
Chapter 18
Microarchitectural Attacks and
Countermeasures

Onur Acıiçmez and Çetin Kaya Koç

18.1 Introduction

Microarchitectural analysis (MA) is a fast evolving area of side-channel cryptanaly-
sis. This new area focuses on the effects of common processor components and their
functionalities on the security of software cryptosystems. The main characteristic of
microarchitectural attacks, which sets them aside from classical side-channel at-
tacks, is the simple fact that they exploit the microarchitectural behavior of modern
computer systems.

The fascinating progress of microprocessor technology in the last decades is
maybe the most influential power that has been driving the scientific and technolog-
ical advances. However, due to strictly throughput, performance, and “performance
per watt”-oriented goals of modern processor designs and also “time-to-market”-
driven business philosophy, the resulting products, i.e., commodity processor ar-
chitectures in the market, lack a thorough security analysis. The main element that
gave birth to microarchitectural analysis area is indeed this particular gap between
the current processor architectures and the ideal secure computing environment.

The identification of requirements for secure execution environments has always
been a challenging task since the invention of high-complexity computing devices.
The security requirements of early computer systems were defined with monolithic
mainframe computers in mind (cf. [9, 15, 48] and also [19] for a nice collection of
early computer security efforts). Today, the domination of multi-user PC and server
platforms and also the multitasking operating systems mandates a serious revision of
these early requirements. Recently, we have seen an increased effort on the security
analysis of daily life computer platforms. The advances in the field, more specifi-
cally, the desire to develop secure execution technologies such as AMD’s Pacifica,
Intel’s virtualization technology (VT) and trusted execution technology (TXT) (co-
denamed LaGrande technology or LT for short) play an important role to increase

Samsung Information Systems America, e-mail: onur.aciicmez@gmail.com · City University of
Istanbul & University of California Santa Barbara, e-mail: koc@cryptocode.net

Ç.K. Koç (ed.) Cryptographic Engineering, DOI 10.1007/978-0-387-71817-0 18,
c© Springer Science+Business Media, LLC 2009

475

476 Onur Acıiçmez and Çetin Kaya Koç

attention on analysis of computer platform security due to [42]. Here, it has been
especially shown that microarchitectural properties of modern processors create a
significant security risk (cf. [3, 4, 6, 10, 29, 35]).

Today’s high-end computer architectures employ several different components
each of which is responsible for a specific task mostly to increase the performance
of the system. Among all these different components, we will focus on only four of
them in this chapter:

1. Data cache
2. Branch prediction unit
3. Instruction cache
4. Functional units, especially multiplier

These four components are the ones that had been exploited in MA until the time this
chapter was written. Although it is necessary to understand the detailed functional-
ity and purposes of these components in order to grasp the basic idea underlying
the theory of MA, we cannot cover all these details in this chapter. It would take
yet another book to explain even the basics of modern computer architecture, and
therefore we have to assume that the reader already has at least some familiarity
with computer architecture concepts. There are several books in the literature (e.g.,
[16, 34, 38, 39]) that give comprehensive overviews of modern computer architec-
tures. Even though we will try to give very brief explanations of the aforementioned
microprocessor components, we recommend the readers to study the related mate-
rials from [34, 39] or a similar resource in advance.

In this chapter, we cover all of these four MA types mentioned above. We start
with an overview and history of microarchitectural analysis. Then we present each
MA type including the basics of these attacks and examples of concrete attack strate-
gies found in the literature. We also discuss the differences between these MA types
and possible countermeasure techniques.

18.2 Overview and Brief History

The actual origins of microarchitectural analysis go back to [20, 40]. Although these
publications implicitly pointed out the security risks of microprocessor components
like cache, concrete and widely applicable security attacks relying on microproces-
sor functionalities have not been worked out until very recent years. The results
of these recent studies immediately attracted significant public interest due to their
implications and broad application ranges of these security breaches.

The typical targets of side-channel analysis have been and still are smart cards.
However, we have seen significant increase in the research efforts spent on side-
channel analysis of commodity PC platforms. Soon, the researchers realized the
fact that the internal functionalities of some microprocessor components like data
and instruction cache and branch prediction units cause very serious side-channel
leakage and hence create crucial security risks. These efforts led to the development
of microarchitectural analysis area.

18 Microarchitectural Attacks and Countermeasures 477

Side-channel analysis can be defined as the study of the relations between
the strength of cryptosystems and data-dependent variations in the so-called side-
channel information, e.g., execution time and power consumption, generated during
the execution of their physical implementations. Malicious parties can exploit such
variations to find out the secrets used in security applications and cryptosystems.
These variations either directly give the key value out during a single cipher exe-
cution or leak sensitive information which can be gathered during many executions
and analyzed to compromise the system. MA attacks exploit the microarchitectural
components of a processor to reveal cryptographic keys. The internal functionalities
of the aforementioned processor components generate such data-dependent varia-
tions in execution time and power consumption, which are the subjects of MA.

The first type of MA we had seen is called “Cache Analysis”. A cache-based
attack, abbreviated to “cache attack” or “cache analysis” from here on, exploits
the cache behavior of a cryptosystem by obtaining the execution time and/or
power consumption variations generated via cache hits and misses, cf. [5, 6, 10–
12, 24, 26, 27, 29, 31, 35, 43–45]. The potential cache vulnerability of computer
systems has been known for a long time, cf. [20, 22, 23]; however, actual realistic
and practical cache attacks were not developed until recent years. Cache analysis
techniques enable an unprivileged process to attack another process, e.g., a cipher
process, running in parallel on the same processor as done in [26, 29, 35]. Fur-
thermore, some of the cache attacks can even be carried out remotely, i.e., over a
network [6].

The current cache attacks in the literature, excluding instruction cache attacks
which are fundamentally different than data cache attacks, are data-path attacks.
They exploit the data access patterns of a cipher. The memory accesses of S-box-
based ciphers like DES and AES are key dependent. Cache attacks analyze the cache
statistics, e.g., miss/hit rates, of the cipher execution and try to reveal these memory
access patterns. Cache statistics of an execution include the number of cache hits and
misses, the cache lines modified by the cipher, and such. An unprivileged malicious
party cannot directly obtain the cache statistics of a cipher,1 but it can observe the
side-channel leakage through execution time and/or power consumption to estimate
these values. For instance, the execution time of AES software implementations is
directly related to the total number of cache hits and misses occuring during an
encryption, cf. [41], and someone can measure AES encryption time to determine
these statistics.

Branch prediction analysis (BPA) is the second type of MA which was developed
in 2006. Several variants of BPA attacks were introduced in [4], all of which exploit
the side-channel leakage due to branch prediction units of microprocessors. The
most powerful variant of BPA is called simple branch prediction analysis (SBPA)
and it relies on the ability to run a spy process parallel to the cipher process under

1 In fact, current processors have special registers, called performance counters, inside the chip to
count and store such statistics. These registers are mainly used for performance monitoring pur-
poses and fortunately require special privileges to be read. The potential power of a malicious party
would be significantly higher without this requirement of high privilege. For further information
on performance counters and performance monitoring events, refer to [49].

478 Onur Acıiçmez and Çetin Kaya Koç

attack [3]. According to [3], a carefully written spy process running simultaneously
with an RSA process is able to collect during one single RSA signing execution
almost all of the secret key bits. The concept of SBPA is proved in [3] by applying an
attack on the exponentiation phase of a simple RSA implementation as a case study.
A spy process, which relies on the simultaneous multithreading (SMT) capability of
some microprocessors, is implemented to observe the execution of an RSA cipher
process. This concept was also verified by André Seznec, a well-known expert on
branch prediction [50].

The actual power of SBPA is not limited to this basic application on RSA expo-
nentiation. The SBPA has a potential to reveal the entire execution flow of a target
process on almost any execution environment, i.e., with or without SMT. This is a
very strong claim which has not been experimentally verified.

Following this interesting research field, two other MA are also introduced: ex-
ploiting instruction cache (I-cache analysis) and shared functional units (SFU anal-
ysis). Similar to BPA, I-cache and SFU analysis rely on spy routines and they reveal
the execution flow of cryptosystems. In I-cache analysis, an adversary runs a spy
process simultaneously or quasi-parallel with the cipher and detects the changes
occuring in the instruction cache.

The principles of SFU analysis are different than the previous MA types. The
previous types, i.e., cache, branch prediction, and instruction cache analysis, try to
observe the changes in the persistent state of the mentioned microprocessor compo-
nents. The spy process-oriented MA attacks, except SFU analysis, rely on the fact
that the execution of cryptosystems leaves persistent changes in the state of shared
resources like cache and branch target buffer. In other words, the cipher execution
leaves “footprints” on the observable state, i.e., the so-called metadata of these re-
sources and an unprivileged spy process can keep track of these footprints if it runs
on the same processor in parallel with the cipher. An adversary can reveal the exe-
cution flow and/or the memory access patterns of cryptosystems by spying on these
states and especially by detecting the changes of these states as a function of time.
On the other hand, SFU analysis does not take advantage of persistent states. It fol-
lows a quite different approach and tries to detect when a certain functional unit is
occupied by the cipher.

