
Chapter 7
Spectral Modular Arithmetic for Cryptography

Gökay Saldamlı and Çetin Kaya Koç

7.1 Introduction

Most public-key cryptosystems require resource-intensive arithmetic calculations
in certain mathematical structures such as finite fields, groups, and rings. The ef-
ficient realizations of the these operations, including modular multiplication, in-
version, and exponentiation are at the center of research activities in cryptographic
engineering. Note that, being modular, these operations involve sequential reduction
steps.

Spectral techniques for integer multiplication have been known for over a quarter
of a century. Using the spectral integer multiplication of Schönhage and Strassen [1],
large to extremely large sizes of numbers can be multiplied efficiently. Such com-
putations are needed when computing π to millions of digits of precision, factoring,
and also big prime search projects.

A naive way of utilizing the spectral techniques for modular multiplication starts
with computing the multiplication using possibly Schönhage–Strassen and then a
reduction in the time domain follows. This approach is preferable if the input length
is large enough to meet the asymptotic crossover of Schönhage–Strassen, assum-
ing the reduction has a constant cost. Additionally, if the naive method is used for
operations involving consecutive multiplications, because of the costly forward and
backward transformation computations, the asymptotic crossover of these opera-
tions would be similar to what a single modular multiplication has. Unfortunately,
these crossovers are larger than the key sizes of most public-key cryptosystems;
thus, in practice, the naive way is hardly used.

On the other hand, modular multiplication can be performed on the Fourier repre-
sentations of integers. In such a representation, multiplications are readily available
by the convolution property. Therefore, operations involving several modular mul-
tiplications can be computed efficiently.
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In the following section, we start with introducing some preliminary notation and
a formal definition of Discrete Fourier Transform (DFT) over Zq (i.e., the ring of
integers with multiplication and addition modulo a positive integer q). Based on this
new terminology, we describe the main idea of spectral modular arithmetic includ-
ing spectral modular multiplication (SMM) and spectral modular exponentiation
(SME) in Section 7.3.

Section 7.4 describes methodologies for selecting the parameters for SME in
order to apply the algorithm to public-key cryptography and Section 7.5 reveals how
these methods can be extended to extension fields including binary and mid-size
characteristic extensions. In fact, we present suitable spectrum for ECC realizations
both over binary and mid-size characteristic extensions.

The chapter is closed with some final comments and discussions on the current
and future research activities of the presented material.

7.2 Notation and Background

Spectral techniques are widely accepted and used in the field of digital signal pro-
cessing, hence most of its existing notation and concept come from this theory. For
many reasons, the signals and admissible operations on these signals of such a the-
ory are quite different from that of a theory of computer arithmetic. For instance,
when using FFT (or convolution property) for integer multiplication, first we parti-
tion the inputs into words. Note that any small perturbation in the resulting words
would completely change the represented integer. On the other hand, approxima-
tions on the signal components without changing the main characteristics of the
original signal are allowable in digital signal processing.

Therefore, we believe that we need a more clear notation that would permit us to
have a better understanding of spectral methods and their applications to computer
arithmetic-related problems. While doing this, we follow a polynomial represen-
tation instead of the standard sequence representation of digital signal processing.
Such a presentation is necessary for our needs and, moreover, it states the differ-
ent nature of the number-representing signals from a classical signal processing
analysis.

7.2.1 Evaluation Polynomials

We start with building a new terminology that binds the polynomials over Z to their
evaluations. A similar construction can be formulated for polynomials over the rings
other than the ring of integers.

Definition 7.1. Let x and b > 0 be integers. If x(t) is a polynomial in Z[t] such that
x(b) = x, then we say x(t) is an evaluation polynomial of x.
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Remark 7.1. For ease of notation we denote the evaluation polynomials by a pair
(x,x(t)). Sometimes we even simply use x(t); the reader should be aware of poly-
nomials in this text should always be considered with their evaluations.

Remark 7.2. Note that the positive integer b is called the base or radix in the
literature. In order not to have any confusion with the frequent usage of the word
“radix” for another instance in FFT theory, we prefer to use the word “base” for b.

Throughout this text we assume that b is a fixed positive integer and we denote
the set of all evaluation polynomials over Z by B. Observe that if b is fixed, there
exists a natural one-to-one correspondence between B and Z[t] which is given by
(x,x(t)) �→ x(t),

In fact, the base b representation of an integer gives a special evaluation polyno-
mial. We particularly specify these as follows:

Definition 7.2. Let

x(t) = x0 + x1t + . . .+ xd−1td−1 ∈ Z[t]

be an evaluation polynomial of an integer x for a fixed base b. If the coefficients of
x(t) satisfy 0 ≤ xi < b for all i = 0,1, . . . ,d − 1, x(t) is called the base evaluation
polynomial or simply the base polynomial .

Example 7.1. A base 2k,k > 0 representation of an integer x ((x0x1 . . .xd) with
0≤ xi < 2k for i = 0,1, . . . ,d−1) has the base polynomial x(t) = x0 +x1t +x2t2 . . .+
xd−1td−1, where y(t) = (x0 + x1b)+0 · t + x2t2 + . . .+ xd−1td−1 is one of its evalua-
tion polynomials.

As seen in Example 7.1, the evaluation polynomial (or sequence) of an integer x
is not unique. Indeed, the same integer has infinitely many different evaluation poly-
nomials. But note that the base polynomials (i.e., base representations) are unique.

Proposition 7.1. Let B denote the set of all evaluation polynomials; then (B,⊕,⊗)
is a ring with the following operations;

(x,x(t))⊕ (y,y(t)) = (x + y,x(t)+ y(t))

(x,x(t))⊗ (y,y(t)) = (xy,x(t)y(t))

where x(t),y(t) ∈ Z[t] and x,y ∈ Z.

