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Abstract Random numbers are needed in many areas: cryptography, Monte Carlo
computation and simulation, industrial testing and labeling, hazard games, gam-
bling, etc. Our assumption has been that random numbers cannot be computed;
because digital computers operate deterministically, they cannot produce random
numbers. Instead, random numbers are best obtained using physical (true) random
number generators (TRNG), which operate by measuring a well-controlled and
specially prepared physical process. Randomness of a TRNG can be precisely,
scientifically characterized and measured. Especially valuable are the information-
theoretic provable random number generators (RNGs), which, at the state of
the art, seem to be possible only by exploiting randomness inherent to certain
quantum systems. On the other hand, current industry standards dictate the use of
RNGs based on free-running oscillators (FRO) whose randomness is derived from
electronic noise present in logic circuits and which cannot be strictly proven as
uniformly random, but offer easier technological realization. The FRO approach is
currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for
realization of quantum RNGs. In this chapter we compare weak and strong aspects
of the two approaches. Finally, we discuss several examples where use of a true
RNG is critical and show how it can significantly improve security of cryptographic
systems, and discuss industrial and research challenges that prevent widespread use
of TRNGs.
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1 Introduction

True random numbers and physical nondeterministic random number generators
(RNGs) seem to be of an ever-increasing importance. Random numbers are essential
in cryptography (mathematical, stochastic, and quantum), Monte Carlo calculations,
numerical simulations, statistical research, randomized algorithms, lotteries, etc.
Today, true random numbers are most critically required in cryptography and its
numerous applications to our everyday life: mobile communications, e-mail access,
online payments, cashless payments, ATMs, e-banking, Internet trade, point of sale,
prepaid cards, wireless keys, general cybersecurity, distributed power grid security
(SCADA), etc.

Without loss of generality in the rest of this chapter, we will assume that
generators produce random bits.

In applications where provability is essential, randomness sources (if involved)
must also be provably random; otherwise, the whole chain of proofs collapses.
In cryptography, where due to Kerckhoffs’ principle all parts of protocols are
publicly known except some secret (the key or other information) known only to
the sender and the recipient, it is clear that the secret must not be calculable by an
eavesdropper, i.e., it must be random. For example, the well-known BB84 quantum
key distribution protocol [5] (described in Sect. 3.4) would be completely insecure
if only an eavesdropper could calculate (or predict) either Alice’s random numbers
or Bob’s random numbers or both. From analysis of the secret key rate presented
therein, it is obvious that any predictability of random numbers by the eavesdropper
would leak relevant information to him, thus diminishing the effective key rate. It
is intriguing [79] that in the case that the eavesdropper could calculate the numbers
exactly, the cryptographic potential of the BB84 protocol would be zero. Indeed one
of the recent successful attacks on quantum cryptography exploits the possibility
to control local quantum RNGs by exploiting a design flaw of two commercial
quantum cryptographic systems and one practical scientific system. This example,
discussed below, shows that the local RNGs assumed in BB84 are essential for its
security and may not be exempt from the security proof.

Lotteries are yet another serious business where random numbers are essential.
Due to the large sum of money involved (estimated six billion USD annually only
online and only in the USA [36]), some countries have set explicit requirements
for RNGs for use in online gambling and lottery machines and have set certificate
issuing authorities. For example, the Lotteries and Gaming Authority (LGA) of
Malta has prescribed a list of requirements for RNGs, stipulated in the Remote
Gaming Regulations Act [45]. An RNG that does not conform to this act may not
be legally used for gambling business. These rules have been put forward in order
to ensure fair game by providers and to prevent possibility that gamers manipulate
the system by foreseeing outcomes.

RNGs have been an occupation of scientists and inventors for a long time. Whole
branches of mathematics have been invented out of a need to understand random
numbers and ways to obtain them. At the dawn of the modern computing era, John
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von Neumann was one of the first to note that deterministic Turing computers are
not able to produce true random numbers, as he put it in his well-known statement
that “Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

RNGs are one of the hottest topics of research in recent years. There have been
about 83 patents per year in the last decade, 1418 in total since 1970, and countless
scientific articles published regarding true RNGs. Still, a sharp discrepancy between
the number of publications and very modest number of products (only four quantum
RNGs and a handful of Zener noise-based mostly phased-out RNGs) that ever made
it to the market [33,34,57,60] clearly indicates immaturity of most of the art. In our
view, the main problems are lack of randomness proofs and poor reproducibility of
the majority of solutions presented so far. The search for true randomness continues.

2 Pseudorandom Number Generators

Historically, there have been two approaches to random number generation: algo-
rithmic (pseudorandom) and by a physical process (nondeterministic).

Pseudorandom number generators (PRNG) are well known in the art and we are
not going to address them here in great detail. Surveys and individual examples
of PRNGs can be found elsewhere [32, 40, 48, 49, 92]. In a nutshell, a PRNG
is nothing more than a mathematical formula, which produces a deterministic,
periodic sequence of numbers, which is completely determined by the initial state
called the seed. By definition such generators are not provably random. In practice,
PRNGs feature perfect balance between 0s and 1s (zero bias) but also strong long-
range correlations, which undermine cryptographic strength and can show up as
unexpected errors in Monte Carlo calculations and modeling.

While most modern PRNGs pass all known statistical tests, there are myths about
some PRNGs being much better than the others. The truth is that every PRNG shows
its weakness in some particular application. Indeed PRNGs are often found to be the
cause of erroneous stochastic simulations and calculations [11,12,15,21,29,40,45,
55, 58, 70, 87]. As for cryptographic purposes, all major families of PRNGs have
been cryptanalyzed so far [40, 61, 74], and use of PRNG where an RNG should be
used will therefore present a big security risk for the protocol in question. We will
revisit this point in more detail in Sect. 6.

In any case, due to strict determinism of PRNG algorithms, no PRNG is random
by any reasonable definition of randomness. Let us illustrate this by a fictitious
anecdote. Alice wanted to impress Bob, by a particular version of Mersenne Twister
PRNG [49] for which she claimed that it produces true random numbers, by asking
him to test them. Bob agreed but asked a minimum of 1 Giga bytes of random data
to be sent to him via e-mail. Alice produced the huge file but her mailing program
refused to send such a big file. Cutting a file into small pieces and sending multiple
e-mails, etc. was an option but too big a nuisance for both of them. Finally, Bob
received from Alice a 1 kilobyte e-mail containing the following short notice: “Dear
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Bob, Please find attached a program in C++. Compile it, use the following seed:
12345678 and stop the program after producing 1 Giga bytes of data. That is what
I wanted to send you." Instead of reproducing the file and running on his computer
very time-consuming tests, Bob shortly answered: “Dear Alice, if you think that 1
Giga bytes of truly random data can, under any circumstances, can be compressed
without loss to just 1,000 bytes, than I have nothing more to say to you!”

Advantages of PRNGs are their low cost, ease of implementation, and user-
friendliness, especially in a CPU-available environment such as a PC computer,
but one has to be cautious when it comes to use of PR numbers for simulations,
cryptography, and in fact any use.

3 True Random Number Generators

Due to Kerckhoffs’ principle, the definition of a RNG suitable for cryptography
must include that even if every detail is known about the generator (schematic,
algorithms, etc.), it still must produce totally unpredictable bits. In contrast to
PRNGs, physical (true, hardware) RNGs extract randomness from physical pro-
cesses that behave in a fundamentally nondeterministic way which makes them
better candidates for true random number generation. A physical RNG is a piece
of hardware separate from the computer, usually connected to it via USB or PCI
bus. Importing random numbers into a user program is complicated and requires
original drivers. Prices range from 1k USD to 30k USD for bit production rates from
4 to 150 megabits per second [33, 34, 60]. Examples of physical processes used to
generate randomness include: Johnson’s noise [54], Zener noise [77], radioactive
decay [22, 26], photon path splitting at the two-way beam splitter, photon arrival
times, etc. [9,13,22,23,26,35,38,63,77,80,88–90,93]. Unlike the PRNGs, physical
random number generators suffer from uneven probabilities of zeros and ones, that
is, bias (b), defined as the difference of probabilities of 1s and 0s:

b D p.1/� p.0/
2

(1)

and short-range correlations which are best captured by serial autocorrelation
coefficients (ak), defined, for example, in [40]:

ak D
PN�k

iD1 .bi � Nb/.biCk � Nb/PN�k
iD1 .bi � Nb/2

(2)

where fb1; b2; : : : ; bN g is an N bits long random string and k is the lag or “order”
of the coefficient. Both b and ak are normalized such that they can take on values in
the interval Œ�1; 1� and that an ideal RNG exhibits b D 0 and ak D 0. True RNGs
are generally constructed such that the correlation among bits is small—which is,
namely, the idea of randomness. In some cases the physical system that is measured
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Fig. 1 Classification of random number generators

is being “reset” to an initial condition after production of each bit in order to reduce
autocorrelation. Therefore in most cases only a few lowest-order autocorrelation
coefficients are significant, ideally only the first one, which is named autocorrelation
and denoted by a.

There are very many constructions or true RNGs and research is still getting
impetus, but in our view one can roughly classify the present art into four families:

• Noise-based RNGs
• Free-running oscillator RNGs
• Chaos RNGs
• Quantum RNGs

The tree of RNGs is illustrated in Fig. 1. Mathematical, pseudorandom generators
can also be divided into several categories depending on the type of algorithm used.

Note that our definition of a true RNG is not to be confused with a pseudorandom
number generator implemented in CMOS logic or similar hardware; such a gener-
ator is still a PRNG, since it is just a hardware implementation of a mathematical
method. Next, we are going to address each of the above families in some detail.

3.1 Noise-Based RNGs

Johnson’s effect [54] creates random voltage on terminals of any resistive material
which is held at a temperature higher than absolute zero. Johnson’s noise is due to
random thermal motion of the quantized electric charge (i.e., carriers). However,
long-range carrier correlations in conductors cause correlations in movements of
electric charges, and, therefore, the resulting voltage is not completely random [4].