We will explain the details of each of these MA types in the following sections.

18.3 Cache Analysis

18.3.1 Basics of Cache

We can only give a brief explanation of cache in this section. We recommend the
readers to explore more on cache architectures in order to grasp the details of cache
attacks. For further information on cache, please refer to [17, 18, 30].

A high-frequency processor needs to retrieve the data at a very high speed in
order to utilize its functional resources. The latency of a main memory is not

18 Microarchitectural Attacks and Countermeasures 479

short enough to match this demand of high-speed data delivery. The gap between
the latency of main memories and the actual demand of processors has been and
will be continuously increasing as Moore’s law holds. Common to all proces-
sors, the attempt to close this gap is the employment of a special buffer called
cache.

A cache is a small and fast storage area used by a CPU to reduce the average
memory access time. It acts as a buffer between the main memory and the processor
core and provides the processor fast and easy access to the most frequently used
data (including instructions) without frequent external bus accesses.

Cache stores the copies of the most frequently used data. When the processor
needs to read a location in main memory, it first checks to see if the data are already
in the cache. If the data are already in the cache (called a cache hit), the processor
immediately uses this data instead of accessing the main memory, which has a sig-
nificantly longer latency than a cache. Otherwise (a cache miss), the data are read
from the memory and a copy of it is stored in the cache. This copy is expected to be
used in the near future due to the temporal locality property.

A cache is partitioned into a number of non-overlapping fixed size blocks, called
cache blocks or cache lines. The minimum amount of data that can be read from the
main memory into a cache at once is called cache line or cache block size, i.e., each
cache miss causes a cache block to be retrieved from a higher level memory. The
reason why a block of data is transferred from the main memory to the cache instead
of transferring only the data that are currently needed lies in spatial locality property.
Since a cache is limited in size, storing new data in a cache mandates eviction of
some of the previously stored data.

The method of deciding where to store and search for a data in a cache is called
cache mapping strategy. Three main cache mapping strategies are direct, fully asso-
ciative, and set associative mapping.

A particular data block can only be stored in a single certain location in a di-
rect mapped cache. The exact location is determined using the address of the data
block. On the contrary, a data block can be placed in potentially any location in a
fully associative cache. The location of a particular placement is determined by the
replacement policy. Set associative mapping is a combination of these two mapping
strategies. Set associative caches are divided into a number of same size sets, called
cache sets, and each set contains the same fixed number of cache lines. A data block
can be stored only in a certain cache set based on the address of the data block (just
like in a direct mapped cache); however, it can be placed in any location inside this
set (like in a fully associative cache). Again, the particular location of a data inside
its cache set is determined by the replacement policy.

The replacement policy is the method of deciding which data block to evict from
the cache in order to place the new one in. The ultimate goal is to choose the data that
are most unlikely to be used in the near future. There are several cache replacement
policies proposed in the literature (cf. [18, 34]). In this document, we focus on a
specific one: least recently used (LRU). It is the most commonly used policy and it
picks the data that are least recently used among all of the candidate data blocks that
can be evicted from the cache.

480 Onur Acıiçmez and Çetin Kaya Koç

18.3.2 Overview of Cache Attacks

Cryptosystems have data-dependent memory access patterns. For example, S-box-
based block ciphers like DES and AES employ table lookups and the indices of these
lookups are functions of the plaintext and the secret key. Cache architectures leak
information about the cache hit/miss statistics of ciphers through side-channels, e.g.,
execution time and power consumption. Therefore, it is possible to exploit cache
behavior of a cipher to obtain information about its memory access patterns, i.e.,
indices of S-box and table lookups.

Cache attacks rely on cache hits and misses occur during the encryption/
decryption process of a cryptosystem. Even if a cipher implementation has a fixed
execution flow, i.e., if the same instructions are executed for any particular (plain-
text, cipherkey) pair, the cache behavior during the execution causes variations in
the program execution time. Cache attacks exploit such variations and narrow the
exhaustive search space of secret keys.

Theoretical cache attacks were first described by Page in [31]. He characterized
two types of cache attacks: trace driven and time driven. We have recently seen
another type of cache attacks that can be named as “access-driven” attacks.

In trace-driven cache attacks, the adversary obtains the traces of cache activity for
a sample of encryptions. We define a trace as a sequence of cache hits and misses.
For example,

MHHMHMHM,MMHMHHMH,MMMMHHHH

are examples of a trace of length 8. Here H and M represent a cache hit and miss,
respectively. The first memory access in the first example results in a miss, sec-
ond one in a hit, and so on. If an adversary captures such traces, he can determine
whether a particular access during an encryption is a hit or miss. Therefore, the
adversary has the ability to observe (e.g.) if the second access to a lookup table
yields a hit and can infer information about the lookup indices, which are key depen-
dent. This ability gives an adversary the opportunity to make inferences about the
secret key.

Time-driven attacks, on the other hand, are less restrictive and they do not rely
on the ability of capturing the outcomes of individual memory accesses. Adversary
observes the aggregate profile, i.e., total number of cache hits and misses or at least
a value that can be used to approximate these numbers. For example, he measures
the total execution time of a cipher and uses this measurement to approximate the
number of cache misses occurring during the encryption. Note that each cache miss
introduces a delay to the overall execution time and thus the total encryption time
is proportional to the number of cache misses. Time-driven attacks are based on
statistical inferences and therefore require much higher number of samples than
trace-driven attacks.

While trace-driven and time-driven attacks analyze the outcomes of memory ac-
cesses, access-driven attacks follow a different approach. The adversary determines
the cache sets that the cipher process modifies. Therefore, he can understand which

18 Microarchitectural Attacks and Countermeasures 481

elements of the lookup tables or S-boxes are accessed by the cipher. Then, the can-
didate keys that cause an access to unaccessed parts of the tables can be eliminated.

In the following sections, we explain each of these cache attack types in more
detail. We describe simplified attack models for each type and try to enrich the
understanding of the reader by showing concrete attack examples from the litera-
ture along with these models. We can only focus on a small fraction of the pre-
vious studies on this subject in this chapter to keep the length in a reasonable
range. Therefore, we first want to give a short survey on cache analysis and briefly
cover the entire prior art before delving into the details of our set of concrete attack
examples.

18.3.3 A Brief Survey on Cache Analysis

Although [20, 22, 23] pointed the cache vulnerability of computer systems a long
time ago, actual realistic cache attacks had not been developed until recent years.
D. Page described and simulated a theoretical cache attack on DES [31] in 2002.
Actual cache-based timing attacks were first implemented by Tsunoo et al. [43, 44].
They developed several cache attacks on various ciphers, including MISTY1, DES,
and Triple-DES [43]. Their original attack on MISTY1 was improved later in [45].

Bernstein showed the vulnerability of AES software implementations on various
platforms [10]. There was a common belief that Bernstein’s attack could be used as
a real remote attack; however, later studies proved it wrong [27].

Osvik et al. described various local cache attack variants first in [28] in 2005,
then they presented their results at CT-RSA in early 2006 [29]. They made use of a
local process, called spy process, to monitor the cache activities of an AES process.
They exploited the collisions between the table lookups in the first two rounds of
AES and the memory access operations of the spy process. Neve et al. improved
these attacks in [29] by taking the last AES round into consideration [26].

The same idea of exploiting collisions between two different processes was also
used by Percival in [35] and Bertoni et al. in [11]. Percival exploited simultaneous
multithreading feature of the modern processors and developed a cache attack on
RSA [35]. Bertoni et al. developed a cache-based power attack on AES using the
idea of exploiting external collisions.

Similar to external collisions between different processes, one can also exploit
internal collisions inside a cipher. The attacks of Tsunoo et al. are based on this
principle [43, 44]. Trace-driven attacks also rely on internal collisions [5, 24]. A
summary of possible cache collision attacks on AES is given in [12].

None of these efforts was successful to achieve the goal of developing a generic
and universally applicable cache attack that can also compromise remote systems.
A remote cache attack and ideas to develop a universal remote cache attack on AES
are given in [6].

Several hardware- and software-based countermeasures were proposed to prevent
cache attacks in [10, 13, 29, 32, 33].

482 Onur Acıiçmez and Çetin Kaya Koç

18.3.4 Time-Driven and Trace-Driven Attacks

Let Pi and Ki be the ith byte of the plaintext and cipherkey, respectively. In this chap-
ter, each byte is considered to be either an 8-digit radix-2 number, i.e., ∈ {0,1}8, that
can be added in GF(28) using a bitwise exclusive OR operation or an integer in [0,
255] that can be used as an index.