Proof. Since base b is fixed and the structures on the components come from Z

and Z[t], it is easily seen that (B,⊕) is an abelian group and (B,⊗) is closed.
Therefore, all we need to show is that the evaluation map is well defined on the
components. This is trivial because x + y = x(b)+ y(b), and the distribution prop-
erty comes naturally from this observation. Thus, (B,⊕,⊗) is a ring with identity
(1⊕,1⊗) = (0,1).
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Proposition 7.2. The map φ : B → Z[t] sending (x,x(t)) �→ x(t) is a ring isomor-
phism.

Proof. Since b > 0 is fixed, the evaluation x = x(b) is also fixed, which implies that
there exists a natural subjective map from B to Z[t] sending (x,x(t)) �→ x(t) with a
zero kernel.

Definition 7.3. If x(t) and y(t) are evaluation polynomials for the same integer x,
then we write x(t) ∼ y(t) and say x(t) is related to y(t).

Proposition 7.3. x(t) ∼ y(t) is an equivalence relation.

Proof. (i) x(t) ∼ x(t) since x(b) = x(b)
(ii) If x(t) ∼ y(t) then y(t) ∼ x(t) since x(b) = y(b)
(iii) If x(t) ∼ y(t) and y(t) ∼ z(t) then x(t) ∼ z(t) since x(b) = y(b) = z(b)

Proposition 7.4. Let B be the set of all evaluation polynomials; then B/ ∼ is iso-
morphic to the ring of integers.

Proof. Let base polynomials be the representatives of the equivalence classes of
the set B with respect to the relation ∼. Since base polynomials are unique for all
integers x ∈ Z. The map

Z → B/ ∼
x �→ [(x,x(b))]

gives the isomorphism.

Assume that Zq is represented by the least residue classes R= {0,1,2, . . . ,q−
1} ⊂ Z (see Section 7.3.2). Evaluation polynomials defined on least residue set has
a special importance for our terminology.

Definition 7.4. Let d be a positive integer. We define a polynomial frame as

Bd
q = {(y,y(t)) ∈ B : deg(y(t)) < d and yi ∈ R ⊂ Z}

where yi stand for the coefficients of y for i = 0,1, . . . ,d−1.

Observe that
Zq � Bd

q/ ∼

although it is correct to say R is equivalent to ∼= Bd
q/ ∼ as a set.

On the other hand, if the frame Bd
q is considered, Bd

q is closed neither under the
binary operations ⊗ nor ⊕. Thus, we remark that

Bd
q � Zq[t]/(td −1).

However, there exists a one-to-one set map sending (x,x(t)) �→ [x(t)] (recall that
[x(x)] = {y(t) ∈ Z[t] : x(t) ≡ y(t) mod td − 1}). Consequently, we take Bd

q as a
simple subset of B without any structure on it.
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7.2.2 Discrete Fourier Transform (DFT)

As computer arithmeticians, we started to build a terminology in the time domain;
we represent signals by polynomials and put emphasis on their evaluations. In this
section, we present the DFT as a map from the polynomial frames to a Fourier ring,
and we start by introducing the Fourier rings.

Definition 7.5. Let R be a ring, the set F d = ⊕d−1
i=0 R of ordered d-tuples

(X0,X1, . . . ,Xd−1)

where Xi ∈ S forms a ring with componentwise addition and multiplication (also
called direct sum of rings). For notation purposes, we denote these d-tuples with
polynomials (i.e., (X1,X2, . . . ,Xd) will be written as X0 + X1t + · · ·+ Xd−1td−1). We
named the ring F d as the Fourier ring over R; moreover the elements are called
spectral polynomials having spectral coefficients .

Remark 7.3. Throughout this text we consider only the Fourier rings over Zq. There-
fore, we add the q subscript to our notation and denote the Fourier ring over Zq by
F d

q .

Now we can define the DFT map.

Definition 7.6. Assume that Bd
q is a polynomial frame and F d

q is a Fourier ring
over Zq. Let ω be a primitive d-th root of unity in Zq. The DFT map over Zq is an
invertible set map

DFT ω
d : Bd

q → F d
q

(x,x(t)) �→ X(t)

defined as follows:

Xi = DFT ω
d (x(t)) :=

d−1

∑
j=0

x jω i j mod q (7.1)

with the inverse

xi = IDFT ω
d (X(t)) := d−1 ·

d−1

∑
j=0

Xjω−i j mod q (7.2)

for i = 0,1, . . . ,d−1. Moreover, we write

x(t) �� DFT �� X(t)

and say x(t) and X(t) are transform pairs where x(t) is called a time polynomial
and sometimes X(t) is named as the spectrum of x(t).
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In the literature, DFT over a finite ring spectrum (7.1) is also known as the Num-
ber Theoretical Transform (NTT) . Moreover, if q has some special form such as a
Mersenne or a Fermat number, the transform is named after this form i.e., Mersenne
Number Transform (MNT) or Fermat Number Transform (FNT) .

Note that, unlike the DFT over the complex numbers, the existence of DFT over
finite rings is not trivial. In fact, Pollard [2] mentions that the existence of primitive
root d-th of unity and the inverse of d do not guarantee the existence of a DFT over
a ring. He adds that a DFT exists in ring R if and only if each quotient field R/M
(where M is maximal ideal ) possesses a primitive root of unity. If R = Zq is taken,
one gets the following corollary:

Corollary 7.1. There exists a d-point DFT over the ring Zq that supports the circu-
lar convolution if and only if d divides p−1 for every prime p factor of q.

Proof. We sketch the proof given in Chapter 6 of Blahut [3]. First, we cover the
case where q is a prime power.