Zener noise (in semiconductor Zener diodes) is caused by tunneling of carriers
through quantum barriers of ideally constant height and width. If current is
sufficiently low, individual “jumps” of carriers through barriers will be seen as
voltage peaks across the diode, forming a pink noise of perfect randomness. An
interesting property of this kind of noise is that at sufficiently high inverse voltage,
the diode exhibits high internal avalanche gain. Such a gain mechanism leads to
large amplitude of the noise and is highly insensitive to electromagnetic radiation
from the environment. However, the Zener effect is never found well isolated in
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physical devices from other effects nor is the quantum barrier constant. Most of the
aforementioned processes in resistors and Zener diodes have some memory effect.
This means that an instantaneous voltage across the device depends on voltages
in the (near) past and this in turn leads to a correlation among random numbers
extracted therefrom.

Other popular sources of noise include: inverse base-emitter breakdown in
bipolar transistors, laser phase noise [30], chaos noise [44], etc. The biggest problem
with all kinds of noises is that randomness of noise sources cannot be well charac-
terized, measured, or even controlled during fabrication of the device. Furthermore,
some noise mechanisms (notably Johnson’s noise) produce rather tiny voltages
that need to be strongly amplified before conversion to digital form. The strong
amplification introduces further deviations from randomness due to the limited
amplifier bandwidth and gain nonlinearity. Also, fast electrical switching of binary
logic used in the RNG circuitry produces strong electromagnetic interference so that
multiple nearby RNGs (especially if on chip) tend to mutually synchronize causing
the dramatic drop of overall entropy. On top of that, highly sensitive amplifiers allow
easy manipulation of noise-based RNGs by external electromagnetic fields which
can be exploited for cryptographic attacks.

The general idea of noise-based true RNG is the following. The random analog
voltage is sampled periodically and compared to a certain predefined threshold: if
higher, then “1” is generated; otherwise, “0” is generated (Fig. 2). It is obvious that
the threshold can be set so that the probabilities of 1s and 0s are roughly the same.
However, fine-tuning of the threshold poses an insurmountable time-consuming
problem and can never be done properly. For example, if tuning of bias to value
of 0.1 requires 10 s, then tuning to 10 times the lower value (0.01) would take 100
times longer (the required timescales as square of improvement ratio). And then
there is a problem of stability: even the smallest drift of the mean value (e.g., due to
temperature or supply voltage change) will create a noticeable bias. Provability of
any noise RNG is complicated and eventually made impossible for three reasons:

1. Provability of randomness of the exploited noise source
2. Effect of the sampling/digitizing procedure
3. Eventual use of deterministic post-processing

Going from this basic circuit, researchers have proposed many circuits whose aim
is to improve the randomness, notably the bias.

Fig. 2 Noise-based RNG.
Noise is fed to a level
comparator whose output is
either 0 or 1 depending on
whether its positive input is
below or above the threshold
value VBIAS. Upon Request,
a fresh new random bit will
sit on the Output
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Fig. 3 A zero-bias noise-based RNG by Bagini and Bucci. The biased output produced by an
imperfect threshold principle is divided by 2 by a T flip-flop. The output of the T flip-flop spends
exactly 50 % of the time in state 1 and is sampled periodically by a pulse generator. The idea is
that when sampled (by the D flip-flop), it will yield either 0 or 1 with perfectly equal probabilities.
However, in practice non-negligible deviation from perfect bias will occur and correlations will
exist

First, the most obvious improvement would be to somehow de-bias the raw noise
stream in hardware without the need for any adjustment of the threshold voltage.
An interesting solution to that has been discovered by Vincent [93], generalized
by Chevalier and Menard [9], and independently rediscovered later by Bagini and
Bucci [2] and Stipcevic [77].

In the Bagini–Bucci generator [2] shown in Fig. 3, the analog voltage from the
free-running noise source is periodically sampled at frequency fCk1 and compared
to a threshold value at the comparator. Whenever the comparator produced logical
“1” the T-type flip-flop (TFF) changes its state. If the sampled process is random and
stationary, because of time symmetry of this process, the output of the TFF spends
half of the time in the low state and the other half in the high state. There are a couple
of problems with that design. First, the holding capacitor acts as a memory that
remembers the previous analog voltage. Due to finite impedances in the circuit when
charged with the next voltage level, the voltage will be to some extent dependent on
the previous one, thus creating the autocorrelation. The second problem is that if the
TFF is interrogated at too high a rate, it will tend to give the same answer several
times in a row, thus producing positively autocorrelated output, even when the basic
random process is truly random! The only way to circumvent this problem is to use
a bit sampling frequency fCk2 much lower than the noise sampling frequency fCk1,
for example, fCk2 D fCk1=N , thus arriving at an asymptotically random sequence
of bits in the limit of N !1.

In the variation of this principle named “time summation of a random signal”
[76, 77] shown in Fig. 4, time-wise random pulses at the output of the comparator
COMP are counted by a modulo 2 counter (TFF) whose output gets sampled upon a
request sent over the Request input. The results are similar to the Bagini–Bucci
circuit except that bits can be generated faster because both the low-pass filter
and sampling circuits are not needed. Also, it features a naturally incorporated
automated zero-bias loop consisting of the comparator COMP, a low-pass filter with
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Fig. 4 A zero-bias noise-based RNG by Stipcevic. Time-wise random events appearing at COMP
are summed at the input of the toggle flip-flop (TFF), and when the sum becomes bigger than the
predefined time interval bit sampling period T, random output is equal to the number of random
pulses in that interval mod 2. This is similar to a Bagini–Bucci generator except that there is no
need for a low-pass filter and a sampling circuit. There is no requirement that bits be sampled
periodically. On top of that, there is an automated zero-bias loop

a time constant much bigger than the bit sampling rate, and an amplifier OPA. The
loop sets the threshold for the comparator in such a way that a comparator spends
half of the time in state “1” which is important to minimize autocorrelation. The TFF
then takes care of complete canceling of the bias. In case of periodic bit sampling,
again, correlation among bits will be nonvanishing even if the pulses are completely
random unless the ratio between mean frequencies of random pulses at the sampling
frequency (N ) goes to infinity. In practice however N only needs to be sufficiently
large to keep correlations at the desired level.

The bad side of this “sampling” principle, illustrated in Figs. 3 and 4, is that it
required N random events to produce one random bit (low efficiency). The good
side is that by letting N be large enough, one can obtain any desired level of
randomness quality, at least theoretically. Practically however, small imperfections
in logical circuits, such as uneven high-to-low and low-to-high transitions, will
ultimately limit the achievable randomness. Regarding provability of randomness of
this principle, technical imperfections of the individual components, unclear theory
of operation of the “noise source,” and overall complexity of the circuit make it
impossible to arrive to a credible proof of randomness.

The next example of noise class of RNGs is the Intel RNG [37] implemented in
a limited series of computer processors (Fig. 5). It uses amplified thermal noise of a
resistor to disturb a voltage-controlled oscillator, thus arriving to a “slow” random
pulse generator which is used to sample a “high-speed” periodic oscillator. This fast-
slow dichotomy is similar to the above described sampling RNGs and is known not
to generate theoretically perfect randomness unless the ratio of fast to slow does tend
to infinity. A particular peculiarity of this construction is that a voltage-controlled
oscillator (a steady oscillator has zero entropy) is disturbed by a noisy voltage, thus
very probably yielding a lesser entropy than available from the noise source. The
important property of such a construction is that its frequency cannot surpass a
certain limit, thus guaranteeing a high enough ratio between the aforementioned
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Fig. 5 A Johnson noise-based RNG by Intel. A high-speed periodic digital oscillator is sampled
at approximately random times defined by a Johnson noise signal. Time-wise random events
appearing at COMP are summed at the input of the toggle flip-flop (TFF)

high and low frequencies. It is therefore clear that the bits generated at the latch flip-
flop (Super Latch) are not very random and require post-processing which consists
of a modified (and patented) von Neumann method of efficiency 1/4 [83].

Yet another Intel RNG appeared in 2011 after “10 years of research” which is
apparently extremely simple [83] (Fig. 6a). The idea is to obtain a circuit that does
not have any (apparent) analog parts and is therefore compatible with logic chips.
The circuit consists of two Yin-Yang connected inverters and two “oddly connected
transistors.” The authors explain that this circuit has two stable states: 0 and 1. If
everything is perfectly symmetric, when transistors are driven high, the output will
end up in either low or high state. The authors further explain that even though
ideally the output value should be random, even the smallest difference in speed
or strength of inverters would lead to high imbalance between zeros and ones (we
would add: and possibly to complete lockup). Therefore Intel has put an additional
current-injecting mechanism that makes inverters controllable enough so that they
can be made “equal.” The quality of random numbers must be very low, because
Intel uses 2-stage post-processing in order to remove bias and correlations (Fig. 6b).
The first stage is an unspecified randomness corrector after which “raw” bits become
“high-quality random seeds.” The second stage is a PRNG seeded by these high-
quality seeds. It remains unclear why high-quality true random numbers would be
passing through a PRNG, but there might be only two reasons. Either these hardware
numbers are not very good and must be further processed by the PRNG or Intel must
comply with FIPS PUB-140 [19] which explicitly does not endorse any true RNG
for cryptographic purposes and in this way numbers technically exit from a PRNG.

All the above examples utilize electronic noise: a resource which is becoming
less and less available because manufacturers of electronics components and chips
make every possible effort to make it ever smaller. Therefore researchers have turned
to sources capable of producing fluctuating voltage similar to electronics noise but
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Fig. 6 Intel’s “quantum” random number generator. (a) Basic digital RNG circuit. Upon each
pulse, output stabilizes in random binary state. This is in fact yet another noise-driven generator
based on a specially prepared trimmed RS-type flip-flop whose both set and reset inputs are tied
together and driven at the same time. The specialty of this flip-flop is that its inner gates may be
current-trimmed in such a way as to make it possible that the output may stabilize in either low or
high state. (Normally it would be locked to either state or produce high bias because of the smallest
asymmetry of its internal gates.) (b) The post-processing scheme

Fig. 7 Laser phase noise-based true RNG. Intensity of noise is determined by fundamental
uncertainty of phase, while its whiteness, that is, a Gaussian distribution of instantaneous
amplitude, is due to the central limit theorem

whose origin is more fundamental and therefore has less sensitivity to technological
advances. For example, very fast noise can be obtained by lasers. Lasers exhibit
very fast fluctuations which can be detected by fast PIN or avalanche photodiodes
(APDs), thus producing wide-band electrical noise.

