
Mathematical Optimizations for Deep
Learning

Sam Green, Craig M. Vineyard, and Çetin Kaya Koç

Abstract Deep neural networks are often computationally expensive, during both
the training stage and inference stage. Training is always expensive, because
back-propagation requires high-precision floating-point multiplication and addition.
However, various mathematical optimizations may be employed to reduce the
computational cost of inference. Optimized inference is important for reduc-
ing power consumption and latency and for increasing throughput. This chapter
introduces the central approaches for optimizing deep neural network inference:
pruning “unnecessary” weights, quantizing weights and inputs, sharing weights
between layer units, compressing weights before transferring from main memory,
distilling large high-performance models into smaller models, and decomposing
convolutional filters to reduce multiply and accumulate operations. In this chapter,
using a unified notation, we provide a mathematical and algorithmic description of
the aforementioned deep neural network inference optimization methods.

1 Introduction

Deep neural networks (DNNs) are increasingly being incorporated into safety-
critical cyber-physical systems. For example, Advanced Driver Assistance Systems
use DNNs for autonomous avoidance of road hazards. Modern DNN architectures

S. Green (�)
University of California Santa Barbara, Santa Barbara, CA, USA
e-mail: sam.green@cs.ucsb.edu

C. M. Vineyard
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: cmviney@sandia.gov

Ç. K. Koç
İstinye University, İstanbul, Turkey

Nanjing University of Aeronautics and Astronautics, Nanjing, China

University of California Santa Barbara, Santa Barbara, CA, USA
e-mail: cetinkoc@ucsb.edu

© Springer Nature Switzerland AG 2018
Ç. K. Koç (ed.), Cyber-Physical Systems Security,
https://doi.org/10.1007/978-3-319-98935-8_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98935-8_4&domain=pdf
mailto:sam.green@cs.ucsb.edu
mailto:cmviney@sandia.gov
mailto:cetinkoc@ucsb.edu
https://doi.org/10.1007/978-3-319-98935-8_4

70 S. Green et al.

require billions of floating-point multiplications and additions (MACs) for inference
of a single input. Without careful design, this results in high power consumption.
Fossil fuel-powered vehicles, for example, can support high energy demands, but
efficient, battery-powered systems cannot. Additionally, modern large DNNs have
high latency, but low latency is required for real-time cyber-physical applications.
This chapter provides a unified view of the leading methods for mathematically opti-
mized deep learning inference. The intended audience of this chapter are hardware
and software researchers, as well as developers interested in efficient DNN infer-
ence. Depending on the context, “efficiency” may imply low-power or low-latency.

To motivate the need for optimizations, it is helpful to consider first-order power
and silicon area requirements for DNN inference. Table 1 provides a list of energy
and die area required for various operator and operand sizes. Observe that a single
32-bit floating-point multiplication (denoted “32b FP Mult”) requires 20× more
power and 12× more area than 8-bit integer multiplication (“8b Mult”). Also
observe that the power cost of a 32-bit DRAM read is more than 100× the cost of
floating-point multiplication. For this reason, efficient DNN implementations should
prioritize the minimization of off-chip DRAM access first, followed by reducing
operand and operator sizes. Naturally these two priorities complement one another.

DNN optimizations are useful only during the inference operation. Training a
DNN requires labeled datasets and uses the back-propagation algorithm. The back-
propagation algorithm uses gradient descent to make many small adjustments to the
neural network weights, and these small values must be calculated and stored using
full-precision accumulation. Therefore the optimizations discussed in this chapter
are not primarily aimed at making training more efficient, but they are intended to
make inference more efficient.

To further emphasize the need for inference efficiency, consider the number
of operations required to evaluate various modern DNNs, given in Table 2. This
table provides a first-order estimate for MAC and memory costs for popular

Table 1 Energy and die area
costs for various
operations [1]

Operation Energy (pJ) Area (μm)

8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1 137

16b FP Add 0.4 1360

32 FP Add 0.9 4184

8b Mult 0.2 282

32b Mult 3.1 3495

16b FP Mult 1.1 1640

32b FP Mult 3.7 7700

32b SRAM Read (8KB) 5 N/A

32b DRAM Read 640 N/A

Quantized operators and operands are preferred for
low-power and low-resource applications. FP stands
for floating point

Mathematical Optimizations for Deep Learning 71

Table 2 Number and cost of weights and MACs for popular deep neural network architectures

Metrics LeNet 5 AlexNet Overfeat fast VGG 16 GoogLeNet v1 ResNet 50

Weights 60k 61M 146M 138M 7M 25.5M

Read cost (8b) 10µJ 10 mJ 23 mJ 22 mJ 1 mJ 4 mJ

Read cost (32b) 38µJ 39 mJ 93 mJ 88 mJ 4 mJ 16 mJ

MACs 341k 724M 2.8G 15.5G 1.43G 3.9G

MAC cost (8b) 0.1µJ 167µJ 644µJ 3565µJ 329µJ 897µJ

MAC cost (32b) 2µJ 3 mJ 13 mJ 71 mJ 7 mJ 18 mJ

Cost estimates are based on Table 1 and from architecture statistics provided in [1]. Note that
memory costs are typically higher than MAC costs

DNN architectures. Power estimates assume 32-bit floating-point arithmetic and are
derived from Table 1. MAC costs capture the power requirement for each network
to perform the necessary operations for providing a single inference. The memory
cost is best case and assumes weights are read from DRAM only once per inference;
actual memory costs will be higher if intermediate results must be transferred back
to DRAM during inference of the network. In Table 2 note that even though the
number of MACs is much greater than the number of weights, the high DRAM read
cost results in the power consumed between the two to be roughly equivalent.

The process of DNN training may be thought of as an exploration over a
parameter space to find values which will solve an inference task. As will be
expanded on, the weights found using standard training methods result in DNNs
which are over-parameterized, which means they have redundancy. When the
DNN performs satisfactorily during cross validation, back-propagation is no longer
needed, and optimizations may be applied to decrease parameter redundancy. The
goal of mathematical optimizations for deep learning is to find the most compact
network which performs satisfactorily at its assigned real-world inference tasks.