Assume that we have a cryptosystem, which operates on a lookup table, and each
element of this table is as large as the size of a cache line. There are two accesses to
the same lookup table as in Figure 18.1. The indices of these accesses are a function
of different bytes of the plaintext and the cipherkey. An adversary removes all of
the cipher data from the cache by (e.g.) reading or writing a large piece of data.
Therefore, prior to an encryption the cache does not contain any data that belongs
to this cryptosystem.

Then the adversary triggers encryption with arbitrary plaintext. Whenever the
two indices become equal for a plaintext, the second access will find the target data
in the cache and result in a cache hit. In other words, whenever the equation

(P1 ⊕K1 = P2 ⊕K2)

holds for a plaintext, or in a different interpretation, the equation

(P1 ⊕P2 = K1 ⊕K2)

holds, then we will have a cache hit in the second during the encryption of this
plaintext. Note that we assume a clean cache prior to the encryption, i.e., the cache
does not contain any data belonging to this cipher. Similarly, whenever there is a
cache hit in the second table lookup, these equations will also hold. Therefore, the
key byte difference K1 ⊕K2 can be derived from the values of plaintext bytes P1 and
P2 if this plaintext causes such a cache hit.

In trace-driven attacks, we assume that the adversary can directly understand if
the latter access results a hit, thus he can directly obtain K1 ⊕K2.

This goal is more complicated in time-driven attacks. These attacks rely on the
following facts:

• The execution time of a cipher is directly related to the number of cache misses
occurring during the execution. In other words, the overall execution time of an
encryption can be used to approximate the number of cache misses that occur
during the encryption.

Fig. 18.1 Two different accesses to the same table.

18 Microarchitectural Attacks and Countermeasures 483

• The average number of cache misses in encryptions of a sample of plaintext that
results in a biased cache miss is different than the case of a random sample.
For example, a large sample of plaintext, each of which results in a cache miss
during the second table lookup, causes a different number of cache misses in
average during the execution of a cipher compared to a random sample that does
not result in such a biased cache miss.

The expected number of cache misses during an encryption with a plaintext that
obeys the equation (P1 ⊕P2 = K1 ⊕K2) is less than the expected number of cache
misses when the plaintext does not obey this equation. We need to use a large sam-
ple to realize an accurate statistics of the execution. In our case, if we collect a
sample of different plaintext with the corresponding execution time, the plaintext
byte difference, P1 ⊕P2, that causes least number of cache misses in average (i.e.,
the shortest average execution time) gives the correct key byte difference.

When we consider this fact, a simple attack method becomes the following:

Phase 1: Obtain a sample of (plaintext, encryption time) pairs generated under the
same target key.

Phase 2: Split this initial set into 128 subsets based on the plaintext values. In order
to do this, first create a subset for each possible value of P1 ⊕P2. Note that there
are 128 possibilities because P1 and P2 are bytes and therefore the length of P1 ⊕
P2 is 8 bits. Then scan each plaintext in the initial sample and put it in the subset
that corresponds to P1 ⊕P2 value of this plaintext.

Phase 3: Calculate the average encryption time of the entities in each subset. If the
initial sample obtained in Phase 1 is large enough, all of these average values,
except one subset, will be close to each other. The only exception is the subset
that corresponds to the P1 ⊕P2 value that is equal to K1 ⊕K2. Therefore, the key
byte difference can be recovered.

In this basic example attack, we assume that each element of the lookup table is
as large as the size of a cache line. However, the elements of the lookup tables in
real implementations are usually smaller than the cache line size. Therefore, each
cache line stores more than one element of the table. Any cache miss results in the
transfer of an entire cache line, not only a single element, from the main memory.
This indicates the fact that there will be a cache hit even when P1 ⊕K1 is not equal
to P2 ⊕K2. If a cache line stores more than one element of a table, those will be
consecutive elements of the table because of the current cache architectures. Hence,
we can still recover the most significant bits of K1 ⊕K2 in a real attack by following
our basic attack model. This concept will be more clear when we cover our first
concrete cache attack in the next section.

18.3.5 Exploiting Internal Collisions in Time-Driven Attacks

We cover some example cache attacks on AES-128 in this section. Our first example
is very similar to the basic attack given above.

484 Onur Acıiçmez and Çetin Kaya Koç

The most widely used AES software implementation employs five different
lookup tables. There are 10 rounds of computations in AES-128 and 16 table
lookups in each round. The indices of the first round table lookups are in the form
Pi ⊕Ki for i ∈ {0,1, ...,15}. The indices to the first AES table in the first round are
P0 ⊕K0, P4 ⊕K4, P8 ⊕K8, and P12 ⊕K12.

We can directly apply the idea given in the previous section to these indices. If we
use the simple attack method on the first two indices P0⊕K0 and P4⊕K4 by splitting
our initial sample set into the subsets based on the value P0⊕P4, the distinct average
encryption time values will indicate the value of K0 ⊕K4.

Figure 18.2 shows the average execution time for each subset that was formed
during the search of K0 ⊕K4 in a real attack using the indices P0⊕K0 and P4⊕K4. It
can clearly be seen in this figure that there are several distinct points as opposed to
a single point for the correct K0 ⊕K4 value. The reason, as explained above, is that
the elements of the lookup tables in real implementations are usually smaller than
the actual cache line size and thus each cache line stores more than one element of

Fig. 18.2 The first graph shows the results of the search for 〈K0 ⊕K8〉msp using the indices (P0 ⊕
K0) and (P8 ⊕K8) in an experimental attack. The second graph shows the same search when the
number of table elements in a single cache line is known to be 16.

18 Microarchitectural Attacks and Countermeasures 485

the table. Therefore, there is a cache hit during the latter table lookup whenever the
most significant parts of P0 ⊕K0 and P4 ⊕K4 become equal for a plaintext. So, we
can only find the difference of the most significant part of the key bytes using the
equation

〈P0〉⊕ 〈P4〉 = 〈K0〉⊕ 〈K4〉

where 〈A〉 stands for the most significant part of A. The size of the most significant
parts, i.e., the number of bits that can be recovered by exploiting these two indices,
depends on how many table elements a cache line holds.

The dashed ellipse in the top graph of this figure obviously contains more than 8
and less than 32 points, so an attacker can conclude that there are 16 table elements
in a cache line, which also means that the most significant parts of the key byte
differences are 4 bits long. Using less sets during a search on key byte differences
gives more clear identification of the correct value, because each set contains more
elements in this case. An increase in the size of a sample gives a better estimation
of the expected execution time for this sample because the variance of the average
encryption time decreases proportional to the size of the sample. The bottom graph
shows the average execution time of each 16 sets that can be formed for the same
search.

Applying the same idea on different indices of the first round, we can find the
key byte differences 〈Ki ⊕K4∗ j+i〉 with i, j ∈ {0,1,2,3}. This attack is called first
round attack. On current widely used processors the search space can typically be
reduced to 56, 68, or 80 bits for 128-bit keys. If we also consider the indices of the
second round table lookups, called second round attack or two-round attack, we can
reduce the search space to 32 bits. The equations used in second round attack are
more complicated than first round attack; therefore, we do not cover them in detail
in this chapter. Further details can be found in [6].

These attack principles can be used to develop a remote cache attack, i.e., a cache
attack that does not require local access to the target machine and can compromise
the systems over a network just by sending messages to the systems and measuring
the response time. They also showed how one can devise and apply such remote
cache attacks on other cryptosystems. Their experiments indicate that cache attacks
can be used to extract secret keys of remote systems if the system under attack
runs on a server with a multitasking or multithreading system and a large enough
workload. Although a large number of measurements are required to successfully
perform a remote cache attack, it is feasible in principle.

18.3.6 Access-Driven Attacks

In a computer system, we have a main memory, which stores the data of each process
running on the system, and a cache between the memory and the CPU as shown in
Figure 18.3. We represent each cache block with a square in this figure and each
column corresponds to a different cache set. For example, the cache in this figure
has two blocks in each column, so it is two-way set associative. Assume that the data

486 Onur Acıiçmez and Çetin Kaya Koç

Fig. 18.3 Main memory and cache structure in a CPU.

blocks in a column of the memory map only to the corresponding cache set in the
same column of the cache. Mapping a memory block to a cache set means that this
particular cache block can only be stored in that set of the cache. As an example,
the garbage data and data structure 1 can only be in the dark area of the cache in
Figure 18.3. In fact, the mapping between memory locations and cache blocks in real
computer systems are different and more complicated than our basic assumption.
However, for the sake of simplicity and clarity, we follow this assumption in this
chapter.