One such example is the phase noise of a single laser (Fig. 7) invented by the
CREAM group [30].

This is an example of a white noise-based generator where a Gaussian-shaped
distribution of analog electrical amplitudes has been obtained by optical rather than
electrical means (e.g., such as discussed in the Bagini–Bucci generator [2] and some
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others described above). The noise source, shown in Fig. 7, is realized by use of a
single mode VCSEL laser where the signal and its delayed copy have been brought
to interference on an APD detector via a Michelson–Morley type interferometer, a
system also known as “homodyne” detection. The electrical noise produced at a very
high gain-bandwidth photodiode is the result of phase jitter of the laser. The noise
voltage produced by the APD is then digitized by a fast (40 MHz) analog to digital
converter (ADC) with 8-bit resolution and the numbers so obtained are further
processed to obtain random bits at 20 Mbit/s. Authors show that if the delay is much
longer than the laser coherence time of 1.6 ns, then the phase jitter is dominated by
quantum effects which are separate from any construction detail and depend only
on the laws of physics. In that regime, adding sufficient jitter leads to near-perfect
Gaussian distribution via the central limit theorem, similar to the principle utilized in
[77]. The authors further measure the autocorrelation function of the analog noise
and show that after about 10 ns, all correlations die off. To be on the safe side,
sampling of noise is made every 25 ns, and after further simple post-processing,
one obtained 20 Mbit/s of random data that passed all relevant statistical tests
(mentioned in Chap. 4). The similar phase self-interference principle is exploited
in [59]. The advantage of the quantum phase noise over the electronic noise is that
its amplitude is determined by fundamental laws and is therefore (in the ideal case)
independent of technological details of the laser. In our finding though, the authors
here were not considering two important points. First, the time delay introduces a
“rolling” memory effect that necessarily leads to autocorrelation of the noise voltage
generated by the APD, and, therefore, the bits obtained therefrom would not be
random even if the phase jitter itself is random. Second, the bit generating algorithm,
which most critically includes digitization of an analog quantum-random effect, is
only approximate and good care has to be exercised in order to keep randomness
at the desired level at all times. Even so, this is one of the very rare noise-based
generators which are characterized by clean sequence of in-principle provable and
well-understood physical and algorithmic processes.

More examples of noise-based true random number generators can be found in
the scientific literature and in the free-access worldwide patent database Espacenet
[20].

For all noise-based generators, some kind of post-processing is required. In some
cases a simple ad hoc post-processing such as XORing several subsequent bits or
von Neumann [94] de-biasing may be good enough. But if the raw bits exhibit
strong correlations, simple procedures may not be sufficient to eliminate correlations
among bits which can even be enhanced by simple de-biasing procedures or
changed from short-range ones to long-range ones. A better approach is found in
complex, often offline post-processing which however brings in its own problems
(see Sect. 3.4).

There is a strong tendency among researchers to name noise-based RNGs
“quantum RNG” because noise is ultimately caused by small particles governed by
the laws of quantum mechanics. But noise is also a collective effect, a summation
of many individual motions, and therefore its quantum property is “blurred” by a
collective behavior which is somewhere between quantum and classical worlds.
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Furthermore, motion of particles which generate noise (e.g., electrons in a wire)
is usually intercorrelated by action of forces among them to such extent that the
noise may not be completely random [4]. Note that an autocorrelation of the order
of a percent may not be important when motion of electrons is considered but if so
generated random numbers with the serial autocorrelation of the same order (0.01)
are used in numerical simulations, the results may be completely wrong. Finally
noise cannot be “restarted” in order to interrupt correlations between successive
measurement/bit production.

In conclusion, a decent proof of randomness for present noise-based RNGs seems
impossible because the underlying physical processes are not well isolated and do
not rely on obvious or scientifically provable randomness.

3.2 Chaos RNG

Probably the most objectionable principle for physical generation of random
numbers is to obtain them from repeated measurements of a physical system in
chaos. The philosophical problem here is that chaos assumes the existence of an
underlying order in what is seemingly random. So why would someone knowingly
make use of a nonrandom system in order to generate random numbers? We are not
aware of anyone so far asking or answering this question. In our opinion, authors
often resort to this type of generators because of three reasons:

1. Conceptual mixing of chaos and randomness
2. (Mis)belief that hard-to-describe systems necessarily behave in random fashion
3. Robustness of certain chaotic systems to produce macroscopic levels of “noise”

easily utilizable to generate random numbers essentially via noise RNG methods
(as described in Sect. 3.1)

At present state-of-the-art most convenient chaotic systems for fast generation of
random numbers are optical, electrical, or opto-electrical, although mechanical
constructions have also been demonstrated, for example, in [52]. In this section we
present several typical designs.

Lasers can be brought to chaotic fluctuation of output power by many different
mechanisms. Well known are chaotic constructions involving distributed feedback
lasers [44]. One very simple but extremely fast self-feedback chaotic laser system

Fig. 8 The chaotically behaved intensity of a self-feedback laser is read by a photodiode (PD)
whose amplitude is sampled by a fast ADC and further processed by performing a high-order
differentiation, to yield a world record bit production speed of 300 Gigabit/s
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Fig. 9 All-optical laser consisting of (a) ultra-wide-band chaotic laser (UWB), (b) all-optical
sampler, and (c) all-optical comparator

[38] is shown in Fig. 8. Again, the light of chaotically fluctuating amplitude is
detected by a fast photodiode (PD) whose amplitude is sampled by a fast 8-bit ADC
and further processed by performing a high-order differentiation, to yield a world
record bit production speed of 300 Gigabit/s.

Lasers offer means for realizing very fast chaotic systems and are frequently used
for random number generation. Due to the possibility to build tiny lasers, resonators,
and various passive and active optical elements on a chip, such generators can be
completely integrated and can feature a low power consumption.

A RNG shown in Fig. 9 [44] consists of an ultra-wide-band (UWB) chaotic
laser (a), amplitude sampler (b), and comparator (c). Its principle of operation is
a copy-paste of the Bagini–Bucci noise generator described earlier (Fig. 3) with the
difference that instead of electrical noise here the light intensity of a chaotic laser
is used as a source of randomness. The interesting distinguishing characteristic of
this RNG is that it is “all optical,” meaning that all signals and signal processing are
done at the optical level, even the output numbers are in fact digital levels of light
intensity: low light intensity signifies “0,” while high intensity signifies “1.” This is
interesting for use in all-optical processing chips, and furthermore, if so needed, the
output can be easily converted into an electrical signal by use of a fast photodiode
and a suitable amplifier.

The UWB chaotic laser is made of two distributed feedback lasers, “master” and
“slave” (Fig. 9a) with master disturbing the feedback loop of the slave in such a
way as to enhance its bandwidth in a chaotic regime [97]. The output intensity is
extracted from the feedback loop by means of a beam splitter and sampled by an
optical sampler at a constant sampling frequency determined by the mode-locked
laser (Fig. 9b). Each sampled value of light intensity is then compared to a threshold
value by means of an all-optical comparator (Fig. 9c) resulting in either high output
intensity (“1”) or low intensity (“0”). The random bits are produced at the pace of
the mode-locked laser.
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Fig. 10 All-optical XORing of two independent RNGs reduces bias and correlations among bits

Bits so obtained are biased and somewhat autocorrelated. Since they are pro-
duced at periodic times, the authors resort to a convenient bias and correlations-
reducing procedure by XORing simultaneous output bits of two identical, inde-
pendent RNGs, as shown in Fig. 10. The resulting random bits pass relevant
statistical tests [44]. The chaotic behavior of the master-slave UWB laser has
been theoretically modeled and the bandwidth of the model shown to agree with
experimental data [98], in an attempt to support the claim of randomness of the
above RNG. However, modeling or proving the shape and width of the noise
spectrum of a source proves nothing about its randomness.

In a body of research related to chaotic RNGs, some authors claim to use
system(s) in chaos without actually providing any direct evidence that the system
in use for random number generation is indeed in chaos [85], some are able to
demonstrate chaotic behavior, for example, by studying ballistic maps or Lyapunov
exponents [62], and some even go so far as to model the chaotic behavior of the
system and confirm it experimentally [44, 97, 98]. But whichever the case, chaotic
RNGs have a theoretic base common to those PRNGs which operate by simulating
a deterministic chaotic system, for example, and therefore in the long run became
short-breathed in producing new entropy, inevitably ending in producing not more
than a small fraction of 1 bit of entropy per each new generated random bit.

A general objection to the very idea of the generation of random numbers
by chaos is that chaotic behavior is defined as a specific type of solution of
the differential equation which, supplemented by initial conditions, describes the
system. Because any such equation and data contain only a limited (small) amount
of information, once that much information is extracted from the system by
measurements there is no new information that can be extracted from it, and con-
sequently all further measurements contain (asymptotically) zero new information.
In particular it means that a chaotic system, in theory, can only produce a limited
set of random bits and that all the rest must be perfectly or near perfectly correlated
to that set. Having said that, we understand that a realistic chaotic system never
behaves exactly as it would by obeying the “equation of motion” that models it
because of random quantum or statistical effects which randomize the system’s
phase-space trajectory all the time. However, these additional effects are not the
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Fig. 11 Schematic diagram
of fast (left) and slow (right)
FROs. Oscillation frequency
is determined by internal
delays and stray capacitances

basis for a chaotic RNG (and therefore not accounted for in its definition) and also
are usually too tiny or ineffective to make any significant difference in a system
whose behavior is mostly determined by a macroscopically observable chaos. On
the other hand, fundamental quantum randomness alone can be harnessed for the
production of provable random numbers, as we will discuss in Sect. 3.4.