The converse is easier to prove. The DFT length d is invertible in Zq, if d and
q are relatively prime (i.e., dd−1 = 1 + kq for some k). Surely, any common factor
of d and q must be a factor of 1, which is impossible. Moreover, any element ω
having order d relatively prime to q has order that divides the Euler function φ(q) =
(p−1)pm−1. Therefore, a d-point DFT does not exist in Zq unless d divides q−1.

On the other hand, let p be an odd prime (p = 2 is trivial); then the non-units in
Zq form a cyclic group having order φ(q) = (p− 1)pm−1. Let π be the generator

of this group and ω = πbpm−1
for any b dividing p− 1. Since non-units in Zq are

cyclic, ω exists; all that remains is to show that the inverse DFT exists:

d−1 ·
d−1

∑
j=0

Xjω−i j mod q = d−1 ·
d−1

∑
j=0

ω−i j
d−1

∑
j′=0

x′jω
−i j′ mod q

= d−1 ·
d−1

∑
j′=0

x′j
d−1

∑
j=0

ω−i( j′− j).

The sum on i is equal to d if j′ = j, while if j′ is not equal to j, then the geometric
series summation becomes (1−ω−( j′− j)d)/(1−ω−( j′− j)), which is zero since j′ −
j �≡ 0 (mod q). Therefore,

d−1 ·
d−1

∑
j=0

ω−i j mod q = d−1 ·
d−1

∑
j=0

xi(dδ j j′) mod q = xi

as desired.
Now, let q = pm1

1 pm2
2 . . . pmr

r . The use of the Chinese remainder theorem guaran-
tees the existence of a d-point DFT in Zq if and only if d-point DFT exists in each
factor ring, which is equivalent to, say, d divides pi −1 for all i = 1,2, . . . ,r.

Example 7.2. In general, longer length DFTs are of utmost importance in many ap-
plications. Obviously, Corollary 7.1 states that DFTs over integer rings mostly suffer
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from short lengths. For instance, in the fairly large ring Z231+1, one can only define
a 2-point transform since 231 + 1 = 3 ·715827883, though, in Section 7.4.2 we de-
scribe some solutions to overcome such problems.

7.2.3 Properties of DFT: Time–frequency dictionary

In the previous section, we relate the time and spectral polynomials by the DFT
map; it is also possible to relate operations (formally we mean functions) in a sim-
ilar manner. In other words, we relate a pair of maps φ and Φ defined on time and
spectral polynomials respectively, if DFT map commutes with them. The next defi-
nition prepares a formal setup for this discussion.

Definition 7.7. Let φ and Φ be operations on time and spectral domains, respec-
tively. We write

φ �� DFT �� Φ

and say φ and Φ are transform pairs on x(t) and sometimes declare that the map
DFT ω

d respects the operation φ on a point x(t) if the following diagram commutes

Bd
q

φ
��

DFT �� F d
q

Φ
��

B �� IDFT
F d

q

Equivalently, if the following equation is satisfied

φ(x(t)) = IDFT ω
d ◦Φ ◦DFT ω

d (x(t)). (7.3)

Theorem 7.1. (Fundamental) Let φ and Φ be operations on time and spectral do-
mains respectively. The condition

φ(x(t)) ∈ Bd
q

is necessary and sufficient for functions φ and Φ to be transform pairs on a point
x(t) ∈ Bd

q . We say an overflow occurs for those cases in which φ(x(t)) �∈ Bd
q .

Proof. Let there exists a DFT map DFT ω
d : Bd

q → F d
q . By definition, IDFT ω

d ◦
Φ ◦DFT ω

d (x(t)) is an element of Bd
q , hence φ(x(t)) must be an element of Bd

q .

In general, not having a nice domain, DFT does not globally commute with such
function pairs. However, DFT respects various operations locally. Linearity, convo-
lution and time–frequency shifting are some of these operations.

In the literature, such operations which are referred as the properties of DFT are
essential for a better understanding of the nature of the transform. In fact, because of
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these properties, the Fourier transform becomes a powerful tool for applied sciences.
We refer the reader to [4] for a general review of these properties.

In a finite ring setting, the existence conditions of these properties are quite dif-
ferent from a theory over complex numbers. In here, we present various properties
and further state the existence conditions of the two most important, namely, linear-
ity and convolution. We start with some notations:

Notation 1 Let ω be a principal d-th root of unity, and Γ (t) and Ω(t) be the spec-
tral polynomials with coefficients consisting of negative and positive powers of ω
respectively, as follows

Ω(t) = 1 + ω1t + ω2t2 + . . .+ ω(d−1)t(d−1) ,

Γ (t) = 1 + ω−1t + ω−2t2 + . . .+ ω−(d−1)t(d−1) .

Notation 2 Let a ∈ Z be a constant number, a degree d polynomial with all of its
coefficients equal to a (i.e., a(t) = a + at + at2 + . . .+ atd) is denoted by a(t).

Time and frequency shifts: Time and frequency shifts correspond to circular
shifts when working with finite-length signals. Let x(t) = x0 + x1t + . . .+ xd−1td−1

and X(t) = X0 +X1t + . . .+Xd−1td−1 be a transform pair. The one-term right circu-
lar shift is defined as

x(t) � 1 := xd−1 + x0t + . . .+ xd−2td−1
��

DFT
��

X(t)�Ω(t)

where � stands for componentwise multiplication. Similarly, one performs the one-
term left circular shift by multiplying the coefficients of X(t) with negative power
sequence of the principal d-th root of unity:

x(t) � 1 := x1 + x2t + . . .+ xd−1td−2 + x0td−1
��

DFT
��

X(t)�Γ (t)

An arbitrary circular shift can be obtained by applying consecutive one-term
shifts or using a proper ω power sequence. For instance, s-term circular left shift
(0 ≤ s ≤ d − 1) is achieved by multiplying X(t) with Γs(t) = 1 + ω−st + ω−stt2 +
. . .+ ω−s(d−1)td−1, componentwise.