Also assume the following. There are two different processes, the cryptosystem
and a malicious process, called Spy process, running on the same machine. Cryp-
tosystem process operates on several different data structures. The actual value of
the secret key affects which of these data structures (e.g., which parts of a table
lookup) are accessed during an encryption and when (e.g., in which round) they are
accessed.

An adversary can easily understand if the cipher has at least one access to, for
example, data structure 1 during a particular encryption. This is due to the situation
that accesses to garbage data and data structure 1 create external collisions. We
define a collision in this context as the situation that occurs when an attempt is
made to store two or more different data items at a location that can hold only one
of them. We use the term “external collision” if these data items belong to different
processes. On the other hand, if the data items belong to the same process, we call
it as “internal collision”.

In our case here, the cache does not have enough number of sets to store the
garbage data and data structure 1 at the same time. Since the cache is only two-
way associative and the garbage data completely fills the dark area in, an access
to garbage data results in replacing any previously stored data in the dark area.
Similarly, an access to any data that maps to the same cache location also replaces
some or all of the garbage data if it resides in the cache prior to this access. There-
fore, an access to the garbage data may evict data structure 1 from the cache and
vice versa. This fact enables an adversary to devise an attack on the cryptosystem
process.

A basic attack works as the following. An adversary reads the garbage data which
would force the CPU to load the content of it into the cache (Figure 18.4a). Then

18 Microarchitectural Attacks and Countermeasures 487

Fig. 18.4 Steps of a basic attack.

the adversary triggers an encryption and the cryptosystem is run under this initial
cache state. There are two possible cases that may happen during the encryption:

Case 1: Cipher accesses data structure 1.
Case 2: Cipher does not access data structure 1.

When the first case happens, the access to data structure 1 changes the content of the
first four cache sets as shown in the figure. Otherwise, these sets remain unchanged.
In Case 1 (Case 2, resp.) the final state of the first four cache sets just after the
encryption becomes like Figure 18.4b (Figure 18.4c, resp.). When the adversary
reads the garbage data again after the encryption, he can understand which case
was true, because reading the garbage data creates some cache misses and thus
takes longer in Case 1. Similarly, at least in theory, the adversary can use the same
technique for other data structures and reveal the entire set of items that are accessed
during an encryption. Since this set depends on the secret key value, he can gain
invaluable information to narrow the exhaustive search space.

This model describes an active attack where the adversary must be able to control
the contents of the cache. The cache attacks that rely on this basic model correspond
to access-driven types. Percival’s attack on RSA [35] (cf. Section 18.3.7), Osvik
et al. and Neve et al.’s attacks on AES [26, 28, 29] (cf. Section 18.3.6.1), and the
power attack by Bertoni et al. [11] use this attack model. In fact, branch prediction
analysis (cf. Section 18.4) and instruction cache analysis (cf. Section 18.5) are also
based on similar approaches.

18.3.6.1 Osvik–Shamir–Tromer (OST) Attacks

Our first example of access-driven cache attack was developed by Osvik, Shamir,
and Tromer. They described and simulated several different methods on AES to per-
form local cache attacks. We cover only their most powerful attack in this chapter.
The principle of their attack is very similar to the above basic model. They apply

488 Onur Acıiçmez and Çetin Kaya Koç

the same idea on AES to determine which parts of AES tables are accessed during
an AES operation.

In their attack, the adversary runs a spy process, which reads a local array to load
it into the cache. After the spy process sets the state of the cache to a known state by
forcing the CPU to replace the cache entries with the data of this array, the adversary
triggers an AES encryption with a known plaintext. Immediately after the execution
of AES, the spy process takes over the CPU and starts reading the same array again.
However, this time it also measures the time it takes to read the blocks of this array.
That way, as explained above, the adversary can determine which parts of the array
got evicted from the cache. The parts of this local array that are not evicted by AES
process directly give out which blocks of AES tables were not accessed during the
encryption.

Let us consider the index P0⊕K0 as an example. This attack is a known plaintext
attack and we know the values of P0 but trying to find K0. When we apply this
attack, we determine the elements of AES tables that are not accessed during the
encryption of this plaintext, i.e., the values that P0 ⊕K0 cannot be equal to. We
can then eliminate the values of K0 that would cause an access to these unaccessed
elements for this particular value of P0. If we can gather enough data from several
encryptions, we end up with the correct value of 〈K0〉. Remember that we cannot
reveal the least significant part of K0 for the reason explained in the previous section.
In general, if we consider the first round indices, we can reveal 〈Ki〉 for 0≤ i≤ 15. If
we extend our focus on the second round indices, then we can recover the entire key.

Osvik et al. described several variations of access-driven cache attacks on AES.
They also suggested relying on hardware-assisted SMT feature to detect the changes
of the cache states on-the-fly during the encryption. However, their attack idea does
not require SMT feature and can principally work on any multitasking environment.

Figure 18.5 shows real experimental results of an access-driven variant taken
from [29]. In this experiment, Osvik et al. observed the cache activity of several
encryptions with random but known plaintext values. They ran the spy process and
collected “measurement scores” for each possible value of 〈Ki〉 as the following.
They collected samples of the form (P, y, m) consisting of arbitrary table indices
y, random plaintexts P, and measurement scores m. The measurement scores are
the time delays when the spy reads the blocks of its local array that map to the

Fig. 18.5 Average measurement scores of first round OST attack for 30,000 (left) and 800 (right)
triggered encryptions under the same key. The x-axis shows P5⊕y (left) and 〈P5⊕y〉 and the y-axis
shows the average measurement scores in units of clock cycles. The actual value of 〈K5〉 can easily
be determined as 0×5.

18 Microarchitectural Attacks and Countermeasures 489

same cache set as the block of the AES table that contains table element with the
index y. If we consider a key byte 〈Ki〉, whenever 〈y〉 becomes equal to 〈Pi ⊕Ki〉
for a particular P, the measurement score m will be higher for this (P, y) pair. If
we collect measurement scores (P, y, m) for a sample of known plaintext, split
these scores into different subsets based on 〈Pi ⊕ y〉 values and calculate the av-
erage m values in each of these subsets, then the subsets that correspond to the
correct 〈Ki〉 value will have higher average measurement scores compared to the
other subsets. This is exactly what Osvik et al. did to generate the results shown in
Figure 18.5.

18.3.7 Percival’s Hyper-Threading Attack on RSA

Percival developed a cache attack on RSA, which relies on hardware-assisted SMT
capability [35]. Our attack model described in Section 18.3.6 can work on almost
any system. But, such access-driven attacks become much more powerful on simul-
taneous multithreading environments, because the adversary can run the spy process
simultaneously with the cipher. Running these processes simultaneously allows an
attacker to obtain not only the set of data structures accessed by the cipher but also
the approximate time that each access occurs.

In Percival’s attack, the adversary again runs a spy process but this time it is
run simultaneously with the server on an SMT processor. Spy process has a local
array just like the previous attack and continuously reads each block of this local
array in the same order. Note that each of these blocks correspond to a different
cache line. The spy process reads the blocks that map to the same cache set together
and measures the overall read time for each of these sets. In other words, the spy
process observes each cache set (via reading the local array in a structured manner)
in a certain order to determine whether the RSA process modifies this cache set. If
reading a cache set takes longer, the attacker can conclude that this set was accessed
during the time interval between the last read of the set by the spy process and the
current read.

The experimental results of Percival’s attack are given in Figure 18.6. The color
of each little square in this figure indicates the time it takes the spy to read the
corresponding cache set, denoted as cache congruency class. These colors can be
considered as the measurement scores for each cache set. All of the squares in a
particular column map to the same cache set. The vertical axis shows the time of the
observation.

In general, such an attack can reveal the “footprints” of a victim process. Per-
cival applied this idea on RSA and was able to identify the order of squaring and
multiplication operations in OpenSSL’s RSA implementation. Percival’s attack on
OpenSSL’s sliding windows exponentiation (with a window size of 5 bits) could
reveal an average 200 bits of information about each of the two 512-bit secret
exponents.

490 Onur Acıiçmez and Çetin Kaya Koç

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p
x := x2 mod p

x := x.a2k+1 mod p

x := x.a2k+1 mod p

x := x.a2k+1 mod p

T
im

e
(c

yc
le

s)

Cache congruency class

5 · 105

4 · 105

3 · 105

2 · 105

1 · 105

0 · 105

310

Fig. 18.6 Graphical representation of a small portion of the spy measurements in Percival’s attack
on RSA.

18.4 Branch Prediction Analysis

Branch prediction analysis (BPA) is the second microarchitectural analysis type we
cover in this chapter. Several methods to exploit the branch prediction mechanism
are developed [3, 4]; branch prediction mechanism is nowadays a part of all general
purpose processors. We call all of these attacks branch prediction analysis. The most
powerful variant of BPA is called simple branch prediction analysis (SBPA) and it
is our subject in this section. Please refer to [4] for other variants of BPA.