3.3 Free-Running Oscillator RNGs

When the output of a logical inverter circuit is fed to its input, the circuit turns to an
oscillator, a so-called free-running oscillator (FRO) (Fig. 11).

An inverting gate is in practice a very high-gain inverting amplifier. Connecting
its output to the input creates the Zeno paradox: if the output is in logical HIGH
state, then the input will be as well and the NOT action will drive the output to go
LOW. Once the output goes LOW, the NOT action will drive it to HIGH and so
forth. Theoretical Boolean logic analysis will yield that the output is undetermined,
but in practice due to the finite propagation delay of the NOT element, the circuit
will oscillate. The peculiarity of this oscillation is that it appears in a circuit with
negative feedback (180ı phase shift), while in electronics theory negative feedback
leads to “stabilization” rather than to oscillation. The reason for that is that by
analyzing logical states we assumed infinite gain. However, since in practice gain
is never infinite, it may happen that the circuit locks (stabilizes) into some voltage
state between zero and one without any or with very small amplitude oscillations
which are not capable of driving further logic circuits. To help oscillations, one may
intentionally add some reactance in the feedback loop so as to produce phase shift
different from˙180ı. The same function may be provided with stray reactances. In
that case, the Barkhausen criterion may be satisfied for some high-frequency pole
and oscillations will appear. Due to the complex mechanism of free oscillations,
their frequency is typically quite sensitive to variation of power supply voltage and
temperature but these changes are slow compared to the oscillation frequency. On
the other hand, the electronic noise present at the input adds to the signal fed back
from the output and after being strongly amplified causes very fast, random jitter
of frequency and phase of oscillations. In that sense, FRO RNG can be regarded
as a special case of a noise-based generator. Since the noise of each such circuit is
individual, it is reasonable to assume that the multiple oscillators even when on the
same chip have different frequencies and that their mutual phases walk off randomly
in time. But when multiple such oscillators are close to each other (e.g., on a single
chip), they tend to synchronize through electromagnetic interaction facilitated by
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the high gain of FRO amplifiers. In effect, the immense gain of NOT gates required
to amplify tiny electronic noise to a noticeable level also helps to pick up any other
nearby interference. This effect known as “phased interlock” [54] may adversely
affect the performance of the design and is a major problem inherent with FROs.
Interlocked rings have waveforms that share (nearly) the same phase and this will
lead to (near) pseudorandom operation. The same effect of high gain makes FROs
vulnerable to attacks with external electromagnetic radiation.

The basic principle of random number generation with FROs is that output of a
fast FRO (which can be either logical 0 or logical 1) is sampled by a slow FRO. This
is an equivalent to abrupt stopping of a quickly turning wheel of fortune. Because
the wheel spins so “fast,” it appears stopped at a “random” position. In case of
two FROs, it is important that the relative phase jitter, between the fast and the
slow FRO, is both random and large enough. Clearly, if there is no relative phase
jitter the output will provide repetitive binary patterns. If the jitter is random but
small, deviation from the repetitive pattern will be small as well leading to near
pseudorandom behavior. If FROs synchronize or at least partially synchronize, a
pattern with stochastic excursion (noise) would appear. Apart from that, another
very important problem with FRO RNGs is that the output amplitude of an FRO
depends on the details of the stray reactances and delays in the circuit. As explained
above, for a particular circuit it may well happen that the output amplitude of an
FRO is too small to drive the logic circuitry or that the FRO locks in some state and
stops oscillating. Schmitt action at the input of the first inverter (Fig. 11) can help
minimize this problem but at the expense of lowering the oscillation frequency and
complicating the fabrication.

In spite of all these problems, current security standards [65] practically dictate
the use of RNGs based on free FROs. The NIST standard FIPS140-2 [19]
says: “There are no FIPS Approved nondeterministic random number generators.”
Consequently, the FRO approach currently is used in 3rd- and 4th-generation
FPGA, CPLD, and ASIC hardware for various cryptographic purposes. One real-
life example that illustrates well the combinatorial cuisine typically needed to obtain
a decent RNG is the entropy source for PadLock “quantum” RNG implemented in
VIA C3 processors [88–91]. It consists of four FROs, 3 fast (450–810 MHz) and

Fig. 12 VIA C3 PadLock random number generator samples fast FRO (A) by slow FRO (D)
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1 slow (20–68 MHz). Wide tolerance on the frequencies already shows problems
that we mentioned before: it is very hard to control the parameters of FROs during
fabrication. In this topology fast FRO (A) is sampled by a slow FRO (D) as
discovered in the patent application [78]. At least one of the two FROs must be
of good randomness, and since it is easier to achieve with the slower one, VIA went
for that option. The slow generator is made of FROs B, C, and D. First, B and C
are slowed down by 1/8 dividers and their XORed outputs are used to disturb slow
FRO D (which is the only one featuring digital input). Resulting bits appear at the
output Q of the D-type flip-flop in synchronization with pulses from the FRO D.
Optionally, the output is filtered through a von Neumann corrector [94] which cuts
the bit production rate roughly by a factor of 4 (see description in Chap. 4). Looking
at this schematic, it is clear that it is impossible to arrive to a proof of its randomness.
According to VIA [88], the analog bias voltage injected into this otherwise digital
circuitry “may (or may not!) improve the statistical characteristics of the random
bits.” The bottom line is that the random numbers are still of low quality and in
order to pass tests must be corrected (Sect. 3) by a full-blown secure hash algorithm
SHA-1 which is hardwired into the logic circuits on the same chip [88].

Because the digital logic chip infrastructure is unsuitable for realization of
a quantum RNG (Sect. 3.4), an FRO approach seems to be a reasonable viable
alternative. However, a caveat with FROs is that the semiconductor industry is
making an enormous effort to make the electronics noise as small as possible and
it generally goes down with newer versions of a chip. Consequently the effect of
jitter can be very small and cause the FRO-based RNG to operate in nearly PRNG
regime. Therefore the implementation details of an FRO-based RNG most often
have to be tailored for each specific type or generation, and the technology of a
programmable/reconfigurable or ASIC chip and its uniformity of operation cannot
be guaranteed from batch to batch.

A partial solution to the above-mentioned problems has been recently found in
a novel synergistic combination of a linear feedback shift register (LFSR) [27] and
FRO, called the Fibonacci ring oscillator (FIRO) and Galois ring oscillator (GARO)
[16]. The idea is to have a seeded LFSR-like PRNG which is realized as a clocked
FRO. Such true random number generators do receive an initial state (seed), but
although the seed sets the initial state, two identical generators with identical seed
would diverge in time as they are under the influence of (at least partially) individual
noises. Figure 13 shows the schematic of GARO and FIRO.

Still, even with this interesting and innovative principle, the problem is cross-
platform non-portability of the design and the requirement of sufficiently large noise
for the scheme to work in a reasonably random (far from pseudorandom) regime.
Furthermore, the authors warn that the design must be done most carefully in
order to minimize interlocking with the system clock and other logic circuits in the
chip, including nearby FROs. Therefore they experimented with spatial placement
of FROs in the chip. They also conclude that randomness of either of the two
generator families by itself is not perfect and could be “enhanced” by XORing two
independent generators, most favorably one GARO and one FIRO.
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Fig. 13 Galois ring oscillator (up) and Fibonacci ring oscillator (down). Number of stages defines
order (r), while switches fi define coefficients of the feedback polynomial

More examples on FRO pre- and post-processing gymnastics, including XORing
multiple generators, combinations with LFSRs, etc., can be found in [81]. The
complexity of post-processing procedures required to pass the statistical tests with
FRO-based RNGs is often such that any randomness proof is impossible, but even
more interestingly the authors almost never seem to be aware that a proof is needed.
A rare exemption in that respect is the work of Sunar et al. [82] where a theoretical
model of an FRO-based RNG has been presented, analyzed, and proven but later
criticized in [101] as nonrealistic. We however found the whole proof unsatisfactory
because it is based on McNeill’s model of FRO which simply postulates that free
oscillations occur as a nonstationary random process without actually linking the
postulate to reality, for example, by means of laws of physics. An excellent further
reading and summary of problems and cuisine used to minimize them is found in
[101]. Further reading on FRO-based RNGs is given in [81].

In conclusion, FRO-based RNGs are low-cost, low-entropy solutions whose only
good side is the fact that they can be easily implemented in conventional pro-
grammable or reconfigurable logical chips which are used in various cybersecurity
solutions, but they do not offer either very good or provable randomness.

3.4 Quantum RNGs

What is a quantum random number generator? Since we live in a world governed
by the laws of quantum physics, any true random number generator (e.g., a rolling
dice, or a flipping coin) may be named “quantum.” However, we want to reserve this
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name for only those generators which utilize a single intrinsically random quantum
effect (realized as close as possible to its theoretical idealization) measured over
and over again in order to produce random bits in such a way that between any
two sets of measurements used to deduce random bits, the system is reset to the
same initial conditions. It may seem strange that such a physical setup (generator)
is even possible, namely, that starting from exactly the same initial conditions and
measured in exactly the same way, it gives different results, but quantum physics
allows it. In this section we describe and explain multiple examples described in
scientific articles and patents.

It turns out that some things in nature come in the smallest amounts known
as quanta. For example, the electron carries the smallest quantity of charge, e.
Similarly, there is the smallest quantity of information, called qubit. A single
quantum of light (photon) can be used as a carrier of one qubit, but there are many
other examples and they are not limited only to elementary particles. Qubit can be
thought of as a linear combination of two bit values: 0 and 1. When a certain type of
measurement is performed on a qubit, it will “project” to either pure 0 or pure 1 state
in the basis in which the measurement has been carried out. Very often photons are
used in QRNGs because they are easy to create, manipulate, and detect. To illustrate
this let us consider circularly polarized photon entering a polarizing beam splitter
(PBS) (Fig. 14). The PBS decomposes polarization of incident light and sends the
linear horizontal component to one output port and the linear vertical component to
the other port.