DNN architectures are composed of various layer types: convolutional, fully
connected, dropout, pooling, and others. Each layer type was developed to solve
a particular weakness, and each classification problem is best solved by a different
architecture, or combination of layers. Convolutional and fully connected layers
represent the greatest computational expense in DNN inference, and optimizing
these layer types is the focus of this chapter. Both convolutional and fully connected
layers require repeated multiplication and addition, but they typically use different
algorithmic steps. Adapting notation of [2], we represent an L-layer DNN as
〈I, W, O〉, where:

• Il ∈ R
cin×x×y and Wl ∈ R

cin×w×h×cout are layer l’s input tensors and weight
tensors, respectively. cin represents the number of input channels and cout

represents the number of output channels.1 x and y are the width and height
of each input channel, and w and h are the width and height of each filter.

1Also called input filter maps (ifmaps) and output filter maps (ofmaps) in literature.

72 S. Green et al.

}

}

}

} }

Fig. 1 Convolutional layers convolve a weight filter with an input. Filters are usually 5×5, 3×3, or
1×1. Each step of the convolution involves multiplying and accumulating elements of the weight
filter with a receptive field of the input. The top illustration represents the basic convolution
operation (∗). The lower illustration represents cout , cin-channel filters which are convolved with
a cin-channel input tensor, which results in an cout -channel output tensor

• Ol ∈ {∗, ·, other} specifies whether the layer’s operation type is convolution (∗),
fully connected (·), or some other less computationally expensive type.

Convolutional layers convolve a R
cin×w×h×cout weight filter tensor with a

R
cin×x×y input tensor, where (w,x) and (h,y) represent the widths and heights of

the two respective tensors and may be different sizes and cin and cout represent the
number of input and output channels. In particular the (w, h) for weight filters are
often smaller than the (x, y) for inputs. c is the number of channels in the given
layer; this value is equal for both the weight filter tensor and input tensor. As illus-
trated in Fig. 1 (top), each step in the convolution requires a sum of products between
elements of the weight filter and elements of the receptive field of the input filter.

Note that what is shown in Fig. 1 (top) only depicts convolution of a single
channel. If there are multiple channels, then the summation is also over all channels.
Figure 1 (bottom) shows a higher-level view, where each cin-channel weight filter is
convolved with the cin-channel input tensor. When multiple channels are included
in the convolution, each output of the convolution becomes the triple sum across the
channels. The number of weight filters in a layer equals the number of channels in
the output tensor: if there are cout weight filters, there will be cout channels in the
output tensor.

Computation for fully connected layers requires a single matrix-vector product.
The input tensor Il ∈ R

cin×x×y is flattened to a vector ∈ R
cin·x·y . The weight tensor

is denoted W ∈ R
w×h, where w = cin · x · y (from the input tensor dimensions) and

h is equal to the number of desired output units from the fully connected layer. An
illustration of a fully connected layer is given in Fig. 2.

After a weight filter W is convolved with an input I in a convolutional layer, or
the matrix-vector product between weights and layer inputs is produced for a fully
connected layer, the resulting matrix of vector entries is typically passed through a
nonlinearity function σ : R → R. A commonly used nonlinearity is the rectified

Mathematical Optimizations for Deep Learning 73

Fig. 2 Fully connected layers flatten the input tensor into a vector and multiply by a weight matrix
with the same number of columns as the vector and as many rows as desired

linear unit (ReLU), which is defined as:

σReLU(x) =
{

x if x ≥ 0,

0 else.
(1)

But more extreme nonlinearities exist, such as the binarized activation function
which outputs only two values, −1 and 1:

σb(x) =
{

1 if x ≥ 0,

−1 else.
(2)

The choice of nonlinearity function influences the performance and computa-
tional cost of inference. Specifically, using the binarized activation function can
lead to the elimination of floating-point and fixed-point arithmetic during inference,
as detailed in Sect. 3.2.

Both convolutional and fully connected layers require many memory access
and MAC operations, but a variety of numerical optimizations may be applied
to DNN inference. Some optimizations reduce power and some optimizations
reduce both power and latency. Furthermore, it is possible to optimize a DNN and
maintain classification accuracy, but there also exist extreme optimization methods
which result in unavoidable accuracy loss. Depending on the application, decreased
accuracy may be worth the reduction in power and latency.

The remainder of this chapter provides an introduction to the common
approaches of DNN mathematical optimization. The approaches are grouped by
five primary strategies:

• Pruning: reduces the number of weights, which, in turn, reduces the total
number of MAC operations, amount of traffic required to transfer weights, and
storage requirements. This method applies to fully connected and convolutional
layers.

• Quantization: lowers the number of bits of precision representing neural
network inputs, weights, or activations, which lowers both memory requirements
and silicon required for processing elements. This method applies to fully
connected and convolutional layers.

74 S. Green et al.

Fig. 3 Histogram of weights of the first fully connected layer in VGG-16. The name “clas-
sifier.1.weight” corresponds to the VGG-16 implementation found in torchvision [4]. The two
vertical lines correspond to thresholds of values smaller than the 50th-percentile. These values may
be pruned (permanently set to zero) and the remaining values fine-tuned with no loss in accuracy
[3]. The same procedure may be applied to all other layers in the network

• Weight Sharing and Compression: forces weights to share values, thus decreas-
ing memory storage and traffic. This method applies to fully connected and
convolutional layers.

• Model Distillation: the training of a smaller network to mimic the behavior
of larger network, reducing the number of weights and lowering latency. This
method applies to fully connected and convolutional layers.

• Filter Decomposition: modifies convolutional filter designs such that the number
of weights and latency is reduced. This method only applies to convolutional
layers.

2 Pruning

Pruning applies to fully connected and convolutional layers and eliminates each
layer’s smallest weights, which has the consequence of reducing the number of
MAC operations, the amount of traffic required to transfer weights, and storage
requirements. The typical procedure is to train the network until the desired accuracy
is reached and then to prune the smallest pth-percentile of weights by setting them
to zero. Pruning is followed by fine-tuning the remaining weights, which can be
accomplished using the same dataset as used during initial training.

Mathematical Optimizations for Deep Learning 75

In [3], the authors report 9× and 13× reduction in weights for AlexNet and
VGG-16 with no impact on test accuracy. A histogram of the normalized frequency
of weights is given in Fig. 3, where the smallest 50th-percentile is delineated with
two vertical lines. In practice, one would pick the percentile threshold for each layer
heuristically, that is, the percentile threshold would be a hyperparameter for each
layer. This process is represented in Algorithm 1.