18.4.1 The Concept of Branch Prediction

Deep microprocessor pipelines coupled with the ability to fetch and issue multiple
instructions at every machine cycle led to the development of superscalar proces-
sors. Superscalar processors target a theoretical or best-case throughput of less than
one machine cycle per completed instructions, cf. [39]. However, the actual through-
puts of superscalar processors are limited by the available instruction-level paral-
lelism (ILP) in the executed code. When branch instructions were recognized as one

18 Microarchitectural Attacks and Countermeasures 491

of the most crucial performance killers of superscalar processors, microprocessor
architects quickly invented the concept of branch predictors in order to circumvent
those performance bottlenecks. There has been very significant amounts of research
on more and more sophisticated branch prediction mechanisms, cf. [34, 38, 39].
However, it turns out that the branch mechanisms can be exploited to attack the
integrity of the processes running on the processor.

Superscalar processors rely on branch prediction mechanisms to execute instruc-
tions speculatively to overcome control hazards, cf. [34, 39]. Therefore, the actual
performance of microprocessors is greatly affected by the efficiency of speculation,
which makes it one of the key issues in modern superscalar processor design.

A branch instruction is a point in the instruction stream of a program where
the next instruction is not necessarily the next sequential one. There are two types
of branch instructions: unconditional branches (e.g., jump instructions, goto state-
ments) and conditional branches (e.g., if-then-else clauses, for and while loops). For
conditional branches, the decision to take or not to take the branch depends on some
condition that must be evaluated in order to determine the correct execution path.
During this evaluation period, the processors speculatively execute instructions from
one of the possible execution paths instead of stalling and awaiting for the decision
to come through.

The key to achieve higher processor performance is the ability to predict the cor-
rect execution path as accurately as possible. The ultimate goal of branch prediction
mechanisms is therefore to predict the most likely execution path in such a case.
The accuracy of branch prediction mechanisms greatly affects the overall perfor-
mance. Thus, it is very beneficial if the branch prediction algorithm tries to predict
the most likely execution path in a branch. If the prediction is true, the execution
continues without any delays. However, if the speculatively executed instruction
flow turns out to be wrong, which is called a misprediction, the instructions on the
pipeline that were speculatively issued have to be dumped and the execution has to
start over from the mispredicted instruction path, thus suffers from a misprediction
delay. Measurable timing differences between a correct and incorrect prediction are
exactly what the BPA/SPBA attacks capitalize on.

A microprocessor needs the following information to speculatively execute the
instructions after a conditional branch:

• The outcome of the branch prediction. It has to determine the outcome of a con-
ditional branch, i.e., whether it needs to be taken or not taken, in order to execute
the correct instruction sequence. This outcome depends on the evaluation of the
condition and it is not immediately available when a conditional branch is issued.
The processor must execute the branch and check the outcome of the condition,
which is evaluated in later stages of the pipeline. Instead of waiting the actual
outcome of the branch to come through, the processor starts executing a possi-
ble instruction sequence, which is predicted as the correct sequence by the branch
prediction unit (BPU). This prediction is usually based on the history of the same
branch as well as the history of other branches executed just before the current
branch, cf. [39].

492 Onur Acıiçmez and Çetin Kaya Koç

• The target address of the branch. If the BPU predicts a conditional branch to be
taken, the instructions in the target address have to be fetched and issued. In this
case, the processor needs the address of the predicted instruction sequence, i.e.,
the target address, in order to fetch and issue these instructions. Similar to the
outcome of the branch, the target address may not be immediately available too.
Therefore, the CPU tries to keep records of the target addresses of previously
executed branches in a buffer, the so-called branch target buffer (BTB).

Overall common to all branch prediction units (BPU) is the following Fig-
ure 18.7. As shown, the BPU consists of mainly two “logical” parts, the BTB and
the predictor. The predictor is that part of the BPU that makes the prediction on the
outcome of the branch under question. The BTB is the buffer where the CPU stores
the target addresses of the previously executed branches. Since this buffer is limited
in size, the CPU can store only a number of such target addresses, and previously
stored addresses may be evicted from the buffer if a new address needs to be stored
instead. If the processor cannot find a target address in BTB (called a BTB miss), the
execution suffers from a BTB miss delay similar to a branch misprediction. Further
details of branch prediction can be found in [34, 38, 39].

18.4.2 Simple Branch Prediction Analysis

Several methods to exploit the branch prediction mechanisms are developed [4].
One of these methods presented relies on the fact that processors keep the target
addresses of recently executed conditional branches in BTB. This attack, which was
initially named as “trace-driven BTB attack”, was significantly improved in [3] and
renamed as simple branch prediction analysis (SBPA).

Fig. 18.7 Branch prediction unit architecture.

18 Microarchitectural Attacks and Countermeasures 493

SBPA is also a spy-oriented attack similar to the cache eviction attacks presented
above. However, there is a fundamental difference between SBPA attacks and pure
data cache eviction attacks. Attacking the BTB is targeting the instruction flow,
which is more complicated than the data flow within the memory hierarchy, i.e.,
between the L1 data cache and the main memory.

The SBPA attack is applied on RSA by running a spy process simultaneously
with RSA on a multithreaded processor. It could reveal the execution flow of the
RSA process by observing the BTB state transitions during a single RSA operation.
Although the attack is carried out on an SMT system, it is argued that this attack can
be used on almost any processor [7].

SBPA takes advantage of the fact that both processes share the BTB. The spy pro-
cess continuously executes a certain fixed sequence of a sufficiently higher number
of branches to guarantee the eviction of a target branch executed by the crypto-
graphic process. In [3], the conditional branch of RSA, which determines the square
and multiply sequence of the exponentiation, was targeted. When the next time the
cryptographic process executes the target conditional branch, the address of this
branch cannot be found in BTB. If the cipher takes this branch, the processor must
rewrite the target address back to BTB, which causes the footprint of this branch to
be left in BTB. Since the spy process continuously executes several branches, it will
detect this change shortly after it happens. This way, the spy process can observe
the traces of the target branch in terms of “taken” and “not taken”.

We have to mention that the branches executed by the spy maps to the same BTB
area with the target branch. In other words, the spy process intentionally creates con-
flicts (thus a race condition) between its branches and the target branch. Therefore,
whenever the target branch turns out to be taken, the target address of this branch
needs to be stored in BTB by evicting one of the spy branches from the BTB. When
the spy process re-executes its branches, it will encounter a misprediction on the
branch that has just been evicted. This misprediction will also trigger further mis-
predictions because the entry of the evicted spy branch needs to be re-stored and an-
other not-yet-re-executed spy branch entry has to be evicted, which will also cause
other mispredictions. Overall, the execution time of this spy step suffers from many
misprediction delays resulting in a high timing gap between taken and not-taken
situations of the target branch.

Reference [3] demonstrated the first SBPA attack on the S&M algorithm im-
plemented in OpenSSL-0.9.7. They showed that measurements taken from a single
run of the S&M exponentiation is sufficient to extract almost all of the RSA secret
exponent bits. Figure 18.8 shows their experimental results. The y-axis shows the
measurements of the spy in terms of the clock cycles and x-axis shows the order
of these measurements, which also indicates the order of the RSA operations. As
you can see, the spy measurements become clearly different when RSA executes a
multiplication compared to the case of a square operation. Since the order of the spy
measurements is also known, we can easily extract the operation sequence of RSA
and construct the secret exponent from these measurement results.

Attacking the S&M algorithm was only a case study to show the potential of
SBPA. The actual potential of SBPA is much broader as stated in [3, 7]. In general,

494 Onur Acıiçmez and Çetin Kaya Koç

Fig. 18.8 Experimental results of SBPA on S&M exponentiation, yielding 508 out of 512 secret
key bits.

SBPA can reveal the execution flow of a process and thus endangers any system
if their execution flow depends on sensitive information. Several potential applica-
tion areas of SBPA are given in [3]. Reference [7] identifies a novel side-channel
attack on binary extended euclidean algorithm, which is enabled by the SBPA
methodology.

18.5 I-cache Analysis

Instruction cache was identified as another microarchitectural analysis source [2].
This new technique, called instruction cache analysis or shortly I-cache analysis, is
also spy oriented and tries to reveal the execution flow of a process just like branch
prediction attacks.

Many processors use different caches for data and code segments of a process.
Instruction cache (I-cache) stores recently executed instructions from the code seg-
ment and when a process starts executing a code block that is not currently stored
in the cache, i.e., in case of a cache miss, the processor loads these instructions
from main memory into the cache. Since a cache is limited in size, several differ-
ent code blocks share the same cache sets/lines. In case of a cache conflict between
different code blocks, they evict each other from the instruction cache when their
executions are interleaved. As you can see, the functionality of instruction cache is
very similar to data cache and also shared between different processes. Since we
already explained above some details of cache architectures and the general func-
tionality, which is very similar in both data and instruction cache, we do not cover
these concepts again in this section.