Thus, a circularly polarized photon has equal content of both linear polarizations,
but since it cannot be split in half, it has exactly 50 % chance to exit either port. If
now we label one of the ports as “0” and the other as “1,” we immediately get a
theoretically perfect RNG whose randomness is guaranteed by the laws of quantum
physics. Note that the system being “measured” is always the same yet it always
gives a new random result. This is completely different from chaotic and noisy
generators where in order to get a different result systems must change.

Quantum RNGs based on this (or other principles) can be made pretty good,
and the imperfections of any type (multiphoton emission, non-perfect circular
polarization, beam splitter port axis misalignment, detector dead time, afterpulsing
and memory effects, etc.) can be measured independently of the bit generation

Fig. 14 Spatial principle
QRBG. Circularly polarized
photon splits onto a linear
horizontal/vertical analyzer
with 50 % chance to finish in
either of the two output ports
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process so their effect on random numbers can be estimated with precision and
dealt with in post-processing (see Sect. 3.5). This method is a basis for a commercial
generator [33].

The main problem in practical realization of the beam splitting RNG is that
it requires two detectors. Their initial differences and subsequent walk-off with
time due to aging and/or temperature effects will have an immediate impact on
the quality of random numbers. For example, if the photon detection efficiencies of
detectors are not perfectly equal, or if the beam splitter is not perfectly 50/50 %,
then the probability of ones will not be equal to the probability of zeros. This
problem can be minimized by use of a beam splitting scheme which utilizes only
one photon detector [75] shown in Fig. 15, but still the beam splitting ratio must
be precisely adjusted mechanically. Leftover problems arise from detector dead
time and afterpulsing leading to correlations which are impossible to eliminate
completely but can be reduced below any desired level by targeted post-processing.

The beam splitter RNG is an example of a “spatial principle” in which the value
of the random bit, 0 or 1, is determined by the place at which the photon ends up.
A complementary “temporal principle” uses time information of random photon
emission, for example, in direct atomic (or quantum dot) relaxation, from well-
saturated lasers, etc.

A simple time interval method shown in Fig. 16, which is particularly immune
to hardware imperfections, has been proposed in [80]. It uses time rather than

Fig. 15 Optical quantum random number generator based on beam splitting which makes use of
only one photon detector in order to avoid bias fluctuation with aging and initial tolerances

Fig. 16 Timing principle QRBG. Photons from a single photon Poissonian source fall onto a
single photon detector. Time intervals t1 and t2 spanned by three subsequent photon detections
are compared: if t1 > t2 then produce “0,” if t2 > t1 then produce “1,” and if t1 D t2 then produce
nothing (skip)
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Fig. 17 A general processing scheme of the temporal principle QRBG. Time-random photons fall
onto the single photon detector consisting of a photomultiplier, an amplifier, and a comparator,
such that each detected photon generates one logical pulse. Pulses are then processed according to
the desired bit extraction principle and transmitted to a computer

space information contained in a random event generator (REG). In [80] photon
emission and detection processes are used for the first time instead of much slower
(and more dangerous!) radioactive decay [22,26]. The bit production principle is as
follows. Time intervals t1 and t2 spanned by three subsequent photon detections are
compared: if t1 > t2 then produce “0,” if t2 > t1 then produce “1,” and if t1 D t2
then produce nothing (skip).

The schematic of the physical setup is shown in Fig. 17. Because only one photon
detector is used, both bias and correlations are suppressed to almost undetectable
levels, yet there is nothing to be adjusted (unlike with the beam splitting principle).

The problem with this method is how the time intervals are measured. The
crucial improvement made in [80] is the notion that clock measuring time intervals
(ti ) must be started in synchronization with beginning of each interval; otherwise,
the method would produce correlated bits even if fed by perfectly random events.
This was not understood in previous works and patents [22] which consequently
must have yielded correlated output, but this was not detected at the time because
the clock frequency (10 MHz) was much higher than the source mean frequency
(10 kHz) in which case correlations are small. It can be shown that this method
not only performs well at low ratio between clock and RPG frequencies but that it
also cancels out almost all imperfections: intensity change of the source, efficiency
change, dead time, and afterpulsing of the photon detector. It is also highly immune
to actual distribution of random interval times, as long as events are independent of
each other. Furthermore, random bit production is self-clocked so if either source
or detector dies, there will be no bits at the output. This generator was the first one
found to pass all known tests including “usual” t-statistical tests [47,67,68,96] and
some undisclosed algorithmic randomness tests [31].

A mixture of beam splitter and temporal principle is described in [35]. An
unpolarized photon stream from the light source (LED) is passed through a polarizer
reaching a polarizing beam splitter (NPBS), much the same as in the aforementioned
beam splitter RNG (Fig. 14). With careful adjustment of the relative angle between
polarizer and NPBS axis (ideally 45ı), detectors D1 and D2 should produce
random, mutually uncorrelated pulses of equal frequency (however adjustment of
the polarizer angle is an insurmountable task, as explained for RNG in Fig. 3). While
pulses from D1 reset (input R) the RS-type flip-flop setting the output to LOW state,
D2 sets (input S) the flip-flop to HIGH state. The output of the said flip-flop is
sampled at periodic times in order to generate random bits (Fig. 18).
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Fig. 18 Optical quantum random number generator based on beam splitting and periodic sampling
principles

Fig. 19 Optical quantum random number generator based on near-exponential statistics of photon
time detection. The main detector imperfections, the dead time and pileup, have been found to
work in favor of smaller bias and serial autocorrelation which have been found to be as small as
2 � 10�5 without post-processing

Being a combination of beam splitting and sampling principles, this construction
inherits the worst of both:

1. Bias is unstable (sensitive to temperature variations) and only mechanically
adjustable.

2. Correlations due to the finite sampling period as discussed in noise generators,
and all that even if a perfectly random source of photons is assumed.

A commercial QRNG of Fürst et al. [23,60] utilizing only the temporal principle
is shown in Fig. 19. The data-taking schematic is equivalent to the general scheme
given in Fig. 17 with the light source being a low-intensity operated LED weakly
coupled to a photomultiplier tube. Low coupling ensured low photon sampling
rate on the order of 10�8 which suppresses any eventual photon correlations far
beyond the detectable level. The bit extraction method is implemented in an FPGA
reconfigurable chip and is as follows. The number of detected photons is counted
in intervals of a constant time yielding a Poissonian statistics. An even number of
events within an interval is interpreted as “1” and odd as “0.” The authors note that
due to the nonsymmetric shape of the Poissonian distribution, the probability of
ones is not equal to the probability of zeros. However, due to the two imperfections
in the photon detector (nonzero dead time and dependence of dead time with the
detection frequency), the resulting distribution is not Poissonian but more bell
shaped, thus favorably leading to a bias that quickly tends to zero as the counting
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interval length rises. The authors show and compare experimental and theoretical
results for modeled bias; however they do not model or prove anything about
correlations. Instead, correlations are simply evaluated from generated bits using
a linear autocorrelation coefficient. Theoretically, bias tends to zero as detection
frequency goes to infinity. Empirically, the preferred operating condition is close
to as high as possible a detection frequency but a bit smaller due to rising
problems in the photon detector. But in the same limit, it is to be expected that
fluctuating bias produces an increasing level of complex short-range correlations
among bits—which however has not been mathematically modeled and/or brought
into connection with the imperfections of the setup. The problem with this approach
is that it fails to describe a theoretical model of an RNG that gives perfect random
numbers based on a (nearly) ideally random quantum effect (e.g., low-intensity
emission from LED) and assuming ideal apparatus. Consequently it fails to clearly
prove randomness and to model deviation from perfect randomness introduced by
implementation-related imperfections. Nevertheless, this generator has a practical
value because it apparently passes all relevant statistical tests. It is however to be
understood that an acceptable randomness proof cannot be obtained by passing any
number of randomness tests (as will be discussed in Sect. 3.5).

Yet another commercial quantum RNG which utilizes photon arrival time
information has been presented by Picoquant [57, 95]. Here the complete chain of
reasoning required for a convincing randomness proof has been at least attempted
and, according to the authors, successfully established. As in the previous example,
a random event source of the type shown in Fig. 17 is made utilizing essentially
the same technique as in [23] (LED + photomultiplier tube). The specific difference
of this construction with respect to previously described ones which use high-
speed photon detection and produce �1 bit per detection [23, 35, 75, 80] is that
the random detections are made at a relatively low mean frequency of 12.5 MHz,
thus operating in a regime far from dead time and pileup effects producing a highly
precise exponential distribution of time intervals (Fig. 20 left). The time intervals

Fig. 20 Optical quantum random number generator based on highly precise exponential dis-
tribution of photon detection times: schematic (left) product photo (right). The times between
subsequent random events are measured by a very precise timing hardware resulting in integer
numbers that represent the time. These numbers are then used to extract much more than 1 bit
per detected photon resulting in 150 Mbit/s overall average bit production rate obtained after post-
processing with resilient functions (see Sect. 3.5)



298 M. Stipčević and Ç.K. Koç

t1; t2; t3; : : : are measured by a nanosecond precision, and quasi-exponentially
distributed integer numbers so obtained are used to generate on average14 random
bits per each detected photon yielding 160 million raw random bits per second.
The imperfections both in the extraction method and in hardware (timers, detectors,
light source) are modeled resulting in a convincing lower bound on the average per-
bit entropy of the raw bits. The average entropy is then improved by compression
of the raw stream by resilient functions (see Sect. 3.5) to the level theoretically
indistinguishable from true randomness even for bit strings of unrealistic length.
The weakest link, in our opinion, is this last post-processing step because it is
not clearly proven that resilient functions are effective against the specific type of
imperfections present in raw bits, that is, that bounds on post-processed bits hold.
However, raw bits are already very close to randomness, and further post-processing
by resilient functions clearly improves the pass rate of statistical tests indicating that
the resulting bits are very close to true randomness. Indeed, post-processed bits at
an average speed of 150 Mbit/s pass all relevant statistical tests as well as some
undisclosed statistical and algorithmic tests performed by the University of Twente
research group [31]. Still, caution is maybe in order when resilient functions are
used because some researchers [81] point out that resilient functions appear to be
limited in their ability to eliminate the effects of active adversaries on the output bits.
A similar principle but by digitization of an analog quantum amplitude is described
in [1].