Algorithm 1 Pruning
Require: L-layer DNN 〈I, W, O, P〉, where Il and Wl are layer l’s input tensors and parameter

tensors respectively, and Ol specifies whether the layer’s type is convolutional, fully-connected
(or some other type), and P is the pruning percentile for each layer.

Ensure: Pruned and fine-tuned network weights W.
1. Initial training:
Perform standard training of DNN until satisfactory performance is achieved.
2. Pruning:
For each layer l in 〈I, W, O, P〉, eliminate weights in Wl which are less than layer l’s pth

percentile, where p = Pl .
3. Fine-tuning:
Perform standard (re)training of remaining weights W, until maximum performance is achieved.

After pruning, the resulting DNN will be sparse, with many weights set to zero.
Standard architectures, like GPUs, are currently not designed to take advantage of
sparsity and will perform multiplication regardless if one of the operands is zero. In
order to benefit from pruning, the architecture must be designed in such a way as
to take advantage of sparsity. This will add edge cases to standard logic design. For
example, consider a product summation tree, which can parallelize MAC operations.
Even if the tree is designed to ignore products with a zero operand, it must still
take into account that the zero product must be passed to the next tree level at the
appropriate time. Recently, architectures for handling sparse dataflows have been
developed. One such architecture reduces the amount of “wasted” logic required for
ignoring zero products by only passing non-zero products to processing elements
downstream [5].

3 Quantization

Before 2015, most DNNs were trained using 32-bit floating-point arithmetic. In
this section we summarize approaches for using reduced precision, or quantized
arithmetic, for DNN inference. Quantization reduces the amount of weight data
that must be transferred from DRAM to processing elements. Additionally,
quantized arithmetic is less expensive in terms of power and silicon area than full-
precision arithmetic. Quantization may be applied to weights, activations, or both
weights and activations. We emphasize that quantization techniques using <16 bits

76 S. Green et al.

currently only provide efficiency benefits during inference, because back-
propagation requires accumulation of small values, and therefore≥16 bits.

It appears that 8-bit or 16-bit quantization is adequate for most DNN inference
tasks. For example, Google’s DNN accelerator, the Tensor Processing Unit (TPU),
exclusively uses 8-bit or 16-bit integer arithmetic [6]. The TPU (and the successor
TPUv2) is becoming a critical component of Google’s computing ecosystem.
Additionally, NVIDIA’s Pascal architecture was designed to support 16-bit floating-
point and 8-bit integer arithmetic.

In this section we focus on extreme quantization methods which binarize weights
and activations. Binarization usually has a large negative impact on performance, but
we present techniques in Sects. 3.1 and 3.2 which reduce the impact.

Note that in this section, we will sometimes use a unified notation which applies
to both convolutional and fully connected layers. In a convolutional layer, a c-
channel weight filter W ∈ R

c×w×h is convolved with an input I ∈ R
c×w×h.

Convolution is performed by W ∗ I. At a specific receptive field, the core operation
may be interpreted as the inner products between vectors. In this section, we
sometimes use the notation W#I to denote the convolution of a filter with a specific
receptive field. Simultaneously, the W#I notation captures the partial calculation of
a fully connected layer.

3.1 Binary Weights

In 2015, BinaryConnect [7] was an early DNN quantization method and exemplifies
the field’s approach to quantization. During inference, BinaryConnect quantizes
full-precision DNN weights W to {−1, 1}, using the sign function:

w(b) =
{
+1 if w ≥ 0,

−1 else.
(3)

Equation (3) discards real-valued information, but, in doing so, it also eliminates
the need for floating-point multiplication during inference. Instead, signed floating-
point addition may be used for unit activation input calculations. During back-
propagation, the error caused by quantization is used to update the real-valued
Ws. After training is complete, full-precision weights and arithmetic are no longer
required and may thereafter be discarded. From a hardware perspective, memory
overhead is 32× less when using BinaryConnect-derived weights. However, this
technique has an accuracy cost. When using the AlexNet DNN architecture,
BinaryConnect achieves 61% top-5 accuracy on ImageNet, compared to 80.2%
accuracy when using AlexNet with 32-bit full-precision accuracy [2].

In Algorithm 2 we outline the steps of BinaryConnect. Note here that we
separate the bias terms from W, where normally it is included in that tensor for
notation convenience. The reason here is that the bias is always added, even with

Mathematical Optimizations for Deep Learning 77

full-precision arithmetic, so there is no benefit to quantize it. Also note the clip
function in Algorithm 2 limits the full-precision weights to between [−1, 1].

Algorithm 2 BinaryConnect [7]
Require: Inputs I, targets y, previous full-precision weights W, biases b, learning rate η, and

objective function J .
Ensure: Updated {−1, 1}-valued weights W(b) and real-valued bias b.
1. Forward propagation:
A0 = I
for l = 1 to L

for kth filter in lth layer
W(b)

lk ← binarize(Wlk) using Eq. (3)

Alk ← W(b)
l ∗ A(l−1)k + blk

2. Backward propagation:
Initialize output layer’s activation gradient ∂J

∂AL
using y, AL, and J

for l = L to 2
for kth filter in lth layer

Compute ∂J
∂A(l−1)k

knowing ∂J
∂Alk

and W(b)
lk

3. Update weights:
Compute ∂J

∂W(b)
lk

and ∂J
∂blk

, knowing ∂J
∂Alk

and A(l−1)k

W ← clip(W − η ∂J
∂W)

b ← b − η ∂J
∂b

Not made explicit in Algorithm 2 is how the gradient signal passes through the
binarization function given in Eq. (3). This is required for calculation of ∂J/∂W(b)

lk .
We cannot merely take the derivative of the binarization function, because it is 0
everywhere except at W = 0, where the function is discontinuous. To handle this,
the authors used a variant of the Straight-Through Estimator (STE) during back-
propagation [8]. The modified STE is defined as:

STE(pre-binarized value) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < −1,

1 if −1 ≥ pre-binarized value ≤ 1,

0 if x > 1.

(4)

During back-propagation, instead of flowing through the binarization function,
the incoming gradient signal is multiplied by the value of STE, which is evaluated
at the pre-binarized weight value (or pre-activation value, when using XNOR-Net,
discussed below). Clipping caused by multiplying by the STE has the effect of
canceling the gradient when the pre-binarized value is too large.

To summarize BinaryConnect, we take the sign of the real-valued weights during
inference. During back-propagation, the errors caused by binarization may be very
small (with significant changes accumulating over many inputs), and we track those
small changes in full-precision versions of the weights. After training is complete,
the full-precision weights may be discarded, only keeping their sign information.