Sum of sequence and first value: The sum of the coefficients of a time polyno-
mial equals the zeroth coefficient of its spectral polynomial. Conversely, the sum of
the spectrum coefficients equals d−1 times the zeroth coefficient of the time poly-
nomial (i.e., x0 = d−1 ·∑d−1

i=0 Xiω−i and X0 = ∑d−1
i=0 xiω i as seen in Figure 7.1).
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(x0, x1, …, xd–1 () X0, X1, …, Xd–1)
DFT

sum equals to X0

sum multiplied by d–1

equals to x0

Fig. 7.1 Sum of coefficients and first coefficient.

Left and right logical shifts. Using the above properties, it is possible to achieve
the logical left and right digit shifts. We begin with the one-term left shift operation.
Let x0(t) be equal to x0 + x0t + . . .+ x0td−1 (see Notation 2) then

x(t) � 1 = (x(t)− x0)/t = x1 + x2t + . . .+ xd−1td−2
��

DFT
��

(X(t)− x0(t))�Γ (t)

The right shifts are similar, where one then uses the Ω(t) polynomial instead of
Γ (t).

Using the fundamental Theorem 7.1, it is easily seen that time–frequency shifts
and right/left shifts are globally respected by the DFT map. On the other hand,
linearity and convolution properties are respected locally. We start by giving an
example of overflow and then turn our attention back to state the conditions when
these two properties are satisfied.

Example 7.3. Let φy be an operation such that

φy : x(t) �→ x(t)+ y(t) for all x(t) ∈ B4
5

where y(t) = 3 + t + t2 + 4t3 is a base b = 2 evaluation polynomial for y = 19.
Assume that the DFT map is a 4-point map over Z5, i.e., DFT ω

4 : Bd
q → F d

q .
Notice that the addition operation over the Fourier ring,

Φy : X(t) �→ X(t)+Y(t) for all X(t) ∈ F 4
5

is a transform pair of φy on points x(t) where

φy(x(t)) = x(t)+ y(t) ∈ B4
5 ⊂ B. (7.4)

Obviously, not all x(t) ∈ B4
5 satisfies Equation (7.4); for instance, if x(t) = 3 +

t2 + t3 is an evaluation polynomial for x = 15, φy(x(t)) = x(t)+ y(t) = 6+ t +2t2 +
5t3 gives an evaluation polynomial for 56 but

DFT ω
d ◦Φ ◦DFT ω

d (x(t)) = 1 + t + 2t2 �= φy(x(t)).
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Therefore, we say φy and Φy are not transform pairs on x(t) = 3 + t2 + t3.

Observe that one gets the linearity property if the DFT map respects all the ele-
ments of the set {φy : for all y(t)∈Bd

q} and its λ scaling for some λ ∈ Zq. Although
the DFT map is a global group homomorphism over the additive group of complex
numbers, it does not respect addition over finite-ring spectrum. The next proposition
states that on a convex or a more regular subset of Bd

q the DFT map respects the
single addition operation.

Proposition 7.5. Let D be a subset of Bd
q such that D = {x(t) : xi < q/2} and φy be

an addition operation on D for any y ∈ D. The DFT map respects φy on D.

Proof. Let φy : D �→ F d
q be the addition map for any y ∈ D. Since φy(x(t)) = x(t)+

y(t) ∈ Bd
q for all x(t) in D, using Theorem 7.1, DFT respects φy.

Next, we formally state when a DFT map respects the convolution operation. We
start with a lemma:

Lemma 7.1. Suppose that (x(t),x) and (y(t),y) are base b polynomials in the frame
Bs

b with s = �d/2�. The product (z(t),z) = (x(t),x)⊗ (y(t),y) belongs to Bd
q where

q > sb2.

Proof. Let x(t) = x0 + x1t + . . .+ xd−1td−1 and y(t) = y0 + y1t + . . .+ yd−1td−1 be
polynomials such that deg(x(t))+ deg(y(t)) < d and 0 ≤ xi,yi < b for some b > 0.
Without loss of generality, assume deg(x(t))≥ deg(y(t)). If z(t) = x(t)y(t), then the
coefficients of z(t) can be written as follows:

zk = ∑
k=i+ j

xiy j, k = 0,1,2, . . . ,d−1.

Notice that zk can be found by adding at the most deg(y(t))+ 1 nonzero terms, but
since deg(y(t))+ 1 ≤ �d/2�, letting s = �d/2� gives

zk ≤ (deg(y(t))+ 1) ·b ·b≤ s ·b2

Thus, choosing q > s ·b2 gives the result.

The following result gives the condition when the d-point DFT map respects the
convolution of two elements of a frame Bd

q .

Theorem 7.2. Let DFT ω
d : Bd

q → F d
q be a d-point DFT map and D = Bs

b be a
subset of Bd

q such that s = �d/2� and b2s < q for an integer b > 0. The DFT map
respects the convolution map φy on y(t) for any y(t) in D where

φy : x(t) �→ x(t) · y(t) for all x(t) ∈ D

Proof. Let φy : D �→ F d
q be the multiplication map for some y(t) ∈ D. By Lemma

7.1, the product φy(x(t)) = x(t) ·y(t) ∈ Bd
q for all x(t) in D. Therefore, using Theo-

rem 7.1, DFT respects φy.
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7.3 Spectral Modular Arithmetic

7.3.1 Time Simulations and Spectral Algorithms

In the previous section, we stated the conditions when the convolution and addition
properties are respected by the DFT map over a finite ring spectrum. Since an algo-
rithm is a combination of some primitive operations, starting with an example, we
bring up the notion of algorithm pairs that are respected by DFT maps.