An example of a very fast (110 Mbit/s) generator of similar construction and
philosophy as the previous one has been presented in [99,100, Figure 21]. In the first
article, faint continuous light (from an LED) shines upon a photon detector which
produces random events (detections) quite similar to the general system shown
in Fig. 17. Times between subsequent events are measured with a high resolution
clock in order to obtain integer numbers that approximately follow exponential
distribution. These numbers presented in binary form do not yield random bits
because they have been drawn from a highly nonuniform distribution (namely,
exponential cut-off near zero at the dead time). In order to obtain more uniformly
distributed numbers, in the subsequent article the light from the source (LED)
is shaped in pulses with sharply rising power starting from the beginning to the
end of each pulse. The idea is that by using carefully tailored pulse shape, the
times between subsequent photon detections would become uniform rather than
exponential. There are caveats with this. First, the time intervals between photon
detections are measured with a free-running clock which has been noted in [80] to
immediately lead to correlations even if incoming random events are truly random.
Second, this scheme critically depends on the resulting distribution being exactly
uniform, while the authors measured only approximate ones. Third, by using a very
high-speed clock, the authors try to “squeeze out” as many random bits as they
can from a single photon event (20 bits per detected photon) which generally
leads to great amplification of hardware imperfections, thus leading to pretty bad
raw random bits, as indeed was found. Fourth, the approximate results relating to
the variable pulse power are both fundamental (i.e., pulse power should tend to
infinity at the end of pulse proportional to 1=.t � t0/ where t0 is the pulse length)
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Fig. 21 Optical quantum random number generator based on near-uniform photon arrival times
from a specially shaped optical pulses

Fig. 22 Optical quantum random number generator based on periodically gated, “self-
differencing” approach operated avalanche photodiode (APD). The power of DFB cw laser
(1,550 nm) is adjusted (by means of variable attenuator) such that the strength of the electromag-
netic field falling on the surface of the APD causes roughly 0.004 avalanche detections per gate,
resulting in 4.01 MHz of random bits

and practical (pulse shape is achieved by an analog, only partially precise circuit,
thus not allowing us to properly conduct proof of randomness. The authors also note
that this circuit produces strong electrical disturbances in nearby circuitry which, in
our view, makes it unsuitable for miniaturization to a chip level. And finally, the
theoretical basis for exponential time-arrival distribution is drawn out of a steady
field assumption, whereas here the strength of the light electromagnetic field is
wildly varying so even theoretical grounds for this generator are not clean (Figs. 21
and 22).

This generator belongs to a broad niche of RNG constructs whose general philos-
ophy is to produce partially random data and then filter it through a pseudorandom
hash function (such as SHA-256 used in this example) in the hope of improving the
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randomness (see Sect. 3.5). We believe this is a very problematic approach and here
is our reasoning. Proof of randomness in this case relies on estimating the entropy
of the source of raw bits and on the process of randomness amplification by hashing.
The hashing procedure is generally not foolproof [3] and does not allow just blind
application of the hash function to a badly constructed generator. Let us imagine, for
example, that raw RNG source produces some sequences more often than the others
(which indeed is the case if it is nonrandom). Then the hash of these sequences (the
hash function being deterministic) would also produce some sequences more often
than the others meaning that even the “corrected” bits would not be random. A nice
confirmation of this comes from this very example: even after hashing, the produced
bits are not completely random and fail some statistical tests.

We saw that photon emission and photon detection techniques are often used
in quantum random number generators. The photon detection rate of current single
photon detectors is a limiting factor in achievable random bit product rate especially
for semiconductor APDs. APDs are small and convenient for single photon detec-
tion on a chip scale; however they suffer from imperfections that are especially bad
for random number generation and consequently rarely used for that purpose. The
biggest problems are relatively long dead time (induced by requirement to quench
avalanche between subsequent detections) and high afterpulsing rate (usually in the
range 1–10 %). In order to advance on this, Toshiba has developed a special, so-
called “self-differencing” approach [102] to readout of semiconductor avalanche
photodiodes which promises significantly higher detection rates (lower dead time)
than the usual active quenching method while suppressing afterpulses by effectively
squaring the afterpulsing probability. This new technique has been used for random
number generation by the same group of authors [18]. Namely, even though this
method does not offer spectacular improvements in general because it inherently
prefers operating the APD at low detection efficiency, it is very well suited for
use in random number generation because of its high gating speed and complete
irrelevance of the photon detection efficiency for that application.

A distributed feedback (DFB) laser in continuous wave (cw) mode is used as
the light source. The power of the DFB laser (1,550 nm) is adjusted (by means
of variable attenuator) such that the strength of the electromagnetic field reaching
the surface of the APD causes roughly 0.004 avalanche detections per gate. When
detection occurs, a new random bit is generated and its value is “0” if it occurred
on an even gate or “1” if on an odd gate. Taking into account the detection
efficiency of 0.004, this method yields 4.01 MHz of random bits. This bit generating
process is intrinsically biasless (probabilities of zeros and ones are equal) but
(what is not noted by the authors of this article) there is an intrinsic negative
autocorrelation which rises with detection efficiency. Namely, in the limiting case
of efficiency 1 (one detection per gate), there would always be a “1” after “0”
and vice versa, thus producing a completely deterministic sequence 01010101 � � �
which has autocorrelation equal to �1. Even though the authors claim that this
method of generating random numbers could, in principle, be extended to much
higher rates by using a higher laser power and a detection rate of up to 100 MHz
(efficiency of 0.100), it is clear that at that point the autocorrelation would amount
to approximately �0:1 and the bits would not pass any randomness test.
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There are numerous other variations of space and time principles that can be
found in the scientific and patent literature.

In conclusion, the most distinctive characteristic of a quantum approach to
random number generation is that, at least in principle, it makes it possible to
establish a simple relation between the randomness of numbers, the exploited
physical process, and the implementation imperfections, thus offering a possibility
for scientific proof of randomness. Careful practical realizations come sufficiently
close to theoretical idealization and allow for an independent assessment of
implementation imperfections, the effects of which can, if required, be dealt with
by information-theoretic post-processing (see Sect. 3.5). On top of that, quantum
random detection processes exist that are inherently highly insensitive to electro-
magnetic radiation (e.g., avalanche amplification in semiconductor photodiodes),
thus offering immunity to side-channel manipulation by external fields. Because of
all said, quantum RNGs are the best choice for true random number generation for
cryptography and other applications which critically require true random numbers.
The most significant drawback of the present solutions is that they make use of bulky
physical objects and therefore cannot be miniaturized to the chip level using present
technologies. Furthermore, due to the frequent use of photon detectors, QRNGs are
typically very expensive and much slower than software PRNGs. Fortunately, the
nascent science and technology of optical chips offers a promising avenue for fast,
miniature, and affordable quantum RNGs, and significant advances can be expected
in this exciting field in the near future.

3.5 Post-processing

True random number generators can never be made perfect and therefore some post-
processing is usually required. There exist a plethora of post-processing algorithms
whose purpose is to eliminate imperfections present in “raw” random numbers
produced by physical generators. A good review of post-processing methods is
given in [81]. Here we will only categorize and shortly describe the main principles.

The general idea of post-processing (Fig. 23) is to sacrifice a certain percentage
of bits in order to arrive at a smaller but more random set. There are basically four
techniques:

1. Ad hoc simple correctors
2. Whitening with cryptographic hash functions

Fig. 23 General schematic of random number post-processing
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3. Extractor algorithms [71, 72]
4. Resilient functions [10, 42, 43, 69]

Although there is a “gray zone” of what part of random number production belongs
to bit extraction method and which to post-processing, the bit extraction is usually
a first and very simple step which converts physical measurement of an analog
or digital signal into the “raw” digital random binary number (such as digitizing
analog noise via a threshold comparator shown in Fig. 2), whereas post-processing
is a more complex process designed to reduce or completely remove imperfections
that are necessarily present after the first step. While bit extraction is always made
in hardware, post-processing algorithms are usually so complicated that they can
only be executed by a computer (or a microcontroller or FPGA) although the most
valuable post-processing techniques are those simple enough to be suitable for direct
implementation in hardware.

Generally, post-processing takes a lot of resources and blurs. In our opinion,
a good true RNG should be post-processing-free or use minimal ad hoc post-
processing. Most popular post-processing techniques can be categorized into four
families as described in the following.

3.5.1 Ad Hoc Simple Correctors

Ad hoc corrector examples are XORing two or more neighboring bits from the
same RNG [72], omitting bits (decimator), feeding an LFSR with imperfect random
numbers [84], Latin square bit reshuffling [47], von Neumann [94] and Peres [56]
de-biasing, XORing two or more RNGs that work in parallel [14, 44], etc.

It is important to note that ad hoc, naïve processing can lead to unexpected
problems. For example, it is usually considered a good idea to apply a von Neumann
de-biasing scheme [94] in order to completely remove any bias from the sequence
of bits. The scheme works as follows. The biased bit sequence is cut into a
sequence of non-overlapping pairs of bits. Pairs 11 and 00 are discarded, 01 is
converted to “0,” and 10 is converted into “1.” While it is tempting to think that
the probability of occurrence of 10 is equal to the probability of 01 (and therefore
the resulting sequence has no bias), it is often overlooked that this is true only if the
bits are completely independent (no correlations). The following extreme example
illustrates how miserably von Neumann’s procedure can fail. Let us consider the
sequence: 101010101010 � � � . It obviously readily has no bias. After application of
von Neumann de-biasing, the sequence reads: 111111 � � � which is a maximally
biased and maximally correlated sequence. The reason for this unexpected result
is that the original sequence is maximally anticorrelated and therefore quite far
from the assumption of complete statistical independence. Generally, if the raw
string is correlated, naïve de-biasing procedure may even increase the bias or create
other unexpected statistical deficiencies. On the other hand, simple and easy-to-
understand ad hoc correctors have the advantage over more complex procedures, in
that they are easier to include in a randomness proof.
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3.5.2 Cryptographic One-Way (Hash) Functions

A one-way hash function is a mathematical function whose domain is a whole set
of integer numbers and whose output is a binary number of exactly N bits, where
N usually is in the range from 128 to 512. Hash functions are characterized by two
requirements:

• Given an output value, there is no faster way to find a corresponding input than
by random guessing (i.e., a hash function is “one way”).