78 S. Green et al.

XNOR-Net [2] introduced a method which is almost identical to BinaryConnect,
but it performs binarization in way which achieves higher accuracy. As with
BinaryConnect, weights are binarized during inference, but then they are also scaled
by a factor which attempts to compensate for the binarization. Specifically, XNOR-
Net introduced the following approximation for the inner product2:

W#I ≈ αW(b)#I, (5)

where W(b) is the binarized version of W using Eq. (3). This notation is slightly
different than that used in Algorithm 2, where we are able to binarize the entire W
tensor at once. But with XNOR-Net, each filter in each convolutional layer requires
a separate α. To keep the notation simple, separate filters are not denoted.

To find the optimal scaling factor α, we solve the following optimization
problem:

J (α) =
∥∥∥W− αW(b)

∥∥∥2
,

α∗ = arg min
α

J (α).
(6)

That is, we are seeking an α which minimizes the distance between W and αW(b).
For intuition, consider a scalar w and its binarized version w(b); in this case α =
w/w(b) perfectly minimizes the distance between w and w(b). Expanding the norm
in Eq. (6) gives:

J (α) = α2W(b)#W(b) − 2αW#W(b) +W#W. (7)

We now take the derivative of J (α) with respect to α, set it to zero, and solve for α:

dJ (α)

dα
= 2αW(b)#W(b) − 2W#W(b). (8)

Let n = W(b)#W(b), which is also equal to the number of weights in the binarized
filter. Substituting n into Eq. (8) and solving for α gives α∗:

α∗ = W(b)#W(b)

n
= W(b)#sign(W)

n
=
∑|W|

n
. (9)

New α∗s must be calculated every time W changes, i.e., each time back-
propagation is used to update the weights, but, after the training is completed, α∗
may be saved for use during inference.

2Note that we consider W and I to be flattened.

Mathematical Optimizations for Deep Learning 79

Table 3 The XNOR
operation captures the
behavior of signed
multiplication

Signed multiplication

Inputs Output

Ii Wi Ii ×Wi

−1 −1 1

−1 1 −1

1 −1 −1

1 1 1

XNOR “multiplication”

Inputs Output

Ii Wi Ii ⊕Wi

0 0 1

0 1 0

1 0 0

1 1 1

Using the weight binarization methods above, we may eliminate most multipli-
cations from inference,3 and instead we only need signed addition. If we assume
32-bit multiplication and addition, this results in 32× power reduction for weight
transfer from DRAM and ∼3× power reduction for arithmetic. When using the
AlexNet DNN architecture, XNOR-Net (binary weights, full-precision activations)
achieves 79.4% top-5 accuracy on ImageNet, compared to 80.2% accuracy when
using AlexNet with 32-bit full-precision accuracy [2]. We next consider operator
optimizations which become available when both weights and inputs are binarized.

3.2 Binary Weights and Activations

If weights and activations are binarized, then we are able to eliminate almost all
floating-point (and fixed-point) calculations, resulting in extreme energy savings.
Specifically, when weights and inputs are binarized, the XNOR operation4 may be
used to calculate inner products during inference [9]. The XNOR logic truth table is
given on the right in Table 3. The left-hand side provides the truth table for signed
multiplication between scalar values Ii ∈ I and Wi ∈ W. Note that by mapping −1
to 0, the two tables give identical output.

XNOR logic is simple and efficient to implement in hardware and may be used
as the multiplication operator for the calculation of inner products during inference.
To use the XNOR “product” between I and W for the input into a unit’s nonlinearity
function, we first map all −1s to 0s and then calculate the XNOR values for both
vectors. The Hamming weight5 (HW) of the XNOR vector result is then compared
to #bits/2, where #bits is the size of W and I. If the Hamming weight is greater
than or equal to #bits/2, then output 1, otherwise output 0. Note that after the initial
mapping of −1 to 0, we no longer need to map back to −1 during the remainder of
the inference procedure.

BinaryNet [9] operates similarly to BinaryConnect, with the addition that activa-
tions are also binarized. When using BinaryNet, the activation inputs are summed, as

3Multiplication by α is still necessary when using the weight binarization technique in XNOR-Net.
4Not to be confused with XNOR-Net [2]. Here we are referring to the exclusive-NOR operation.
5Hamming weight is defined as the number of 1s in a vector.

80 S. Green et al.

with BinaryConnect, and then the resulting sum is converted to [−1, 1] using the sign
function. This optimization eliminates all full-precision calculations and replaces
them with signed integer calculations. As with BinaryConnect, BinaryNet requires
full-precision gradient updates during training, and during back-propagation the
STE function (Eq. (4)) is used for both the activation and weights. BinaryNet
achieves 50.42% top-5 accuracy on AlexNet, compared to 80.2% accuracy when
using the same DNN topology and 32-bit full-precision accuracy [2].

XNOR-Net also has a version which binarizes both weights and activations.
Similar to XNOR-Net’s weight-only binarization presented above, there is a scaling
factor α which may (optionally) be used to reduce the error between full-precision
and binarized dot products:

J (α) =
∥∥∥I#W− αI(b)#W(b)

∥∥∥2
,

α∗ = arg min
α

J (α).
(10)

This is solved in the same manner as Eq. (6), giving:

α∗ =
∑|I(b)#W(b)|

n
=
∑|I||W|

n
. (11)

Note that a separate scaling factor α∗ must be solved for each receptive field and
weight filter combination both during training and when using the neural network
after training. This high computational overhead limits the use of vanilla XNOR-
Net. Fortunately, in practice, the authors of BinaryNet found that the scaling factor
for binarized weights was much more important than the scaling factor for binarized
inputs and may therefore be ignored. We summarize the weight-scaled version of
XNOR-Net with the following algorithm:

Similar to the calculation of ∂J/∂W(b)
lk in Algorithm 2, both partial derivatives

∂J/∂W(b)
lk and ∂J/∂A(b)

lk in Algorithm 3 are multiplied by the STE function
in Eq. (4), where the inputs to STE are the real-valued weight and activation,
respectively.

XNOR-Net using binarized inputs and weights achieves 69.2% accuracy on
AlexNet, compared to BinaryNet’s 50.42%, and full-precision accuracy of 80.2%.
The XNOR-Net and BinaryNet papers introduce other training tips for improved
performance. The aggregate contributions of the performance techniques introduced
in XNOR-Net likely account for its significant gain over BinaryNet.