Example 7.4. Consider an algorithm in time domain performing the following oper-
ations:

Input: x(t),y(t) ∈ Z[t] polynomials of degree d
Output: z(t) := x(t)(5y(t)+ x(t))−3x(t)

1: z(t) := x(t)+5y(t)
2: z(t) := x(t) · z(t)
3: z(t) := z(t)−3x(t)
4: return z(t)

Whenever the DFT map respects the above algorithm, a dual algorithm operating
in the spectrum can be furnished as follows:

Input: X(t),Y (t) ∈ Z[t] polynomials of degree d
Output: Z(t) := X(t)� (5Y (t)+X(t))−3X(t)

1: Z(t) := X(t)+5Y (t)
2: Z(t) := X(t)�Z(t)
3: Z(t) := Z(t)−3X(t)
4: return Z(t)

Once again we can relate these two objects using the DFT map and write

Algorithm 1 �� DFT �� Algorithm 2

Observe that when the inputs of Algorithm 7.4 and 7.4 agree, a parallel run produces
the agreeing intermediate and final results. We name Algorithm 7.4 as the time
simulation of the spectral algorithm (i.e., Algorithm 7.4).

Note that our primary interest in spectral techniques is to make use of the con-
volution property for calculating modular multiplications. An algorithm involving
several multiplications benefits most from such a motivation. For instance, the en-
cryption algorithm RSA [5] over some integer ring has such a nature but since these
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multiplications are modular, one has to deal with reductions. In the following sec-
tions, first, we describe a time simulation for modular reduction. Secondly, we trans-
late the time simulation into a finite ring spectrum using the properties of DFT and
finally, we analyze the minimal domains (i.e., smallest rings) in which our spectral
algorithms work.

7.3.2 Modular Reduction

Before introducing the notion of spectral reduction, we need to make a few points
clear about the modular arithmetic over the ring of integers;

In calculations of integers involving division it often happens that we are in-
terested in the remainder, but not in the quotient. Those numbers having the same
remainder when divided by a fixed number n are called congruent, to be more for-
mal:

Definition 7.8. Let n > 0 be a fixed integer. We say x is congruent to y modulo n
and write

y ≡ x mod n if n divides (y− x). (7.5)

From the division algorithm we know that for each x ∈ Z there is an equation

x = nq + r, for some q ∈ Z and 0 ≤ r ≤ n

This means that each x ∈ Z can be assigned to one of the elements of the set
{0,1,2, . . . ,n− 1}. This set is called the least residues mod n and it is clear that
no two of the elements are congruent to each other mod n. We define the modular
reduction as follows:

Definition 7.9. Let n > 0 be a fixed integer. We say y is the modular reduction of x
modulo n and write

y = x mod n

where y is a least residue mod n.

Remark 7.4. The expressions “y = x mod n” and “y≡ x mod n” have different mean-
ings. Observe that the first one with “=” states that y is in the range [0,n−1].

The equivalence on Z defined by the relation (7.5) partitions Z into n blocks,
called the residue classes of Z modulo n. In fact, Zn := Z/nZ is the set of these
residue classes. If we denote the residue class modulo n containing y by ȳ, then the
Zn can be seen as the ring having the following n elements 0̄, 1̄, . . . ,(n−1). For
instance, when n = 2, the residue classes are the set of even and odd numbers.

While performing computations such as modular exponentiation, in order to have
some computational advantage, sometimes exact modular reduction calculations can
be postponed for the intermediate values [6]. As long as these values belong to
the correct residue classes, such modifications do not tend to misleading modular
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reductions. Now, we stretch the definition of the modular reduction for ease of our
construction.

Definition 7.10. Let ε > 0 be an integer We call the set

F(ε) = {y ∈ Z : 0 ≤ y < ε}

the integer frame of radius ε .

Definition 7.11. Let x,n > 0 and ε ≥ n be integers. Then the elements of the set

{y : y ∈ F(ε) and y ≡ x mod n}

are called as the almost modular reductions of x with respect to the modulus n.

Example 7.5. Let ε = 12 then F(ε) = [0,12) and the set of almost modular reduc-
tions of x = 1 with respect to modulus n = 3 is {1,4,7,10}.

The choice of the radius ε completely depends on the nature or needs of the prob-
lem. Most of the time, the reductions are followed by a squaring or a multiplication.
Therefore, as ε gets larger the operand sizes of the succeeding operations increase.
Obviously ε = n is the optimal choice in this sense. But, as we pointed out earlier,
we are after some approximations of the optimal solution for some obvious reasons.
In other words, we are looking for some small ε such that, after finding an element
of almost modular reduction set, deducing the exact modular reduction has to be
simple. Indeed, that is why it is appropriate to use the adjective “almost” to describe
the elements of this set.

7.3.3 Spectral Modular Reduction

In this section, we give a formal definition for the spectral modular reduction and
build up the necessary terminology for a better understanding of the algorithms in
the spectrum. We return to our main objects: the set of evaluation polynomials, B,
and its subsets.

Proposition 7.6. The evaluations of the polynomials in Bd
r form an integer frame

F(ε) in Z where ε = (r−1)+ (r−1)b +(r−1)b2+ . . .+(r−1)bd−1.

Proof. It is easily seen that the polynomial x(t) = (r − 1)+ (r− 1)t + (r− 1)t2 +
. . .+(r−1)td−1 ∈ Bd

r attains the maximum evaluation value at base b which is the
integer (r−1)+(r−1)b+(r−1)b2+ . . .+(r−1)bd−1. The evaluation of the zero
polynomial obviously gives the minimum value.

Definition 7.12. Let n(t) be a base b polynomial of n with degree d −1 and Bd
r be

a polynomial frame for some r ≥ b. The elements of the set
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A = {(y,y(t)) : y ≡ x mod n and y(t) ∈ Bd
r }

are called almost spectral reductions of the evaluation polynomial (x,x(t)) with
respect to (n,n(t)).