• The probability of two different inputs yielding the same output is less than or
equal to 1=2N .

One of the most popular post-processing techniques is “whitening” of output
of a TRNG by means of a cryptographic hash function, such as MD5, SHA-1,
SHA-2, SHA-256, and SHA-512. Many authors believe that a bad RNG that does
not pass statistical tests, and runs through a “cryptographic” hash compression
procedure would magically become very good, without actually demonstrating any
theoretical understanding on why this should be the case. Indeed a very interesting
example given in [99] demonstrates that hashing a bad generator can fail to enhance
randomness enough to pass statistical tests.

From a performance perspective, implementing a hash function in hardware
chips is pretty resource demanding, so in most cases hashing is done on a computer;
two exemptions to this rule are the aforementioned Intel’s RNG in Fig. 5 and VIA
C3 in Fig. 12, which make use of SHA-1 hardwired right next to the RNG on the
same chip. Regarding the provability of randomness of the hashed output, even
though interesting results on privacy (and randomness) amplification have been
theoretically exercised for Wegman’s Universal Hash Function(s) [7], in the case
of real-life, black-box hash functions (which probably contain unknown statistical
or security weaknesses), it is hard to perform a convincing proof of randomness.
For example, a hash function may contain statistical problems like some output
strings being more probable than others which would then be inherited by the
output bits even if the function is fed by perfect random numbers. On top of that,
hash functions are usually used at the end of the post-processing leaving a bitter
aftertaste in the mouth that physically generated random numbers actually exit
out of a deterministic, complex, black-box piece of software which has not been
specifically designed for the purpose.

3.5.3 Extractor Functions

A more scrutinized approach to randomness healing is offered by the young theory
of extractors [71]. A randomness extractor is an algorithm that converts a long
weakly random sequence into a shorter sequence with almost perfect randomness.
For some randomness sources, provable extractors exist but no single randomness
extractor currently exists that has been proven to work when applied blindly to any
type of a high-entropy source. The problem with extractor algorithms is that they
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require a memory buffer and a lot of CPU which complicates the hardware and
slows down the overall output bit rate.

Extractor functions for post-processing of true random number generators were
proposed by Barak et al. [3]. The initial purpose was to achieve designs robust
against changes in the physical generators due to, for example, aging, temperature
changes, or attacks. Extractor functions are stateless functions with quantifiable
properties originally developed as a tool for complexity theory. The aforementioned
group of authors has developed a mathematical model to capture an adversary’s
influence on the randomness source and give an explicit construction based on
universal hash functions which is proven for its output properties even if nonlocal
correlations exist in the input source.

More on the theory and practice of extractors can be found in [72].

3.5.4 Resilient Functions

Yet another approach to enhancing randomness by filtering through some determin-
istic process is the use of resilient functions that were introduced by Sunar et al. [82]
as the post-processing step for an FRO RNG design. The idea is, according to the
authors, to “filter out any deterministic bits” from the raw string in the environment
where some bits may be under the control of an attacker and that bits are then
considered “deterministic.” The authors of [82] study the degree of resilience of the
procedure against active adversaries (therefrom comes the name of these functions).
In short, an .n;m; k/-resilient function is a function f W F n ! Fm such that every
possible output m-tuple is equally likely to occur when the values of k input bits
are fixed and the remaining n � k bits are each chosen at random. The elements of
F are binary values 0 and 1. The important distinguishing characteristic of resilient
functions is that they have been constructed specifically to nullify the attacks on a
(certain percentage of) random bits—a point of high importance in cryptographic
applications of random numbers (see Sects. 4–6).

More on the theory and practice resilient functions can be found in [10, 42, 43,
69, 82].

4 Randomness Evaluation (Testing)

The most important notion about statistical testing is the following: if a generator
passes all known statistical tests, this does not prove that it is random—it only means
that it passes all currently known randomness tests. Tomorrow it can fail some new
test or it already fails in the way known only to its constructors.

Most randomness tests check one or more statistical properties of long sequences
of random numbers, for example, bias, serial autocorrelation, etc. Some compi-
lations of tests are more oriented toward problems in PRNGs (e.g., DIEHARD
[47]), some more to true RNGs (e.g., ENT [96]), while some are of general nature
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(e.g., Universal Test [50], NIST STS [68]). The unfortunate fact is that there is an
infinite number of statistical properties which truly random numbers must satisfy.
Tests themselves are not perfect: some contain errors discovered later [44, 65] or
constants of questionable precision obtained by simulation using “trusted” RNGs
such as combination of white noise and “black noise” [47].

Running a comprehensive set of tests takes many CPU hours: to test 1E9 bits
with NIST STS, it takes about 6 h on the fastest single core CPU, while to produce
that many bits with a commercial QRNG, it takes between 7 and 250 s.

Randomness tests are very time consuming—it takes much shorter time to
generate numbers than to test them. Nevertheless, randomness testing is important
for constructors of RNGs. Therefore in some cases where one can reasonably expect
only certain type of imperfections (especially for quantum RNGs), one will tend to
use only special tests sensitive to these particular imperfections in order to arrive at
more efficient testing.

5 Random Numbers in Quantum Cryptography

Quantum cryptography is a protocol of public agreement of a symmetric crypto-
graphic key, meaning if two parties A and B possess a small common secret key,
then using this protocol they will be able to establish a common secret key of any
length. This cryptographic function is also known as “secret key growing.” The
ultimate goal of establishing a long secret key is to use it as a one-time pad and
thus obtain transfer of data in absolute secrecy. There are several mathematically
identical QC protocols. The first one, named after its creators as BB84, appeared in
1984 and was experimentally realized in 1991 [5].

In the BB84 scenario, Alice and Bob are connected via two different channels:
the quantum channel (usually well-shielded optic fiber) capable of conducting single
photons of light and an unsecured “classical” channel such as a telephone line, radio
link, or the Internet.

Here is the simplified schematic of how the protocol works: Alice can prepare
photons in different polarization states. In order to establish a secret key, Alice
sends to Bob a sequence of random numbers encoded in photon polarizations as
follows: “1” is equiprobably encoded either as linear vertical (LV) or left circular
(LC) polarization, while “0” is equiprobably encoded either as linear horizontal
(LH) or right circular (RC). Bob has two polarization analyzers: one which can
correctly measure linear polarizations (L) and the other which can correctly measure
circular polarizations (C). Alice chooses one polarization at random, prepares the
photon, and sends it to Bob. Bob chooses one of the two analyzers at random and
measures with it the photon received from Alice. If, by chance, Bob has chosen the
right polarizer, he will receive 0 or 1 as sent by Alice. If Bob has chosen the wrong
polarizer, he will receive 0 or 1 with equal probability regardless of what Alice has
sent. So after receiving a photon from Alice, Bob announces (over an authenticated
but not secret public channel) which polarizer he has just used (L or C). Note that
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this says nothing to a potential eavesdropper about the value of the bit Bob has got.
Alice responds with “Keep it” or “Trash it.” So bit by bit the two of them are building
their secret key. The laws of quantum mechanics prevent qubits from being faithfully
copied, so an eavesdropper can obtain only limited information about Alice’s and
Bob’s string and furthermore eavesdropping can be detected by Alice and Bob.

It is straightforward to see that the whole protocol would be completely insecure
if only the eavesdropper could calculate (or predict) either Alice’s random numbers
or Bob’s random numbers or both. From the analysis of the secret key rate presented
in [6], it is obvious that any predictability of random numbers by the eavesdropper
would leak relevant information to him, thus diminishing the effective key rate. It
is intriguing (and obvious) that in the case that the eavesdropper could calculate
the numbers exactly, the cryptographic potential of the BB84 protocol would be
zero. This example shows that the local RNGs assumed in BB84 are essential for its
security and should not be taken for granted.

Apart from what has been described above, the BB84 protocol has two more
subprotocols. Namely, due to the quantum incoherence, losses in the quantum
channel or eavesdropping Alice and Bob will not have the exact same strings of bits
after the first phase, although the two strings will have a lot of common information.
Therefore the second subprotocol, the “Data Reconciliation,” is used to equalize the
two strings, albeit at a cost of leaking some small information to an eavesdropper.
Fortunately, Alice and Bob can calculate a lower limit of their mutual information
after the two initial phases and then perform the privacy amplification phase in order
to arrive to a shorter but much more private key. These two subprotocols require
further random numbers.

The protocol BB84 is considered information theoretically proven [28, 73]
meaning that an attacker simply has not enough information to calculate the
plaintext even given infinite computing resources. This is in strong contrast with the
widely used “deterministic cryptography” where an attacker has enough information
to calculate the key except that it would probably require insurmountably large
computation resources and/or time. The caveat with QC is that the security proof
holds only against the family of attacks considered in the proof. Unfortunately,
with time, it became evident that unexpected attacks on QC which utilize various
quantum effects are feasible which makes QC much less “untouchable.”

For example, in 2007 an MIT group presented an attack that gave Eve as much
as 100 % of information about the key albeit at an expense of elevated BER [39],
but the attack was reassuringly classified as “simulation only” because it assumed
that Eve has a specific information about Bob’s receiver that she apparently could
not get.

As with any other cryptographic procedure, some problems in real-world
implementation of the protocol, especially of the quantum channel and real photon
detectors, could be used to weaken the cryptographic security of the protocol and
open pathways for attacks.