4 Weight Sharing and Compression

Top-performing neural networks use millions of weights which are typically
transferred from DRAM to processing elements for inference (see Table 2). When
these weights are transferred, DRAM energy cost can surpass arithmetic cost for

Mathematical Optimizations for Deep Learning 81

Algorithm 3 (Weight-scaled) XNOR-Net [9]
Require: Inputs I, targets y, previous full-precision weights W, biases b, learning rate η, and

objective function J .
Ensure: Updated {−1, 1}-valued weights W(b), weight scaling factors α, and real-valued bias b.
1. Forward propagation:
A0 = binarize(I0)

for l = 1 to L

for kth filter in lth layer
αlk = 1

n
||Wlk ||�1

W(b)
lk ← binarize(Wlk) using Eq. (3)

A(b)
lk ← binarize

(
(αlkW(b)

lk) ∗A(b)
(l−1)k

+ blk

)
using Eq. (3)

2. Backward propagation:
Initialize output layer’s activation gradient ∂J

∂AL
using y, AL, and J

for l = L to 2
for kth filter in lth layer

Compute ∂J

∂A
(b)
(l−1)k

knowing ∂J

∂A
(b)
lk

and Wlk

3. Update weights:
Compute ∂J

∂W(b)
lk

and ∂J
∂blk

, knowing ∂J

∂A
(b)
lk

and A(l−1)k

W ← clip(W − η ∂J

∂W(b))

b ← b − η ∂J
∂b

performing a single inference. Weight sharing clusters weights into shared values
and is applied after the network has reached peak performance. Once weights have
been clustered, compression may be used to transmit cluster indices instead of full-
precision values. Weight sharing coupled with compression is a method to retain the
high performance typically provided by large full-precision neural networks while
simultaneously reducing the amount of data sent over DRAM [3].

4.1 Weight Sharing

To apply weight sharing, first, the DNN is trained to maximum performance using
standard training methods. After training, each layer’s weights are grouped into
clusters, where the number of weights in a layer is much greater than the number of
clusters. After assigning weights to clusters, the network goes through a retraining
phase.

For example, consider Fig. 4 which illustrates a 4× 4 channel from some weight
filter in W. Assume that the filter is part of a trained network. To apply weight
sharing, we use k-means clustering [3], which assigns the weights w ∈ W to m

cluster assignments C� = {c1, c2, . . . , cm}, such that the within-cluster sum of
squares is minimized:

C� = arg min
C

m∑
i=1

∑
w∈ci

|w − ci |2. (12)

82 S. Green et al.

3

weights

gradient

0 2 1

1 1 0 3

0

3 1 2 2

0 1 3

3:

2:

1:

0:

2.09 -0.98 1.48 0.09

2.12-1.0850.0 41.0-

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

40.0 10.010.0- 20.0

-0.07 -0.02 0.01 -0.02

-0.03 0.12 0.02 -0.07

0.03 0.01 -0.02

0.02 -0.01 0.01 0.04 -0.02

-0.01 -0.02 -0.01 0.01

0.04

0.02

0.04

-0.03

2.00

1.50

0.00

-1.00

cluster indexr

cluster

group by reduce

centroidds

1.96

1.48

-0.04

-0.97

fine-tuneed
centroidds

-

lr

Fig. 4 After training, 16 weights have been clustered into 4 centroids. From that point on,
clustered weights are equal to their centroid. Partial derivatives are calculated with respect to the
weight values, as usual, but the gradients are accumulated and subtracted from the centroids [3]

After assignment to clusters, we calculate the centroids w̃i of each cluster ci by
taking the average value of each cluster:

w̃i = 1

|ci |
∑
w∈ci

w. (13)

In Fig. 4, m = 4, and the top portion of the plot illustrates 16 weights and their
associated clusters and centroids.

After clustering, weights in the original filter are replaced by their centroid value
(this is represented by the shading in Fig. 4). Next, the clustered weights are fine-
tuned by reusing the original training data. The key difference between standard
training and the fine-tuning phase is how the weights are updated during gradient
descent (GD). In GD each weight is moved a small amount in the direction which
will improve an objective function, e.g.:

Wl,w = Wl,w − η
∂J (W)

∂Wl,w

. (14)

However, after clustering, we apply GD to the centroid value of each weight cluster.
For example, suppose the centroid w̃i of weight cluster ci is to be updated using

Mathematical Optimizations for Deep Learning 83

GD. To update centroid w̃i , we use the sum of partial derivatives with respect to
weights assigned to that cluster:

w̃i = w̃i − η
∑
w∈ci

∂J (W)

∂w
. (15)

The lower portion and the subtraction in Fig. 4 illustrate the gradient descent step of
back-propagation when using clustering. After the fine-tuned centroids have been
calculated, they will replace the previous weight values in each cluster. The update
given in Eq. (15) is repeated until maximum performance is attained.

Algorithm 4 Weight sharing
Require: Inputs I, previously trained full-precision weights W, number of clusters m, learning

rate η, objective function J .
Ensure: Clustered and fine-tuned weights W
1. Cluster assignment:
for l = 1 to L

for kth filter in lth layer
Assign weights in filter k to m clusters using Eq. (12):
C� ← knn(Wlk, m)
Replace weights in each cluster with centroid value using Eq. (13):
Wlk ← centroid(Wlk, C

�)
2. Inference:
Perform standard inference using centroid-mapped weights.
3. Fine-tuning:
Calculate standard partial derivatives with respect to weights ∂J (W)

∂w
.

Update centroid values by summing partial derivatives in each cluster and using gradient decent:
w̃i = w̃i − η

∑
w∈ci

∂J (W)
∂w

Replace weights in each cluster with updated centroid values.
4. Optionally repeat:
Repeat steps 2 and 3 until objective function is optimized.

The steps for weight sharing are provided in Algorithm 4. The algorithm is
written from the perspective of CNNs, but adapting it for other DNN designs only
requires clustering the appropriate values. For example, the values in fully connected
layer could be clustered.

After weight values have been clustered and fine-tuned, there is an opportunity
to decrease the storage and traffic requirements for loading the DNN weights from
memory to an accelerator. This process is detailed in the following subsection.