Lemma 7.2. Let A be the set of all the almost spectral modular reductions of
(x,x(t)) with respect to (n,n(t)). If y(t) is the base polynomial for y = x mod n,
then (y,y(t)) ∈ A .

Proof. If y(t) = y0 + y1t + . . . + yd−1td−1 is the base polynomial for y = x mod n,
then 0 ≤ yi < b for all i = 0,1, . . . ,d − 1. Since r ≥ b, y(t) ∈ Bd

b ⊂ Bd
r ⇒

(y,y(t)) ∈ A .

Definition 7.13. We call the base polynomial y(t) of y = x mod n as the spectral
(modular) reduction of (x,x(t)) with respect to (n,n(t)) and we simply write

y(t) = x(t) mods n(t).

Moreover the expression
y(t) ≡ x(t) mods n(t)

mean n divides the evaluation of (x(t)− y(t)) at base b.

The spectral reduction defined in the time domain can be viewed as a projection
of the usual modular operation in Z to the set of (evaluation) polynomials. Clearly,
it is defined over the polynomials but it is different from the standard modular re-
duction in Z[t]. To indicate this difference, in place of “mod” we choose to use
“mods”.

Similar objects can be defined for spectral polynomials; however, we note that
unlike time polynomials, evaluation of spectral polynomials do not have any special
meaning that serves our needs. To be specific, for a spectral polynomial X(t), X(b)
does not have a special meaning, where x(b) mostly represents a meaningful integer
data. Therefore, our derivation for spectral polynomials is a notational continuation
of the notation that is developed for time polynomials.

Definition 7.14. Let x(t) be a base polynomial for b > 0 of an integer x. We call the
spectral polynomial X(t), the transform pair of x(t), the spectral base polynomial.

Definition 7.15. Let y(t) be an almost spectral reduction of x(t) with respect to n(t)
in some frame Bd

r . The spectral polynomial Y (t), transform pair of y(t), is called
the almost spectral reduction of X(t) with respect to N(t), where (X(t), x(t)) and
(N(t), n(t)) are transform pairs.

Definition 7.16. We call the base polynomial Y (t) in the spectrum the spectral
modular reduction of X(t) with respect to N(t) and we write

Y (t) = X(t) mods N(t).
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Moreover the expression
Y (t) ≡ X(t) mods N(t)

means n divides the evaluation of IDFT((X(t)−Y(t)) at base b.

7.3.4 Time Simulation of Spectral Modular Reduction

The spectral reduction can easily be achieved by deducing the base polynomial of
the usual modular reduction (i.e., y = x mod n) but with such an approach one needs
to perform classical modular reduction routines, which do not have simple spectral
meanings. Our next step is to give a description of an algorithm that computes an
almost spectral reduction of an evaluation polynomial.

Instead of a direct reduction method, here we present an algorithm of Mont-
gomery type [7], which allows efficient implementation of modular arithmetic op-
erations without explicitly carrying out the classical modular reductions. In fact, it
replaces the modular reduction by a multiplication and some trivial shifts. The trick
is, instead of attacking to compute “x mod n” directly, it proposes to derive it after
performing a related computation

x · τ−1 mod n

for τ > n and gcd(n,τ) = 1. At first glance, this seems computationally pointless
because of the inversion involved but the selection of τ changes this first impression
drastically. After giving some related notation, with Algorithm 7.3.4, we employ
such a methodology.

Notation 3 The polynomial product x(t) · te is denoted by xe(t), so in this context,

x−e(t) := x(t) · t−e

Time Simulation of Spectral Reduction Algorithm
Suppose that n and b are positive numbers with gcd(b,n) = 1, (n,n(t)) is the base evaluation
polynomial of degree d −1 and (x,x(t)) ∈ Be

u where e ≥ d and u ≥ 0.
Input: x(t) and n(t).
Output: y(t), an almost spectral reduction of x−e(t) with respect to n(t).

1: Compute n = δ n where n0 = 1 and |ni| < b/2
2: y(t) := x(t)
3: α := 0
4: for i = 0 to e−1
5: β := −(y0 +α) rem b
6: α := (y0 +α +β ) div b
7: y(t) := y(t)+β ·n(t) mod q
8: y(t) := (y(t)− y0)/t
9: end for
10: y(t) := y(t)+α(t), for base polynomial (α ,α(t))
11: return y(t)
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0

Step 6: a 
multiple of ( )
is added to ( )

Step 5 & 7: 
carry is
stored and set 

= 0 

Step 8: 
shifting ( )

Fig. 7.2 Illustration of the reduction of a single coefficient.

In Figure 7.2, we demonstrate the reduction of a single coefficient. Once the
parameters α and β are calculated from the least significant coefficient, a β multiple
of the modulus n(t) is added to the sum; carry passed to the next coefficient and
finally the sum is shifted.

Algorithm 7.3.4 reduces the degree while reducing the radius (i.e., the magnitude
of the coefficients). In fact, one can clearly compute the bound for the coefficients
of the intermediate values. This gives us an opportunity to define a dual algorithm
in the spectrum working properly with respect to a specific DFT map. We present
these arguments formally in the next theorem.

Theorem 7.3. Algorithm 7.3.4 computes an almost spectral reduction y(t)≡ x−e(t)
mods n(t) such that the output signal y(t) ∈ Bd

r where r = b2d + b. Moreover, the
coefficients of the intermediate values satisfy 0 ≤ yi < u+b2d for i = 0,1, . . . ,d−1.

