding regarding
which part of the input triggered the machine to come to its conclusion. Such “black-
box” performance is tolerated for some applications, but, in order to develop trust
in AI’s decision-making process, it is important for engineers to understand the
mechanism behind the machine’s decision-making.

This section will introduce three common visualization techniques: T-SNE,
action visualization, and attribution visualization. We adapt these visualization
methods for applications of understanding deep reinforcement learning. As a case
study, we use imagery and trained policies from the cube collecting example which
was detailed in previous sections. For each visualization technique, we analyze three
policies that have been trained to collect cubes using the REINFORCE algorithm.
The policies have the following descriptions:

• Good policy: collects most cubes in the environment.
• Poor policy: is unable to collect any cubes except randomly
• Right-and-forward policy: is only able to collect cubes directly in front or to

the right. Ignores all cubes on the left

5.1 t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduc-
tion algorithm developed by Laurens van der Maaten and Geoffrey Hinton [5].
It is well suited for visualizing high-dimensional datasets in 2D or 3D spaces.
Specifically, the visualization maps each high-dimensional data point to a two- or
three-dimensional space in a way that similar data points are nearby and dissimilar
ones are distant. The technique was adapted later to reveal structure of images at
many different scales. The most recent application of visualizing images via t-SNE
is to use a convolutional neural network to extract features from images, input the
extracted features of each image to t-SNE to get the “position” of each image, and
then arrange the images on a 2D or 3D space based on the given positions.

Formally, t-SNE measures the pair-wise distance between all points in a high-
dimensional dataset. It then projects the high-dimensional dataset to a 2D or 3D
space and adjusts the points in the projection to have pair-wise distances which are
similar to the high-dimensional dataset. The pair-wise distance between points xi

and xj in dataset x is defined as the probability that xj would be chosen from a
Gaussian centered at xi:

pj |i = e(−‖xi−xj ‖2/2σ 2
i )

∑
k �=i e(−‖xi−xk‖2/2σ 2

i )
, (16)
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where σi is the variance of a Gaussian centered on data point xi . Using a similar
metric, the distances between low-dimensional points yi and yj are measured as:

qj |i = e(−‖yi−yj ‖2)

∑
k �=i e(−‖yi−yk‖2)

. (17)

For each low-dimension point yi , the similarity of the high-dimensional and
low-dimensional dataset is measured by taking the sum of the Kullback-Leibler
divergences between p∗|i and q∗|i . A cost function is defined by this sum, and then
the projection of point yi is adjusted via gradient descent. By iteratively adjusting
each low-dimension point in this way, the low-dimension dataset takes on distance
characteristics of the high-dimensional dataset.

In this subsection, we use t-SNE to examine the representations learned from
the cube collection task to have a visual overview of the three trained policies.
To distinguish the three different actions (forward, right, and left) triggered by the
visual inputs, we tinted each visual input based on its predicted action: red indicates
forward, green indicates left, and blue indicates right.

Figure 7 shows the two-dimensional t-SNE embedding of the visual inputs when
using the poor policy (left) and the right-and-forward policy (right). The t-SNE
visualization provides insight into the policy’s quality. In the poor policy, e.g.,
the drone only moved to the left from the beginning to the end of each episode,
regardless of the visual inputs. In the right-and-forward policy, the majority of the

Fig. 7 Two-dimensional t-SNE embedding of visual inputs obtained by applying the poor policy
(left) and right-and-forward policy (right) to the cube collection task. The left shows 400 inputs
from 15 episodes from the poor policy; the right presents 400 inputs from 8 episodes from the
right-and-forward policy. Tinted colors indicate the predicted actions: red, forward; green, left;
and blue, right. It can be seen that the poor policy always chooses the left action (green), no matter
the input. The right-and-forward policy usually chooses forward (red) and will occasionally go
right (blue)
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Fig. 8 Two-dimensional t-SNE embedding of 625 visual inputs from 7 episodes of applying the
good policy to the cube collection task. Tinted colors indicate the predicted actions: red, forward;
green, left; and blue, right. The large red cluster makes sense, because the policy should choose
forward in those images. Furthermore, most of the scattered blue and green make sense. But the
larger blue cluster highlights a weakness in the so-called good policy, as the policy should go left
in such settings, but instead chooses right

moves are forward, and occasionally the policy chose to move to the right. As t-SNE
arranges images based on their visual similarity, the scattered blue images indicate
that something is wrong with the policy. Images that trigger the same behavior
should logically be placed together by t-SNE.