4.2 Compression

Weight sharing reduces the amount of data transmitted over DRAM by intentionally
creating redundancy in the form of a cluster index. For example, in Fig. 4 we see

84 S. Green et al.

that 16 original values are represented by four cluster values. Redundancy created
by weight sharing is exploitable with compression methods [3].

If a network uses b bits of precision, then a full-precision network with n weights
requires nb bits of transmission. After weight sharing, only a single full-precision
value (the centroid) must be transmitted for each cluster; this results in mb bits.
The indices for m clusters are represented with log2(m) bits; therefore transmitting
n indices requires nlog2(m) bits. In general, n weights clustered into m clusters
compress the weights by a factor of:

nb

nlog2(m)+mb
. (16)

For example, referring to Fig. 4, and assuming 32-bit floating-point weights, we see
that nb = 16 · 32 and nlog2(m)+mb = 16 · 2+ 4 · 32. Therefore, by using weight
sharing and compression, we reduce the traffic by a factor of 352.

5 Model Distillation

Large neural networks have a tendency to generalize better than smaller networks.
Similarly, ensemble methods combine the predictions of multiple algorithms,
e.g., DNNs, random forests, SVMs, logistic regression, etc., and almost always
outperform the predictions from an individual algorithm. Both large networks
and ensemble methods are attractive from an accuracy perspective, but many
applications cannot support the time or energy it takes to perform inference using
such approaches. Model distillation is the training of a smaller, more efficient,
DNN to predict with the performance close to a larger DNN or ensemble [10,
11].

When training a multiclass network, first, the softmax of network logits ai is used
to calculate class probabilities:

ŷi = eai/T

∑|C|
j=1 eaj /T

, (17)

where C is the set of classes which the network can identify and T is the temperature
and is usually set to 1. Class probabilities are then used in the cross-entropy error
function:

J (y, ŷ) = −
|C|∑
i=1

yi log ŷi , (18)

where y is the correct training label for a given input and ŷ is the vector of class
prediction probability output from the network. Using standard supervised training,
y is a one-hot encoded vector, with 1 in the position of the correct label, and 0

Mathematical Optimizations for Deep Learning 85

everywhere else. Therefore, when the correct class is i = k, Eq. (18) simplifies to:

J (ŷ, k) = −log ŷk. (19)

Equation (19) contains the objective function typically differentiated during the
training of a large neural network.

The output probabilities of a previously trained large network capture rich
information not available in the original training set, which only contain input
examples and the correct label for each input. For example, assume a classification
dataset which includes cars, trucks, and other non-vehicle classes. During training,
when learning instances of car classes, only a single correct label (y, which is one-
hot encoded) will be used. Once trained, if presented with a previously unseen photo
of a car, the car and truck class probabilities will most likely both contain significant
information regarding the correct class, whereas the potato class probability would
not contain as much information. Model distillation uses all of this information.

There are various techniques to implement distillation. Initially, assume a large
network has been trained to high performance, and a smaller network is to be trained
with distillation. Additionally, assume we do not have access to the correct training
labels. In this case, we may input random images into the large network and use all
of its prediction probabilities ŷ as a soft target for the distilled network’s output ỹ:

J (ỹ, ŷ) = −
|C|∑
i=1

ŷi log ỹi . (20)

This is similar to Eq. (18), except y = ŷ, and we have class probabilities for each
entry in ŷ, so it does not simplify to Eq. (19).

If training labels are also available, the objective function can be improved by
summing Eqs. (18) and (20), giving:

J (y, ỹ, ŷ) = −
|C|∑
i=1

αŷi log ỹi + βyi log ỹi , (21)

where α is a hyperparameter which sets the relative importance for matching soft
targets and β sets the relative performance for selecting the correct class. In practice
[11] found that α should be higher than β.

In addition to hyperparameters α and β, [11] also found that the temperature in
Eq. (17) impacts distillation performance. Higher temperatures make “softer” prob-
ability distributions. To understand why this may be important, consider the logits
[1, 2, 10], which have a softmax with T = 1 of [1×10−4, 3×10−4, 9.995×10−1].
The small probabilities slow down learning during back-propagation. However,
when T = 10, the softmax becomes [0.22, 0.24, 0.54], which has ranges that will
cause learning to occur more quickly with back-propagation. It can therefore be
useful to use high T values for the softmax of both the large network and distilled

86 S. Green et al.

Fig. 5 An ensemble of models was trained for eight classification tasks. Distillation was then used
to train a neural network to behave like each ensemble. The plot to the right compares average
performance between the ensemble of classifiers, the best individual classifier in each ensemble,
and the distilled classifiers. Once the distilled classifier has enough capacity, its average approaches
the ensemble average [10]

network during the distillation phase.6 After distillation is finished, T may be reset
to 1.

Distillation is effective for transferring information from trained large networks
to untrained smaller networks. In [11], a large DNN was trained to classify MNIST,
resulting in 67 test errors. A smaller network, trained and tested with the same sets
as the larger network, resulted in 146 errors. However, when the smaller network
was trained with distillation, it only made 74 test errors.

Thus far we have discussed how to distill a DNN into a smaller network. Similar
methods may be used to distill an ensemble of classifiers. In [10], eight binary
classification problems were solved by an ensemble of methods, and then a neural
network was trained by distillation to capture the behavior of the ensemble. The
average performance of the small distilled model is given in Fig. 5. It can be seen
that the average performance of the distilled model was similar to a giant ensemble
prediction derived from SVMs, bagged trees, boosted trees, boosted stumps, simple
decision trees, random forests, neural nets, logistic regression, k-nearest neighbor,
and naive Bayes.

A smaller distilled model is obviously guaranteed to be more efficient than a
large DNN or ensemble of models, and the distillation approaches presented in

6The softmax layer is at the output and has no trainable weights. It can therefore be replaced in the
larger network with a separate temperature, with no need for retraining.

Mathematical Optimizations for Deep Learning 87

this section are a promising avenue to achieving adequate performance, given hard
resource constraints. The steps for distillation are summarized in Algorithm 5.