Proof. First of all, the algorithm computes an evaluation polynomial y(t) such that
y(t) ≡ x(t) · t−e mods n(t). This can be seen as follows: The value of y(t) is ac-
cumulated either by adding a multiple of n(t) or a term shift (i.e., Steps 7 and 8).
Obviously, either adding a multiple of n(t) or dividing when the least significant
coefficient is zero does not change the residue class that y(t) belongs to. Therefore,
the result naturally follows because of shifting exactly e times.

Now, lets examine how big the coefficients get: by Definition (7.4), (x,x(t))∈Be
u

implies that 0 ≤ xi < u for all i = 0,1, . . . ,e − 1. Since deg(nd(t)) = d at every
accumulation of the loop, 0 ≤ yi < u for i ≥ d. In particular, at the last d run yi = 0
for i > d and 0 ≤ yd < b2.

On the other hand, when i < d the coefficients of yd−i satisfies

0 ≤ yd−i < β ·nd(i+ 1)+ u < b2(i+ 1)+ u .
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Observe that, a bound for yd−i given by 0 ≤ yi < b2d + u for i = 0,1, . . . ,d − 1 is
attained when i = d−1. The last d run is again special, since the reduction eliminates
the u value from yd at every accumulation. Therefore the final output satisfies

0 ≤ yi < (d − i)b2 + b (7.6)

< r = b2d + b =⇒ y(t) ∈ Bd
r

where the b factor comes from the last α(t) addition of Step 10 (note that, we as-
sumed deg(α) < d−1).

Note that Algorithm 7.3.4 describes a reduction routine of an arbitrary evaluation
polynomial having degree e− 1 larger than or equal to the degree of the modulus
d−1. In fact, this does not really address the situation in a multiply–reduce method-
ology in which degrees are related. We give a corollary to Theorem 7.3 which co-
operates with this situation.

Corollary 7.2. Let n(t) be a base b polynomial with degree s − 1 such that s =
�d/2� and let x(t)∈Bd

r where r = sb2. Algorithm 7.3.4 computes an almost spectral
reduction, y(t)≡ x(t)·t−d mods n(t) in the polynomial frame Bs

r′ where r′ = b2s+b.
Moreover, coefficients of all the intermediate values do not exceed 2b2s.

Proof. Let n(t) be a base b polynomial with degree s−1 such that s = �d/2� and let
x(t)∈Bd

r where r = b2s. Observe that the coefficients of x(t) satisfy 0≤ xi < r = b2s
for all i = 0,1, . . . ,d −1 (note that we take x(t) with the maximum degree d −1 in
order to find the upper bounds). The algorithm drops the deg(x(t)) to deg(n(t) =
s−1 and computes the almost spectral reduction of x−d(t) = x(t) · t−d in the frame
Bs

r′ . The radius r′ = b2s + b can be deduced using Theorem 7.3. Moreover, since
0 ≤ xi < b2s, the intermediate values are bounded by

0 ≤ yi < b2s+ r = b2s+ b2s = 2b2s.

7.3.5 Spectral Modular Reduction in a Finite Ring Spectrum

In this section, we translate the time simulation (i.e Algorithm 7.3.4) into the spec-
trum. We perform a line-by-line translation using the properties of DFT.

Our next step is to prove that Algorithm 7.3.4 and 7.3.5 agree; in other words
there exists a DFT relation between the intermediate and output values in two do-
mains at all times.

Theorem 7.4. Algorithm 7.3.5 computes the almost spectral reduction, Y (t) ≡
X−e(t) mods N(t) such that the inverse of the output signal Y (t) gives y(t) ≡ x−e(t)
mods n(t) (i.e., the output of the Algorithm 7.3.4).

Proof. Let (x(t), X(t)) and (n(t), N(t)) are transform pairs. In Step 4, we start with
computing the last significant coefficient, y0 of the time polynomial y(t) using the
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Spectral Reduction Algorithm (in a finite ring spectrum)
Suppose that there exists a DFT map DFT ω

d : Be
q → F e

q and

x(t) �� DFT �� X(t), n(t) �� DFT �� N(t)

where (x(t),x) ∈ Be
r for r < q−b2d and (n(t),n) ∈ Bd+1

b such that deg(n(t)) = d ≤ e and n is a
multiple of modulus n with n0 = 1 (we assume gcd(b,n) = 1).
Input: X(t) and N(t), spectral polynomials
Output: Y (t) ≡ X−e(t) mods N(t),

1: Y (t) := X(t)
2: α := 0
3: for i = 0 to e−1
4: y0 := e−1 · (Y0 +Y1 + . . .+Yd) mod q
5: β := −(y0 +α) mod b
6: α := (y0 +α +β ) div b
7: Y (t) := Y (t)+β ·N(t) mod q
8: Y (t) := Y (t)− (y0 +β )(t) mod q
9: Y (t) := Y (t)�Γ (t) mod q
10: end for
11: Y (t) := Y (t)+A(t),
12: return Y (t)

where A(t) is the DFT pair of the base polynomial of α .

shifting property of DFT. Note that in Algorithm 7.3.4, y0 comes for free. Once y0

is computed, in Steps 5 and 6, the parameters β and the next carry α are generated.
In Step 7, a β multiple of N(t) is added to Y (t), which updates Y (t) such that

y0 = 0 mod b. By linearity, this step is equivalent to Step 6 of Algorithm 7.3.4.
Now, a division by t can be performed but before this shift, we need to eliminate

the contribution of y0 to the spectral polynomial Y (t) completely. Since Step 7 up-
dates y0 to y0 +β , the computation of (Y (t)− (y0 +β )(t)) in Step 8 sets zeroth time
term of Y (t) to zero (observe that (y0 +β ) ∈ Z is a constant so (y0 +β )(t) is a fixed
term polynomial, see Notation 2). If this is followed by the componentwise multi-
plication with Γ (t) polynomial, Steps 8 and 9 together implement a logical circular
shift (see Section 7.2.3).