In [2], the consequences of cache conflicts are exploited by creating intentional
conflicts between the instructions of an RSA process and a spy code and forcing the

18 Microarchitectural Attacks and Countermeasures 495

processor to evict the RSA instructions out of I-cache. The attack scenario given in
[2] is the following.

A spy process runs simultaneously with the cipher process and tries to determine
which instructions are executed by the cipher. It spies on the cipher execution by ob-
serving the I-cache state transitions. Assume that the spy process tries to understand
when the cipher “touches” a certain I-cache set during the execution of a part of
cipher code. The spy process continuously executes a set of “dummy” instructions
that map to this particular cache set. These dummy instructions are not intended
to perform any useful calculations other than filling some I-cache space, i.e., the
“spied-on” cache set. These dummy instructions fill completely and precisely this
I-cache set, no more, no less. Therefore, the processor has to store them into the
spied-on cache set, which inevitably causes the eviction of the previous entries in
that I-cache location and sets it to a known predetermined state. When the cipher
executes some instructions that map to this particular I-cache location, the predeter-
mined state set by the spy process must change. The spy process can determine this
change via the timing difference when it re-executes its dummy instructions.

Reference [2] applied this basic principle to OpenSSL’s RSA implementation.
Due to some performance improvement reasons, OpenSSL first calls either multi-
plication or square functions from its multiprecision library during a Montgomery
operation and then calls Montgomery reduction function to reduce the result to
the modulus. This technique causes key-dependent sequence of multiplication and
square function calls during sliding window exponentiation, which is the default
exponentiation algorithm used in OpenSSL. In the experiments of [2], the spy con-
tinuously executed dummy instructions to evict the instructions of the multiplica-
tion function and measured the execution time of its own dummy instructions as
described above. Note that, in this practical attack, the spy does not observe a single
I-cache set but a number of sets that can hold the instructions of the multiplica-
tion function.

Figure 18.9 shows the results of this experiment. Again the y-axis shows the
measurements of the spy in terms of the clock cycles and x-axis shows the order of

Fig. 18.9 Experimental results of I-cache analysis given in [2].

496 Onur Acıiçmez and Çetin Kaya Koç

these measurements, which also indicates the order of the RSA operations. These
timing measurements were taken during a single RSA operation under a random
1024-bit key. As you can see in this figure, the operation sequence of RSA could be
successfully observed via I-cache analysis.

18.6 Exploiting Shared Functional Units

All of the microarchitectural analysis types we have covered above rely on the fact
that there are some buffers (e.g., data cache, instruction cache, BTB) shared between
different processes running on the same processor. The state of these buffers and the
transitions between these states are affected by the execution of any of these pro-
cesses and also affect the execution of other processes. These attacks can be applied
on any platform with or without SMT capability as explained in [26]. However, [1]
presents a novel attack which is very unique to certain SMT architectures and it
seems that it cannot be carried out on CPU architectures without SMT hardware as-
sistance. In this sense, this attack is unique because it does not rest upon a shared re-
source with the persistent state property between context/process switches. Instead,
it is based upon the fact that some SMT technologies share complex functional units
between the hardware-supported threads, i.e., between logical processors within a
physical SMT processor, in order to keep the SMT area over head cheap.

Reference [1] presents an attack on OpenSSL which exploits the fact that the inte-
ger multiplier in Pentium 4 architecture is shared between the two threads executing
on the same SMT-enabled processor. Since a multiplier does not preserve any per-
sistent state, this attack methodology is quite different than other microarchitectural
types. The principle idea of this attack is the following. A spy process continuously
executes a number of dummy multiplication instructions and measures their execu-
tion time. Whenever the other process (RSA process in this case) performs some
multiplications by executing its own multiplication instructions, the time measured
by the spy will be longer. This is because the spy and the cipher instructions race
to occupy the shared multiplier. When the multiplier executes a multiplication in-
struction from the cipher process, the spy multiplication instructions have to wait
their turn until the multiplier finishes its current task, which eventually cause longer
execution time for the spy instructions and can easily be detected by the spy.

Reference [1] also exploited the key-dependent RSA implementation of
OpenSSL. As we already explained above, OpenSSL implementation has key-
dependent sequence of multiplication and square function calls during sliding win-
dow exponentiation. We need to mention another important aspect of OpenSSL’s
implementation. RSA operations make use of multiprecision multiplication routines
due to their long operand sizes. Usually the operands in RSA exponentiations are
512 bits or 1024 bits long, respectively, for 1024 and 2048 bit RSA keys. Note
that RSA implementations usually benefits from Chinese remainder theorem and
operates on half-sized operands compared to the size of entire public keys. Multi-
precision libraries represent large integers as a sequence of machine-sized words.

18 Microarchitectural Attacks and Countermeasures 497

OpenSSL implements two different multiplication algorithms: Karatsuba and
“normal” multiplication. OpenSSL uses Karatsuba multiplication to multiply two
numbers with an equal number of words (e.g., square operation). Karatsuba multi-
plication takes O(nlog2 3) time, where n is the number of words in the operands, cf.
[25]. When multiplying two numbers with an unequal number of words of size n and
m, OpenSSL executes normal multiplication, which runs in O(nm) time. Therefore,
a square operation takes less time than a multiplication in OpenSSL. This particular
way of implementing RSA causes the leakage of operation sequence because the
execution time variations depend on this sequence due to the difference between the
implementations of multiplication and square operations.

Shared functional unit attack uses this timing difference, which can be observed
by the spy process as described above, to distinguish between modular multiplica-
tions and squares. The operation sequence reveals the entire secret key in a binary
square and multiply exponentiation. In case of OpenSSL’s sliding window exponen-
tiation, a large number of key bits can be derived.

18.7 Comparing Microarchitectural Analysis Types

Data cache attacks try to reveal the data access patterns of cryptosystems. On the
other hand, branch prediction, I-cache, and shared function unit attacks expose the
execution flow of the ciphers. Implementations with fixed instruction flow, which
is usually the case for block ciphers, are intrinsically protected against these at-
tacks. However, public key cryptosystem implementations, e.g., those of RSA and
ECC, usually have key-dependent operation flow. It is possible to implement these
systems without key-dependent execution flow, but it comes with some degree of
performance loss. Due to such performance and optimization reasons, the develop-
ers usually choose to implement these systems in a way that cause execution flow
variations, which make BPA, I-cache, and SFU attacks a real threat to actual security
systems.

It is also possible to determine the execution flow of a cipher (e.g., RSA) by
analyzing the data access patterns as done in [35]. However, implementations can
avoid this threat by carefully handling the layout of data structures on the memory.
For example, OpenSSL changed the way it handles the RSA structures to avoid data
cache attacks. Even when the data structures are handled in a special way, BPA,
I-cache, and SFU analysis can compromise the implementations if the execution
flow remains key dependent. Similarly, data cache attacks can be applied on imple-
mentations with fixed execution flow if the data access patterns are key dependent.
Therefore, both data and instruction cache analysis must be considered during the
design and implementation of security critical systems.

The basic difference between I-cache and branch prediction analysis is the
following. Branch prediction analysis presented in [3, 4] specifically targets con-
ditional branches. A conditional branch controls the execution of different instruc-
tion paths. Thus, the outcome of a conditional branch, which can be observed via

498 Onur Acıiçmez and Çetin Kaya Koç

BPA, leaks the instruction path to an adversary. However, using conditional branch
is only one way to implement execution flow control. There are other techniques,
which may be protected against BPA, to conditionally alter the execution flow with-
out the use of conditional branches. In this sense, I-cache analysis is broader than
BPA because it reveals the execution flow regardless of how execution flow control
is implemented. For example, [8] proposes to use indirect jumps instead of condi-
tional branches as a countermeasure to BPA, but this mitigation is still vulnerable to
I-cache analysis.

The main difference between shared FU attack and the other MA types is the fact
that it does not exploit the footprints of cryptosystems that are left on the persistent
states of a buffer. Other MA types, data cache, I-cache, and BPA attacks rely on the
persistent states of some buffers shared between different processes running on the
same processor. These attacks can be applied on any platform with or without SMT
capability. On the other hand, shared FU attack is based upon the fact that some
SMT technologies share complex functional units between the hardware-supported
threads and thus it seems that it cannot be carried out on CPU architectures without
SMT hardware assistance.

18.8 Countermeasures for Microarchitectural Analysis

In this section we investigate possible countermeasures to prevent MA threats. We
cover mainly software-based countermeasures and very briefly mention possible
hardware-based countermeasures. The reason why we do not cover hardware-based
approaches in greater length is because there had not been any real attempt, un-
fortunately, to employ such hardware changes in real systems. Therefore, we focus
on more practical aspects of MA prevention, more specifically software mitigation
methods, in this section.