Algorithm 5 Distillation
Require: Inputs I, optional targets y, previously trained high performance network 〈W, O〉large,

untrained distilled network 〈W, O〉dist

Ensure: Trained distilled network 〈W, O〉dist

1. Inference:
ŷ ← output probabilities of 〈I, W, O〉large

ỹ ← output probabilities of 〈I, W, O〉dist

2. Calculate loss:
if targets y are available

J (y, ỹ, ŷ) = −∑|C|
i=1 ŷi log ỹi + yi log ỹi

else
J (ỹ, ŷ) = −∑|C|

i=1 ŷi log ỹi

3. Update distilled model weights:
Wdist ←Wdist − η∇Wdist

J

4. Optionally repeat:
Repeat steps 2 and 3 until objective function is optimized.

6 Filter Decomposition

AlexNet introduced the first popular high-performance convolutional neural net-
work (CNN) architecture, which has since been widely adopted and modified [12].
The AlexNet architecture won fame by winning the 2012 ImageNet Challenge,
which required classification across 1000 categories. AlexNet uses five convolu-
tional layers, three fully connected layers, and other less computationally expensive
layers. Modern CNNs use even more convolutional layers, for example, Google’s
GoogLeNet-v1 CNN architecture uses 57 convolutional layers, but only one fully
connected layer.

Fully connected layers are expensive from a bandwidth perspective, because
they perform only one multiply-accumulate operation (MAC) per byte transferred
over memory. Convolutional layers, however, are efficient from a bandwidth
perspective, but they are expensive computationally. For example, AlexNet’s three
fully connected layers require 58.6M MAC operations and 58.6M weights, whereas
AlexNet’s six convolutional layers require 666M MAC operations and only 2.3M
weights. The total cost of a fully connected layer or convolutional layer is the
total number of MACs plus the total number of bytes required for the layer.7 The
choice of filter sizes in convolutional layers has a large impact on the bandwidth
and computational costs of a CNN. In this section we analyze the bandwidth and
computational impacts of different convolutional filter designs.

7First-order estimates of power costs can be calculated using Table 1.

88 S. Green et al.

convolution

Fig. 6 Example calculation of MAC cost of the fifth convolution in AlexNet. For intuition in
understanding MAC cost, consider that each point in I6 is the result of applying a 384×3×3 filter
tensor to I5. Therefore the total number of MACs needed to calculate I6 is 256×13×13×384×3×3.
This is a different perspective on the calculation than given in the main text

We loosely base our discussion on AlexNet, because it is well understood and the
foundation of modern CNN designs. AlexNet convolutional layers use three filter
shapes, 11×11, 5×5, or 3×3, and four channel depths, 96, 256, or 384. The shape
of convolution filters has a significant impact on computational cost. To calculate the
MAC cost for layer l’s convolution operations, we first recall the notation introduced
in Sect. 1, where layer l’s filter tensor is denoted Wl ∈ R

cin×w×h×cout and layer
l’s input tensor is denoted Il ∈ R

cin×x×y . The number of MAC operations in a
convolutional layer is found by8:

MAC cost = cardinality(Il)× cardinality(Wl)

cin from cardinality(Wl)
, (22)

where cardinality() returns the number of elements in the input tensor.
The bandwidth required for a filter, assuming 32-bit floating-point weights, is
calculated as:

Byte cost = cin × w × h× cout × 4 bytes. (23)

The goal of efficient CNN design is to obtain the highest classification performance,
using the fewest number of MACs and weights. Therefore from an efficiency
perspective, the cost of CNN inference is:

COST() = c1MAC cost+ c2Byte cost+ c3CNN errors, (24)

where the coefficients c depend on the priorities and budget of the CNN’s designer.
To better understand Eq. (22), consider the calculation of the number of MACs

in the fifth convolutional layer of AlexNet, illustrated in Fig. 6. In this case
cardinality(I5) = 384×13×13 and cardinality(W5) = 384×3×3×256.
So the total number of MAC operations for I5∗W5 is 384×13×13×3×3×256=
150M. Additionally, the size of W5 is 384× 3× 3× 256 = 885k weights.

8Our calculations assume there is no pooling layer after convolution, which is now commonly the
case.

Mathematical Optimizations for Deep Learning 89

Decompose

TwoTT Apply sequentially

Fig. 7 A “large” convolutional filter may be separated into two smaller filters, which retain the
feature detection capabilities of the larger filter. The outputs of the smaller filters are summed.
This approach is used to reduce the number of bytes required to represent filters and to reduce the
number of MAC operations

As another example, assume that instead of 3×3 filters, 5×5 filters were used in
AlexNet’s fifth convolutional layer. 5×5 filters cause the number of MAC operations
to increase to 415M and byte cost to increase to 2.5 MB. A larger filter can capture
more detail, and suppose that switching to a 5 × 5 filter increased classification
accuracy, but caused the total cost to exceed the time and energy budget allotted to
the CNN. Perhaps surprisingly, there are techniques to extract the benefit of 5 × 5
filters without using 5× 5 filters.

The concept of filter decomposition was introduced in [13], where two smaller
filters Wl,1 and Wl,2 were applied to the input tensor Il and then added (prior to the
nonlinearity), giving Il+1 = Il ∗ Wl,1 + Il ∗ Wl,2. As shown in Fig. 7, instead of
using a single 5× 5 filter tensor in the previous case, two 3× 3 tensors can be used.
Specifically, instead of performing 256 × 13 × 13 × 5 × 5 × 384 = 415M MAC
operations (requiring 2.5M weights), 256×13×13×3×3×384×2= 300M MACs
are performed (requiring 1.8M weights). Similarly, a 5× 1 and 1× 5 filter may be
used, requiring 256× 13× 13× 5× 2× 384 = 166M MAC operations (requiring
1M weights), which is close to the original 150M MACs and 885k weights required
when using a single 3× 3 filter tensor.

Going even further, [14] introduced 1× 1 convolutions, which are used to create
bottleneck layers, because they can shrink an input tensor. 1 × 1 filters detect
correlation between corresponding weights in each channel, which may be seen
when considering their full notation: cin×1×1×cout . For example, suppose we are
given input Il ∈ R

cin×x×y , then a filter Wl ∈ R
cin×1×1×cout may be chosen such that

cout & cin. Convolving Wl with Il gives Il+1 ∈ R
cout×x×y . The information from

Il is not lost, even though Il+1 now has fewer channels than Il . 1 × 1 convolutions
capture channel correlations, compared to larger filters which capture channel and
spatial correlations.