By observing the t-SNE visualization of the so-called good policy in Fig. 8, we
see that cubes in the center of the image are likely to trigger the forward action and
cubes in the left or right of the images are likely to trigger the left or the right action,
respectively. By examining Fig. 8, we also see that t-SNE may be used as an efficient
tool to detect flaws in RL policies, even if the policies have good performance, like
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Fig. 9 These two visually similar images triggered opposite actions (left and right) in the so-called
good policy. This indicates a flaw in the trained policy. t-SNE enables the RL policy developer to
quickly spot such anomalies

this one. For example, in Fig. 8 the green area on the upper left and the blue area on
the lower right both contain cubes located on the left edge of the image; however it
can be seen that those images triggered two opposite actions, which is against the
intuition of a good policy for the cube collection task. After examining the raw data,
we found the drone stuck in such situations by moving back and forth between left
and right. Figure 9 highlights the two individual visual inputs causing the opposite
actions.

5.2 Action Visualization

Action visualization methods generate visual inputs which would activate a partic-
ular action in a trained policy network. This approach allows for a high level of
human comprehension about the behavior of a network, rather than treating the net-
work like a black box model. For our specific action visualization approach, we use
the Class Model Visualization (CMV) technique introduced in [6]. CMV generates
inputs which will trigger any specific output class in a trained convolutional neural
network.

In this subsection we are interested in understanding what visual input causes
specific actions to be selected by the RL policy of interest. In our study, we
generate inputs to optimize for the three action cases: left, right, and forward. After
choosing an action to optimize for, a uniformly random image is generated.6 This
initially random image is then evaluated by the trained policy network. The output
probability for the desired action is then increased through back-propagation, where
the gradient is calculated with respect to the image pixels. We repeat this process of
forward and back-propagation, until the action probability is maximized.

Formally, we let a represent the action for which we want to generate an input
image to trigger; s is the input image which will be optimized such that the action
probability is maximized. We let πθ(a|s) represent the probability of taking action

6For the cube collection task used in this chapter, we used a simple CNN with a grayscale image
as input, so we generate grayscale images for action visualization.
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(a) (b) (c)

Fig. 10 Action visualizations for the good policy. The drone learns that when the camera is
occluded (dark spots), it should move in the direction of the occlusion. (a) Left action. (b) Forward
action. (c) Right action

a ∈ {left, right, forward}, given the image s. The goal then is to solve the following
optimization problem:

s∗ = arg max
s

π(a|s). (18)

In practice, the optimal image s∗ is found using gradient ascent by an automatic
differentiation tool like TensorFlow or PyTorch.

Note that CMV differs from the normal application of back-propagation, which
typically considers the input (s in this case) to be fixed and instead finds neural
network parameters θ which optimize the objective function. In the case of CMV,
parameters are locked after policy training, and it is instead s which is optimized.

Generating action visualizations is currently an art, and, unfortunately, if the
basic objective derived from Eq. (18) is used, an unsatisfactory optimal image s∗
may be generated. However, there are a number of refinements that generate more
meaningful images using CMV. If images are unsatisfactory, one refinement is to
preprocess the current input image s by subtracting the mean and standard deviation
of the training set images from s between each iteration.7 Another refinement is to
blur s between iterations. Another refinement is to use large learning rates during
optimization, e.g., 20. See [7] and [6] for more optimizations.

Using CMV, we generated action visualizations shown in Figs. 10, 11, and 12.
These visualizations illustrate the inputs which would maximize probabilities for
selecting the three possible drone actions by the good policy, poor policy, and the
right-and-forward policy. If we choose a single random image s and iterate on it for
an extended period of time using the methods described above, we will obtain an
input image which will trigger the desired action in the policy of interest.