Several countermeasures for AES were proposed in [13] against cache attacks.
Particularly, [13] argues that permuting the AES lookup tables prevents access-
driven attacks. They also propose to use smaller lookup tables, e.g., original AES
S-box, during the first and last rounds of AES computations. Current cache attacks
on AES exploit first, second, and the last round accesses. Using smaller tables dur-
ing these rounds make it more difficult, i.e., require more samples, to apply these
cache attacks. A formal study was presented in [41] to analyze the effects of table
sizes, among other parameters, on the performance of time-driven attacks.

The only cache attack on RSA is from Percival [35]. He exploited the fact that
OpenSSL implementation accesses different data structures during square and mul-
tiplication operations. In other words, Percival’s attack can extract the operation
sequence of RSA by tracing the cache activities, cf., Section 18.3.7. Moreover, it
is also possible to determine which table entries are used in a multiplication step
because table entries were stored in consecutive regions of memory and thus they
map to different cache sets. Reference [14] proposes an implementation technique
that does not have these weaknesses. To be more precise, [14] proposes to change

18 Microarchitectural Attacks and Countermeasures 499

the memory layout of RSA exponentiation table and to interleave the table en-
tries in memory instead of storing them in a consecutive manner. This way, each
access to any table entry results in touching the same cache lines, which makes
the accesses to different table entries indistinguishable. However, one still can ob-
serve the operation sequence of RSA due to the simple fact stated above. There-
fore, [14] also suggests to employ fixed window exponentiation, which has a con-
stant operation sequence. These countermeasures were implemented in OpenSSL
as an optional protection mechanism, i.e., a user has the option to turn these
mechanisms on.

Branch prediction and I-cache attacks exploit execution flows of cryptosystems.
The best mitigation method for these attacks is to implement cryptosystems with
fixed execution flows. Reference [7] analyzed the strength of OpenSSL’s RSA
implementation considering branch prediction analysis and detected several weak
points that needed to be changed. Particularly, [7] suggested to remove several con-
ditional branches that affect the strength of RSA implementation. OpenSSL team
took these suggestions into consideration and modified the implementations. Ref-
erence [7] also proposes a new method to implement high-level execution flow of
RSA without any variations. A similar proposal is also given in [21].

Another mitigation method for branch prediction vulnerabilities is given in [8].
They suggest to implement conditional branches via indirect branching. In other
words, their method comprises storing the addresses of the branch legs in memory
and loading the corresponding address into a register during runtime based on the
evaluated condition of a conditional branch and using this register as the jump target.
Since they do not consider to avoid execution flow variations, the proposed mitiga-
tion does not truly provide high security. Their protection can easily be overcome
by I-cache attacks.

There are also several hardware countermeasures in the literature proposed to
prevent microarchitectural attacks. We do not cover the details of hardware-based
countermeasures in this book. The interested readers can refer to [10, 32, 33, 47].

18.9 Exercises

1. What is (are) the difference(s) between time-driven and access-driven cache at-
tacks? Which one is more efficient and why?

2. What is (are) the fundamental difference(s) between data cache and instruction
cache attacks?

3. Both I-cache analysis and simple branch prediction analysis (SBPA) can very ef-
fectively reveal the execution flow of a cryptosystem. For example, both attacks
can extract the sequence of multiplication/square operations in an RSA exponen-
tiation by observing only a single run of the cipher. However, I-cache analysis
is more general than SBPA in the sense that I-cache analysis can compromise
SBPA-resistant systems. What is the reason of this situation?

4. Which cryptosystems are susceptible to branch prediction analysis?

500 Onur Acıiçmez and Çetin Kaya Koç

5. Why is it easier to carry out microarchitectural attacks on simultaneous multi-
threading processors?

6. Which microarchitectural attack type does seem to work only on simultaneous
multithreading processors? Why?

18.10 Projects

1. There are some reference cache attack codes in [10] and [35]. Verify Bernstein’s
attack on AES and Percival’s attacks on RSA using these reference codes.
Bernstein’s AES attack mimics a remote cache attack. In real remote attacks, the
timing measurements must be obtained by a client and they also contain a lot
of noise due to network delays, etc. However, in Bernstein’s experiments, the
encryption time is measured inside the crypto process, i.e., the server, instead of
in the client. Modify Bernstein’s reference code and measure the actual response
times inside the client and verify that this attack becomes practically infeasible
in a realistic remote attack.
Percival’s attack, the experiments need to be performed on a simultaneous multi-
threading processor. You can run these experiments on an HT-enabled Pentium 4.
In order to synchronize spy and crypto processes, you can use pthread library.

2. There are several publications in the literature, cf. [36, 37, 46], that give the
details of how one can extract the secret exponent in an RSA exponentiation by
observing the occurrences of extra reduction steps in Montgomery multiplication
during the exponentiation. In other words, if we can observe which multiplica-
tion/square operations perform an extra reduction step during an entire modular
exponentiation with a secret exponent, we can extract the value of this secret ex-
ponent by using some statistical analysis techniques. These techniques can also
tolerate some levels of errors in the observations. SBPA and I-cache analysis
are useful tools to perform such observations to detect the occurrences of extra
reduction steps. Study [36, 37, 46], find an RSA implementation that employs
Montgomery multiplication with extra reduction step (OpenSSL v.0.9.8e would
suffice), and try to apply SBPA and I-cache attacks on this implementation to
detect the extra reduction steps and extract the secret exponent. Also analyze the
error rates in the observations and their effect on the necessary sample size.

3. Branch prediction attacks have been demonstrated only on conditional branches
so far. Avoiding conditional branches in cryptographic implementations are
thought to prevent these attacks. However, there are still many open questions.
For example, it may also be possible to compromise security systems by detect-
ing when and which unconditional branches are executed during the course of a
cryptographic operation. Such information can be useful if the implementation
has data-dependent execution time and/or control flow variations. Another prob-
lem is due to error detection purposes. The software implementations, whether
cryptographic operations or regular applications, have many conditional branches
to detect run-time errors/anomalies. For example, a widely accepted convention

18 Microarchitectural Attacks and Countermeasures 501

is to use conditional branches, e.g., if-then-else statements, to check the return
values of functions/methods to detect run-time errors, unexpected results, etc. Al-
though these conditional branches have a low probability to alter the execution
flow, they can be exploited via branch prediction analysis. These aspects need
further investigations.

References

1. O. Acıiçmez and J.-P. Seifert. Cheap hardware parallelism implies cheap se-
curity. 4th Workshop on Fault Diagnosis and Tolerance in Cryptography —
FDTC 2007, pp. 80–91, IEEE Computer Society, 2007.

2. O. Acıiçmez. Yet another microarchitectural attack: Exploiting I-cache. Pro-
ceedings of the 2007 ACM Workshop on Computer Security Architecture,
pp. 11–18, ACM Press, 2007.
Also available at: Cryptology ePrint Archive, Report 2007/164, May 2007.

3. O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert. On The power of simple branch
prediction analysis. 2007 ACM Symposium on InformAtion, Computer and
Communications Security (ASIACCS’07), R. Deng and P. Samarati, editors,
pp. 312–320, ACM Press, 2007.
Also available at: Cryptology ePrint Archive, Report 2006/351, October 2006.

4. O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert. Predicting secret keys via branch
prediction. Topics in Cryptology — CT-RSA 2007, The Cryptographers’ Track
at the RSA Conference 2007, M. Abe, editor, pp. 225–242, Springer-Verlag,
Lecture Notes in Computer Science series 4377, 2007, also available at: Cryp-
tology ePrint Archive, Report 2006/288, August 2006.

5. O. Acıiçmez and Ç. K. Koç. Trace-driven cache attacks on AES (Short Paper).
8th International Conference on Information and Communications Security —
ICICS06, P. Ning, S. Qing, and N. Li, editors, pp. 112–121, Springer-Verlag,
Lecture Notes in Computer Science series 4307, 2006. Full version is available
at: Cryptology ePrint Archive, Report 2006/138, April 2006.

6. O. Acıiçmez, W. Schindler, and Ç. K. Koç. Cache based remote timing attack
on the AES. Topics in Cryptology — CT-RSA 2007, The Cryptographers’ Track
at the RSA Conference 2007, M. Abe, editor, pp. 271–286, Springer-Verlag,
Lecture Notes in Computer Science series 4377, 2007.

7. O. Acıiçmez, S. Gueron, and J.-P. Seifert. New branch prediction vulnerabil-
ities in OpenSSL and necessary software countermeasures. 11th IMA Inter-
national Conference on Cryptography and Coding, S. D. Galbraith, editor,
pp. 185–203, Springer-Verlag, LNCS 4887, 2007, also available at: Cryptol-
ogy ePrint Archive, Report 2007/039, February 2007.