Various filter schemes can be combined. For example, a 1 × 1 convolution
may be followed by a 3 × 3 or 5 × 5 convolution. The goal here is to extract
channel correlations using the 1×1 convolution and to extract spatial (and channel)
correlations using the 3 × 3 or 5 × 5 filter. Going back to our original AlexNet
example, we calculated the number of MACs used for the convolution of I5 and W5
as 256× 13× 13× 3× 3× 384 = 150M MACs and 885k weights. We can reduce
this by picking a smaller cout size for W′

5, e.g., 64, giving 256 × 13 × 13 × 1 ×
1 × 64 = 2.8M MACs and 16k weights. We may then add another convolution
layer, using a 384 × 3 × 3 filter W′

6, and return to the original shape of I6 using

90 S. Green et al.

Input
Tensor

}c=192

1x1 CONV

1x1 CONV 3x3 MAX POOL

3x3 CONV 5x5 CONV 1x1 CONV

}c=256

1x1 CONV

Output
Tensor

c=64 c=128 c=32 c=32

c=64 c=64 c=192

Fig. 8 Diagram of an Inception module. Layer inputs are passed through separate 1×1 bottleneck
layers and then through standard convolutional layers. This technique allows for the use of different
filter sizes, without paying the computational or bandwidth cost of normal convolutional layer
implementations [15]

384×13×13×3×3×64 = 37M MACs and 221k weights. We now have extracted
both channel and spatial correlations, using 1×1 and 3×3 filters and a total of 39.8M
MACs and 237k weights, much fewer than the original example which used 150M
MACs and 885k weights. Bottleneck layers followed by convolution have proven to
be an effective way to increase efficiency without sacrificing accuracy.

Filter decomposition represents a fundamentally different way to improve DNN
inference efficiency, compared to earlier sections. Specifically, by making careful
architectural choices, high performance can be maintained and fewer weights and
MAC operations can be used. The methods introduced here may also be combined.
For example, Inception is a modern CNN architecture, which combines bottleneck
layers and various filter shapes to capture the benefits of every possible combination.
Figure 8 illustrates an Inception module, which combines many convolutional
layers and outputs each combination as stacks of sub-channels. Without the 1 × 1
bottleneck layers, such an architecture would be much more expensive.

7 Conclusion

Deep neural networks are increasingly being integrated into cyber-physical systems,
which have power, silicon area, latency, and accuracy budgets. This chapter
introduced various mathematical and algorithmic methods for optimized DNN
inference:

Mathematical Optimizations for Deep Learning 91

1 2

3 4

5

redundancy precision

accuracy

Fig. 9 The notional trade-off between accuracy, redundancy, and precision. In general, one may
prioritize any two at the expense of the third [16]. There is currently no formal proof for this plot,
but most of the optimization papers referenced in this chapter report metrics across the different
axes and seem to generally follow the trend of this plot

• Eliminating “small” weights via pruning, which reduces the required number of
multiply-accumulate operations

• Quantization, or reducing the precision, of layer inputs and/or weights to reduce
computation and data transfer costs

• Sharing weights between layer units and therefore enabling data transmission
compression

• Training small models to mimic larger models by distilling the information from
the larger models into the smaller models

• Separating larger convolutional filters into smaller filters while retaining the
performance of the larger filters

These optimization methods may be used individually or may be combined for
greater optimization. Note that the methods are not equivalent and should be
expected to affect performance metrics in different ways.

Unfortunately most of the optimizations introduced here will result in an accu-
racy loss when compared to a high-performance model which was designed with
no regard to computational efficiency. The trade-off between accuracy, redundancy,
and precision is depicted in Fig. 9 [16]. In general, one may expect to obtain high
accuracy when using high-precision (e.g., floating-point) arithmetic (Pt. 2 in Fig. 9)
and lower accuracy when using low-precision arithmetic (Pt. 4). But low-precision
arithmetic may be offset with redundancy (e.g., larger models) (Pt. 1). Likewise the
errors caused by using low-redundancy (few weights) models may be offset, to some
extent, with high-precision arithmetic.

Ultimately, it is the DNN architect’s task to find a design which achieves
minimum acceptable performance, given a particular resource (e.g., latency, silicon
area, power) budget. The methods introduced in this chapter facilitate this task.

Acknowledgements Sandia National Laboratories is a multimission laboratory managed and
operated by the National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

92 S. Green et al.

References

1. D. William, High-performance hardware for machine learning, in Conference on Neural
Information Processing Systems (2015)

2. M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using
binary convolutional neural networks, in European Conference on Computer Vision (2016)

3. S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks with
pruning, trained quantization and huffman coding, in International Conference on Learning
Representations (2016)

4. S. Marcel, Y. Rodriguez, Torchvision the machine-vision package of torch, in International
Conference on Multimedia (ACM, New York, 2010), pp. 1485–1488

5. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S.W.
Keckler, W.J. Dally, Scnn: an accelerator for compressed-sparse convolutional neural networks,
in International Symposium on Computer Architecture (ACM, New York, 2017), pp. 27–40

6. N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M.
Dau, J. Dean, B. Gelb, T.V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C.R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H.
Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z.
Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R.
Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M.
Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A.
Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, D.H. Yoon, In-datacenter performance analysis of a tensor processing unit, in
International Symposium on Computer Architecture (ACM, New York, 2017), pp. 1–12

7. M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: training deep neural networks with
binary weights during propagations, in Conference on Neural Information Processing Systems
(2015)

8. G. Hinton, Neural networks for machine learning. https://www.coursera.org/learn/neural-
networks (2012). Accessed 03/14/18

9. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural networks, in
Conference on Neural Information Processing Systems (2016), pp. 4107–4115

10. C. Buciluǒ, R. Caruana, A. Niculescu-Mizil, Model compression, in International Conference
on Knowledge Discovery and Data Mining (ACM, New York, 2006), pp. 535–541

11. G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network (2015). Preprint.
arXiv:1503.02531

12. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–
1105

13. R. Rigamonti, A. Sironi, V. Lepetit, P. Fua, Learning separable filters, Conference on Computer
Vision and Pattern Recognition (IEEE, New York, 2013), pp. 2754–2761

14. M. Lin, Q. Chen, S. Yan, Network in network, International Conference on Learning
Representations (2014)

15. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A.
Rabinovich, Going deeper with convolutions, in Conference on Computer Vision and Pattern
Recognition (IEEE, New York, 2015)

16. D. Strukov, ECE594BB neuromorphic engineering, University of California, Santa Barbara,
March (2018)

https://www.coursera.org/learn/neural-networks
https://www.coursera.org/learn/neural-networks