The good policy’s action visualization in Fig. 10 clearly explains what the
network is looking for. The bias toward the left, forward, or right is apparent in each
image, depending on the position of the cube. Specifically, if a cube blocks the view
of the camera on the left, then the policy will most likely choose the left action.
Similarly for the forward and right actions, note that horizon is somewhat visible
(near the center) in the left and forward action visualizations. It is also interesting to

7In this case, the training set consists of the set of images captured by the drone during its episodes.
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(a) (b) (c)

Fig. 11 Action visualizations for the poor policy. The forward action visualization shows that
only the forward action is most probable. All actions have roughly equivalent action visualizations,
indicated by the “murky” figures. (a) Left action. (b) Forward action. (c) Right action

(a) Left action (b) Forward action (c) Right action

Fig. 12 Action visualizations for the right-and-forward policy. In (a) we observe that only an
empty field of view (which should never happen in our simulation) would cause the drone to move
left. In (b) the forward action visualization is also incorrect (see Fig. 10 for a correct version) and
objects on the left will trigger a forward action. In (c) the right action has the expected action
visualization

note that the images are not quite symmetric (the left action visualization does not
look like the right action visualization).

Action visualizations of the poor policy help explain why the drone performs
so poorly. Figure 11a–c illustrates that the actions of the poor policy are equally
triggered by noise. The policy used to generate the images in Fig. 11 was unable to
collect cubes in the simulation.

Action visualizations for the right-and-forward policy are given in Fig. 12. At a
high level, we can see that only the right action visualization makes sense. That is,
when the camera is occluded on the right, the policy will choose to move to the
right. The left action visualization shows that there is a small response to camera
occlusion on the left, but the forward action visualization dominates the left action.
These visualizations explain why the policy collects 100% of the cubes that occur
on the right side of the drone, but no cubes on the left side.

The degenerate right-and-forward policy is especially insightful and highlights
one of the challenges in reinforcement learning. If the learning rate (α in Eq. (13))
is too high, the policy might finalize its decision-making process based on early
experience. In this case, the drone experienced an early success by moving right
and forward almost exclusively during early experiences. Combined with a learning
rate that was too high, this early success led to a catastrophic elimination of left
action probabilities. The remedy for this was to lower the learning rate of the policy
updates and retrain the policy.

The ability to visualize and understand the desired inputs for any individual
policy action is a useful tool for verification and debugging of policies. The
downside to the Class Model Visualization technique presented here is the number
of hyperparameters which must be manually tuned.



214 J. Luo et al.

We now move to a technique which is able to highlight areas of an experienced
input image responsible for triggering specific actions.

5.3 Attribution Visualization

Attribution visualization techniques highlight regions in an input which were most
responsible for a particular action in a CNN-based policy. In this subsection we use
an attribution visualization technique called Gradient-Weighted Class Activation
Mapping (Grad-CAM) [8].

CNNs are particularly well suited for attribution visualization, because they
maintain spatial structure of the input as it flows through the network; this is why
we can extract meaning from the last layer. A feature map is the output of a
convolutional layer after it has passed through a nonlinearity function (e.g., ReLU8).
Feature maps typically have many channels, and the goal of Grad-CAM is to find
which channels contribute the most to an action taken. Grad-CAM achieves that
goal by calculating the average derivative of the policy network, given a specific
action a and input image s, with respect to the feature map of interest9:

αk = 1

Z

∑
i

∑
j

∂πθ (a|s)
∂Ak

ij

, (19)

where A is the feature map of our target convolutional layer, Ak is the channel k of
A, Ak

ij is the neuron at position i, j , and Z = i× j . αk is known as the importance
weight for feature map channel k.

To help clarify Eq. (19), consider that each partial derivative ∂πθ(a|s)/∂Ak
ij gives

the change in the probability of the desired action, with respect to activation i, j .
Summing over all i, j in a channel gives the total change in the probability with
respect to all of the channel activations. Finally, αk is the average derivative of the
feature map channel. Feature maps typically have many channels, denoted by K ,
and a unique αk is calculated for each one.