8. G. Agosta, L. Breveglieri, I. Koren, G. Pelosi, and M. Sykora. Countermeasures
Against Branch Target Buffer Attacks. 4th Workshop on Fault Diagnosis and
Tolerance in Cryptography — FDTC 2007, pp. 75–79, IEEE Computer Society,
2007.

502 Onur Acıiçmez and Çetin Kaya Koç

9. D. E. Bell and L. La Padula. Secure computer systems: Mathematical founda-
tions and model. Technical Report M74-244, MITRE Corporation, 1973.

10. D. J. Bernstein. Cache-timing attacks on AES. Technical Re-
port, 37 pages, April 2005. Available at http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

11. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES
power attack based on induced cache miss and countermeasure. International
Symposium on Information Technology: Coding and Computing - ITCC 2005,
vol. 1, pp. 4–6, 2005.

12. J. Bonneau and I. Mironov. Cache-Collision Timing Attacks against AES.
Cryptographic Hardware and Embedded Systems — CHES 2006, L. Goubin
and M. Matsui, editors, pp. 201–215, Springer-Verlag, Lecture Notes in Com-
puter Science series 4249, 2006.

13. E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert. Software mitigations to
hedge AES against cache-based software side channel vulnerabilities. Cryptol-
ogy ePrint Archive, Report 2006/052, February 2006.

14. E. Brickell, G. Graunke, and J.-P. Seifert. Mitigating Software Side Channels
in AES and RSA Software. Developers track RSA 2006, RSA conference San
Jose, 2006.

15. Department of Defence. Trusted Computing System Evaluation Criteria (Or-
ange Book). DoD 5200.28-STD, 1985.

16. R. C. Detmer. Introduction to 80X86 Assembly Language and Computer Archi-
tecture. Jones & Bartlett Publishers, 2001.

17. P. Genua. A Cache Primer. Technical Report, Freescale Semiconductor Inc.,
16 pages, 2004. Available at http://www.freescale.com/files/32bit/doc/app
note/AN2663.pdf.

18. J. Handy. The Cache Memory Book. 2nd edition, Morgan Kaufmann, 1998.
19. NIST. History of Computer Security Project: Early Papers. National

Institute of Standards and Technology, Computer Security Division:
Computer Security Resource Center, available at http://csrc.nist.gov/
publications/history/index.html

20. W. M. Hu. Lattice scheduling and covert channels. Proceedings of the IEEE
Symposium on Security and Privacy, pp. 52–61, IEEE Computer Society, 1992.

21. M. Joye and M. Tunstall. Securing OpenSSL Against Microarchitectural At-
tacks. International Conference on Security and Cryptography — SeCrypt’07,
J. Hernando, E. Fernndez-Medina, and M. Malek, editors, pp. 189–196, IN-
STICC Press, 2007.

22. J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel Cryptanalysis of
Product Ciphers. Journal of Computer Security, vol. 8, pp. 141–158, 2000.

23. P. C. Kocher. Timing Attacks on Implementations of Diffie–Hellman, RSA,
DSS, and Other Systems. Advances in Cryptology – CRYPTO ’96, N. Koblitz,
editor, pp. 104–113, Springer-Verlag, Lecture Notes in Computer Science se-
ries 1109, 1996.

24. C. Lauradoux. Collision attacks on processors with cache and countermea-
sures. Western European Workshop on Research in Cryptology — WEWoRC
2005, C. Wolf, S. Lucks, and P.-W. Yau, editors, pp. 76–85, 2005.

http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf
http://www.freescale.
com/files/32bit/doc/app_note/AN2663.pdf

18 Microarchitectural Attacks and Countermeasures 503

25. A. J. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, New York, 1997.

26. M. Neve and J.-P. Seifert. Advances on Access-driven Cache Attacks on AES.
13th International Workshop on Selected Areas of Cryptography — SAC’06,
E. Biham and A. M. Youssef, editors, pp. 147–162, Springer, Lecture Notes in
Computer Science series 4356, 2007.

27. M. Neve, J.-P. Seifert, and Z. Wang. A refined look at Bernstein’s AES side-
channel analysis. Proceedings of ACM Symposium on Information, Computer
and Communications Security — ASIACCS’06, p. 369, ACM Press, 2006.

28. D. A. Osvik, A. Shamir, and E. Tromer. Other People’s Cache: Hy-
per Attacks on HyperThreaded Processors. Presentation available at
http://www.wisdom.weizmann.ac.il/∼tromer/.

29. D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures:
The Case of AES. Topics in Cryptology — CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, D. Pointcheval, editor, pp. 1–20, Springer-
Verlag, Lecture Notes in Computer Science series 3860, 2006

30. R. van der Pas. Memory Hierarchy in Cache-Based Systems. Technical Report,
Sun Microsystems Inc., p. 28, 2002, available at
http://www.sun.com/blueprints/1102/817-0742.pdf

31. D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
Technical Report CSTR-02-003, Department of Computer Science, University
of Bristol, June 2002.

32. D. Page. Defending Against Cache Based Side-Channel Attacks. Technical Re-
port. Department of Computer Science, University of Bristol, 2003.

33. D. Page. Partitioned Cache Architecture as a Side Channel Defence Mecha-
nism. Cryptography ePrint Archive, Report 2005/280, August 2005.

34. D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Ap-
proach. 4th edition, Morgan Kaufmann, 2006.

35. C. Percival. Cache missing for fun and profit. BSDCan
2005, Ottawa, 2005. Available at http://www.daemonology.net/
hyperthreading-considered-harmful/

36. W. Schindler. A Combined Timing and Power Attack. PKC 2002, D. Naccache
and P. Paillier, editors, LNCS 2274, pp. 263–279, 2002.

37. W. Schindler and C. D. Walter. More Detail for a Combined Timing and Power
Attack against Implementations of RSA. 9th IMA International Conference
on Cryptography and Coding, K. G. Paterson, editor, pp. 245–263, Springer-
Verlag, LNCS Nr. 2898, 2003.

38. T. Shanley. The Unabridged Pentium 4 : IA32 Processor Genealogy. Addison-
Wesley Professional, 2004.

39. J. Shen and M. Lipasti. Modern Processor Design: Fundamentals of Super-
scalar Processors, McGraw-Hill, 2005.

40. O. Sibert, P. A. Porras, and R. Lindell. The Intel 80× 86 Processor Architec-
ture: Pitfalls for Secure Systems. IEEE Symposium on Security and Privacy,
pp. 211–223, 1995.

41. K. Tiri, O. Acıiçmez, M. Neve, and F. Andersen. An Analytical Model for
Time-Driven Cache Attacks. 14th International Workshop on Fast Software

http://www.sun.com/blueprints/1102/817-0742.pdf
http://www.daemonology.net/
hyperthreading-considered-harmful/

504 Onur Acıiçmez and Çetin Kaya Koç

Encryption — FSE 2007, A. Biryukov, editor, pp. 399–413, Springer, Lecture
Notes in Computer Science series 4593, 2007.

42. Trusted Computing Group. http://www.trustedcomputinggroup.org.
43. Y. Tsunoo, T.Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Cryptanalysis of

DES Implemented on Computers with Cache. Cryptographic Hardware and
Embedded Systems — CHES 2003, C. D. Walter, Ç. K. Koç, and C. Paar, ed-
itors, pp. 62–76, Springer-Verlag, Lecture Notes in Computer Science series
2779, 2003.

44. Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of
Block Ciphers Implemented on Computers with Cache. ISITA 2002, 2002.

45. Y. Tsunoo, E. Tsujihara, M. Shigeri, H. Kubo, and K. Minematsu. Improving
cache attacks by considering cipher structure. International Journal of Infor-
mation Security, vol. 5(3), pp. 166–176, Springer-Verlag, 2006.

46. C. D. Walter and S. Thompson. Distinguishing Exponent Digits by Observing
Modular Subtractions. Topics in Cryptology — CT-RSA 2001, The Cryptogra-
phers’ Track at the RSA Conference 2001, D. Naccache, editor, LNCS 2020,
pp. 192–207, 2001.

47. Z. Wang and R. B. Lee. New Cache Designs for Thwarting Software Cache-
based Side Channel Attacks. 34th International Symposium on Computer Ar-
chitecture — ISCA’07, pp. 494–505, ACM Press, 2007.

48. W. Ware. Security Controls for Computer Systems. Report of Defense Science
Board Task Force on Computer Security; Rand Report R609-1, The RAND
Corporation, 1970.

49. Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3B: System Programming Guide.

50. A. Seznec. Branch Prediction under Scrutiny for Possible Security Flaw avail-
able online at
http://www.irisa.fr/activity/new/007/branchpredictionattack004.

http://www.trustedcomputinggroup.org
http://www.irisa.fr/activity/new/007/branchpredictionattack004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