A beautiful demonstration of serious weakening and even 100 % breaking of the
key without any notice to legitimate parties has been made by Makarov et al. in 2010
[24, 46]. The demonstration has been made on the commercial QC systems from
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Swiss company ID Quantique, based in Geneva, Switzerland, and one by MagiQ
Technologies, based in Boston, Massachusetts. Improvements that would make QC
resistant to those attacks are possible and have been proposed [46], but the lesson
learned from this is that even protocols whose theoretical base is proven secure in
some scenario are not to be automatically assumed immune to all practical attacks.
The attack was made possible because the authors have found a way to manipulate
RNG at the receiving station by exploiting weaknesses of single photon detectors.
To make things even worse, this strategy made the previously mentioned MIT attack
truly viable (not anymore just a simulation). This is yet another example of the
importance of (local) RNGs to the security of a cryptographic scheme.

In conclusion, the quantum cryptographic protocol BB84 requires that both Alice
and Bob possess their private (local) provable RNGs. This is a highly critical
requirement. Note that a public server of random numbers cannot substitute for
local generators because the random numbers would have to be delivered to Alice
and Bob in perfect secrecy in the first place, and the server would have to be trusted.

6 Random Numbers in Statistical Cryptography

Statistical cryptography was invented by Ueli Maurer in 1991. The so-called
SKAPD protocol [51] resembles quantum cryptography and likewise consists of
three subprotocols. In fact the last two subprotocols (the Data Reconciliation and the
Privacy Amplification) are the same as in QC. However, the first subprotocol, named
“Advantage Distillation” (AD), is completely different and it does not involve
the quantum channel which potentially makes it much more practical. Instead,
it requires something called “binary channel with noise” which is theoretically a
classical communication channel complemented with a provable RNG.

The condition for successful key agreement is that prior to the AD protocol,
the common information shared by Alice and Bob is greater than the common
information shared by either Alice and Eve or Bob and Eve.

The practical problem with SKAPD is that it contains an unspoken “zeroth
phase” in which Alice and Bob obtain their partially correlated initial strings of
bits which satisfy the above condition. There is no known plausible way to make
the zeroth phase possible although some scenarios have been proposed (scanning
the surface of the Moon, listening to noise from faraway galaxies, taking big chunks
of Internet data, etc.).

7 Random Numbers in Deterministic Cryptography

What we call here “deterministic cryptography” in this chapter is what is widely
known as just “cryptography.” Some authors use the name “mathematical cryptog-
raphy.” It is the contemporary cryptography based on the difficulty of computing



308 M. Stipčević and Ç.K. Koç

discrete logarithms in Galois groups and elliptic curve groups, and also the
factorization of composite numbers into primes. It also needs and uses random data;
an excellent short survey is given in [8]. Since all such security protocols are by
definition deterministic and therefore reversible, the only true security resource is
that nondeterministic part: a key or one-time data which is supposed to be “random.”
The quality and provability of randomness are therefore crucial for the security of
the whole system.

In fact deterministic cryptography is the only version in wide use, and most
cryptographers are not aware of or do not care about the existence of either
quantum cryptography or statistical cryptography because apparently they are not
yet practical or sufficiently trusted. Therefore it is important to explore what makes
contemporary commercial-grade protocols secure and what could be done to get the
maximum security out of them. Our hypothesis is that if a protocol requires random
numbers, then use of a TRNG maximizes its security. Without ambition to make
a strict proof or to give a comprehensive review, here let us have a look at several
examples supporting this hypothesis:

1. The Diffie–Hellman key establishment protocol [17] enables the same func-
tionality as the above-mentioned BB84 and SKAPD protocols and is used, for
example, in the “https” protocol in order to establish a session key. The protocol
requires both parties (Alice and Bob) to generate private random data and after
some operations send them to each other. A more resistant version of DH requires
further random data used for digital signatures. A vulnerability of the PRNG
built in an early version of the Netscape Internet browser led to a complete
compromise of the subsequent cryptographic protocol. An example is the attack
on Netscape’s 40-bit RC4-40 [64] challenge data and encryption keys, which
was able to break the https protocol in a minute or so, as described in [25]. The
authors of this article stipulate that 128-bit version RC4-128 would not be much
harder to break either if seeding is done in a similar fashion.

2. The RSA public key protocol relies on the generation of public and private keys
separately by Alice and Bob. In order to create a private/public pair of keys, it
is necessary to generate two unique, large prime numbers. Already calculating
prime number candidates involves random numbers. After that, candidates need
to be tested for primality using the Miller–Rabin algorithm which requires
random numbers as the bases in order to properly test for primality. Additional
one-time random numbers may be used in the process of actual communication.
Where high-entropy physical random bits are not available or are time expensive
(like on a typical PC computer), there is a tendency to “expand” a short random
string to a long one by pseudorandom methods. This approach can create
serious cryptographic weaknesses because an attacker must guess a much smaller
number of bits than he or she would in the case of use of truly random numbers.

3. Similarly, research into a cryptographic attack on the partially pseudoran-
dom number generator of an AES-based commercial cryptographic system is
described in [66].
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To conclude, in deterministic cryptography, random numbers are the only part
of the protocol which is different from point to point, and furthermore their true
randomness is sometimes a prerogative for correct calculations. Therefore, even
though most deterministic cryptography primitives are not secure, using true random
numbers ensures the highest achievable security with these methods.

8 Open Problems and Outlook

In this survey chapter we attempt to show the importance of random numbers
for the strength of cryptographic protocols not only for quantum and stochastic
cryptographies where random numbers are an essential part of the data exchanged
between communicating parties but also for contemporary deterministic cryptogra-
phy where the unpredictability and maximal entropy of the random numbers used
therein maximize the overall cryptographic strength.

True random number generators seem to be in modest use, even though some
companies make a good profit from them [33]. From the available data, it seems
that TRNGs are mainly sold to online gambling companies, state security agencies,
and the product labeling and testing industry. At the time of writing this survey, the
main problems preventing more widespread use of true random number generators
in general are:

1. the lack of generator designs whose proofs of randomness would be at the
same time correct, convincing, and demonstrated to be resilient to expected
imperfections in hardware

2. the (widespread) lack of understanding that pseudorandom numbers cannot be
used as a substitute for true random numbers in so many applications, notably
cryptography, both classical and quantum, computer security, Monte Carlo
simulations, lotteries, testing of products and their functionality, and many more

3. the high price of true random number generators
4. the lack of support of true random number generators in various popular software

that requires random numbers which makes them hard to use

9 Additional Comments and References

A distinctive difference between PRNG and TRNG is the provability of the latter.
While mathematical proof of randomness is impossible, for TRNGs we do not rely
solely on mathematics but also on sets of physical postulates which lie outside
of mathematics. Indeed, the only provable feature of a PRNG is that it is not
random because all numbers produced thereby can be calculated from a single
initial number: the seed. On the other hand, TRNGs seem to be inevitably plagued
with “small imperfections” in hardware which turn into measurable deviations from
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randomness which calls for post-processing. But complex post-processing blurs or
weakens our belief in the eventual randomness proof. Furthermore, the practice of
withholding information on the operating of a TRNG as well as a scientific proof of
its randomness seems to be almost a rule when it comes to commercial TRNGs.
Manufacturers justify this by the need to protect their intellectual property and
technology. While such justification is fine when it regards common products (e.g.,
a dishwasher), it is exactly what ruins the purpose of a TRNG because without a
clear insight into the technology and randomness proof of a TRNG, one falls back
to the unprovability situation of a PRNG. On the other side of the coin, in scientific
publications proofs of randomness are offered very rarely too, probably because the
proof is the hard part of the research while it does not seem to be required by the
editors of scientific journals. Most researchers therefore fall back to the minimum-
action strategy: make a TRNG, obtain at least one random number sequence that
passes the chosen set of randomness tests, and publish. However, without a detailed
investigation of the sensitivity of the extracted randomness on small variations in
hardware and without a randomness proof, a scientific design cannot proceed toward
a product. In our view this situation has been improving and will continue to improve
very slowly over time, thus ensuring a longevity and freshness of the research on
TRNGs.

Even though there is a large collection of publications which document the fact
that PRNGs may fail their purpose as RNGs [11, 12, 15, 19, 21, 29, 36, 40, 45, 55, 58,
70, 78, 87], we see that PRNGs are still in much more widespread use than TRNGs
even in most critical applications. Among the reasons is the fact that PRNGs are so
much more convenient, simpler, and cheaper to use than TRNGs, and also there is a
ubiquitous lack of understanding of what randomness is and what it isn’t, supported
by the nonexistence of a widely accepted definition of randomness [40]. Clearly,
further research on that subject is needed.

All commercial TRNGs whose speed is at least 1 Mbit/s are bulky and the price is
in the range $5–25k, which is more expensive than most of the software that would
use a TRNG. It therefore generally does not pay a software manufacturer to make
its product much more expensive by requiring a third-party TRNG for generating
random numbers. In extreme rare cases though, a software has been married to a
selected TRNG: for example, Mathematica and Quantis (by a third party) [53].

Commercial TRNGs typically come with drivers that support transfer of random
numbers to programming languages such as Pascal or C++ on selected operating
systems, e.g., [33], using a product specific subroutine or program library function.
This is probably the maximum that a manufacturer can reasonably do to support
its product. On the other hand, most commercial or free software that uses or needs
random numbers does not come with support for any TRNG. This means that having
a precompiled software, there is practically no way to connect it to any TRNG. The
only viable solution to include a TRNG in a software package would be to write
it from scratch and include in it specific function calls associated with the specific
chosen TRNG. Since there is no industry standard for access to a TRNG from within
a computer program (unlike, e.g., to access printers or other common peripherals),
one could support only a specific TRNG per programming effort. In our view it
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is clear that as long as there is no standardized way to access TRNGs, or, better
yet, until TRNGs are physically integrated in computers and are accessible in major
programming languages, their popularity will remain minimal.

While it is clear that true randomness cannot be generated by deterministic
operations and that therefore it must rely on physical phenomena, the problem of
generating good enough randomness and the provability of randomness remain
the main open problems with physical RNGs. New directions in the development
of physical RNGs will probably concentrate on self-calibrating [41, 86] or no-
calibration devices [80] with fundamentally random quantum phenomena as a
source of randomness.
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