Once importance weights α1, α2, . . . , αK are known, they may be used to
linearly combine feature map channels 1 through K , giving a “class activation map”:

Grad− CAM = ReLU
(∑

k

αkA
k
)
, (20)

where ReLU is being used to filter for derivatives with a positive effect.

8ReLU stands for rectified linear unit and is defined as ReLU(x) = max(0, x).
9When using Grad-CAM, a and s are sampled from the policy and environment, while the policy
controlled the drone, whereas with CMV (presented in the previous subsection) s was generated
by the method and a was specified.
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Attribution visualizations for a sequence of observation-action pairs from the good policy.
The ⊥ shape in the gray region indicates action probabilities (by the lengths) and the action that
was chosen (colored red). Brighter areas indicate regions most responsible for actions

In the remainder of this section, we use Grad-CAM to create attribution visual-
izations for the left, forward, and right actions. In addition, the action visualization
created the good policy, poor policy, and right-and-forward policy. In each example,
we have six images which were captured while the drone performed in the simulator.
Each visualization shown below also has an indicator which shows three bars: one
for left, forward, and right, where the length of each bar gives the action probability
output from the policy. The action indicated by the red bar is the action for which
attribution visualization is generated in each image.

In Fig. 13, we first consider attribution visualizations for the good policy.
First consider Fig. 13a. In this image, we see that the left action has the highest
probability. But because the forward action was chosen, it is colored red. Grad-
CAM was then used to visualize exactly what in the input image cased the forward
action to have the probability that it had. The bright spots in the image give
that information. We can see that the cube is very bright, which indicates that
it had a high influence on choosing the forward movement. Figure 13f is also
worth considering. In this case the forward action was the only action with a high
probability, and the entire cube is bright, indicating its responsibility for the action.
Also note in Fig. 13f how the ground is bright, which indicates that our policy has
learned not just to look for cubes, but also pays attention to other aspects of the
environment.

In Fig. 14 we see visualizations for the poor policy. In that figure, observe that all
action probabilities are roughly the same, as indicated by the⊥ shape, regardless of
the position of the drone relative to the cubes. For example, in Fig. 14f, the action
probability for left is slightly larger than that for right, even though the cube is on
the right. For a rational probability for that observation, consider Fig. 13c, where the
left action probability dominates other possibilities.

Figure 15 provides attribution visualizations for the right-and-forward policy. In
the top row, we see a sequence (a–c) where the policy should be predicting left
actions, but it does not. The policy is blind to objects on the left. In the bottom row,
sequence (d–f), the policy does respond in an expected manner to objects to the front
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Attribution visualizations for a sequence of observation-action pairs from the poor policy.
Highlighting varies randomly from frame to frame, indicating that the policy has not learned to pay
attention to the correct features

(a) (b) (c)

(d) (e) (f)

Fig. 15 Attribution visualizations for a sequence of observation-action pairs from the degenerate
right-and-forward policy. The policy is not paying any attention to the cube, as it is black. All
decisions are made based on the view of the horizon

and right, but it is not the object that triggers the action, but only the shape of the
horizon.

6 Conclusion

In this chapter we have presented how to use Microsoft’s drone simulation environ-
ment and reinforcement learning to train a drone to navigate to and “collect” cubes
which are scattered in front of it. In addition, we showed how to use existing deep
neural network visualization techniques to understand the reinforcement learning-
derived control policies. Because they can be improved and extended, the methods
introduced here are a good starting point for multidisciplinary teams aiming to apply
reinforcement learning to Cyber-Physical Systems.

Specifically, this chapter may be used by academic or industrial engineering
teams as an entry point into the field of vision-based deep reinforcement learning.
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In this chapter, a basic reinforcement learning algorithm was introduced, and it may
be extended in many ways. For example, if a team has the ability to build optimal
control policies, then more advanced reinforcement learning methods may be used.
Similarly, if a team has the ability to build physical drones, then the policies learned
in simulation may be transferred to the physical drone. The avenues for enhancing
what was presented here are limited only by the diversity of the team.

The source code for the cube collection environment and solution is available at
https://github.com/RodgerLuo/CPS-Book-Chapter.
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