Hence, we conclude that Algorithm 7.3.5 working in the spectrum agrees with
Algorithm 7.3.4. However, we still need to find the domain for which these algo-
rithms agree. We assume deg(x(t)) = e for x(t) ∈ Be

r which implies that 0 ≤ xi <
r = (q−b2d) for i = 0,1, . . . ,e−1. Since n is a multiple of modulus n with n0 = 1,
we conclude by Theorem 7.3 that the intermediate values and the output y(t) of the
time simulation bounded by

0 ≤ yi < r + b2d = q−b2d + b2d = q

Therefore, no overflows occur, Algorithms 7.3.4 and 7.3.5 generate the transform
pair y(t) and Y (t). As Algorithm 7.3.4 computes y(t)≡ x−e(t) mods n(t), Algorithm
7.3.5 performs Y (t) ≡ X−e(t) mods N(t).
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With Algorithm 7.3.5 we have completed our primary discussion on spectral
modular reduction. We leave the improvement-related comments to Section 7.4.
Notice that our presentation so far targets the reduction of an arbitrary evaluation
polynomial of degree e with respect to a base polynomial of degree d < e. In the
next section, we change this routine and target to reduce an evaluation polynomial
which is a result of a convolution. After this, we introduce the spectral modular
multiplication.

7.3.6 Spectral Modular Multiplication (SMM)

Convolution and the SMR algorithm can easily be combined to harvest a spectral
modular multiplication algorithm in a finite ring spectrum. In order to have a clear
presentation we divide our presentation into 3 subprocedures as seen in Figure 7.3.
Note that the initial and final stages consist of some data arrangements where the
Spectral Modular Product (SMP) procedure consists of the actual multiplication
and reduction steps (i.e., convolution and spectral reduction). Later, while presenting
the spectral exponentiation algorithm, SMP is going to be the basic building block
again. The SMP procedure and SMM are given as follows:

Since we operate in a finite ring spectrum, once again we need to deal with the
overflows that might occur during the computations. In fact, Algorithm 7.3.6 gives
a correct result if the intermediate values stay bounded. As a next step, we state the
condition when overflows do not occur starting with two lemmas.

Lemma 7.3. SMP(Xd(t),Y (t)) ≡ X(t)�Y(t) mods N(t)

Proof. Since SMP(Xd(t),Y (t)) computes the spectral coefficients of almost modu-
lar reduction, Z(t) ≡ (Xd(t)�Y−d(t)) mods N(t), hence taking the inverse trans-
form gives

xd(t)y−d(t) = x(t) · tdy(t) · t−d = x(t) · y(t) mods n(t) .

Lemma 7.4. Procedure 7.3.6 computes Z(t) ≡ (X(t)�Y−d(t)) mods N(t) if the
parameters b,q and s satisfies the following inequality

2sb2 < q (7.7)

Init SMP Final

n

x

y z

Fig. 7.3 Spectral Modular Multiplication.



144 Gökay Saldamlı and Çetin Kaya Koç

Spectral Modular Product
Suppose that there exists a DFT map DFT ω

d : Bd
q → F d

q , and X(t),Y (t) and N(t) be transform
pairs of x(t),y(t) and n(t) respectively where (x(t),x) and (y(t),y) are evaluation polynomials in
the frame Bs

r with r > 0 and s = �d/2�, and (n(t),n) ∈ Bs+1
b such that deg(n(t)) ≤ s and n is a

multiple of modulus n with n0 = 1 (we assume gcd(b,n) = 1).
Input: X(t),Y (t) and N(t); spectral polynomials
Output: Z(t) ≡ (X(t)�Y−d(t)) mods N(t),
procedure SMP(X(t),Y (t))

1: Z(t) := X(t)�Y (t)
2: α := 0
3: for i = 0 to d −1
4: z0 := d−1 · (Z0 +Z1 + . . .+Zd) mod q
5: β := −(z0 +α) mod b
6: α := (z0 +α +β )/b
7: Z(t) := Z(t)+β ·N(t) mod q
8: Z(t) := Z(t)− (z0 +β )(t) mod q
9: Z(t) := Z(t)�Γ (t) mod q
10: end for
11: Z(t) := Z(t)+α(t)
12: return Z(t)

Spectral Modular Multiplication
Suppose that there exists a DFT map DFT ω

d : Bd
q → F d

q . Let n(t) be a base b polynomial for n
where deg(n(t)) = s−1, s = �d/2� and gcd(b,n) = 1.
Input: A modulus n > 0 and x,y < n
Output: An almost modular reduction z ≡ xy mod n

1: Compute n = δ ·n such that the base polynomial
n(t) has degree d and n0 = 1

2: N(t) := DFTω
d (n(t))

3: Compute the base polynomial λ (t), λ = bd mod n.
4: Compute the base polynomial xd(t) = x(t) · td

for x ·λ mod n.
5: Xd(t) := DFTω

d (xd(t))
6: Y (t) := DFTω

d (y(t))
7: Z(t) := SMP(Xd(t),Y (t))
8: z(t) := IDFTω

d (Z(t))
9: return z(b)

Proof. In the previous sections, we described the action of the convolution and how
the steps of reduction work. Here, we concentrate on driving the Inequality (7.7).
Assuming that the conditions of SMP are satisfied, we investigate the time simula-
tion of the algorithm in order to trace the overflows.

Using Theorem 7.3, observe that after convolution at Step 1, the time polyno-
mial z(t) doubles its degree to 2s− 2. Moreover, the magnitude of its coefficients
cannot exceed sb2 since x(t) and y(t) are base b polynomials (i.e., z(t) ∈ Bd

r where
r = sb2).
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When it comes to analyzing the reduction steps, applying Corollary 7.2 assures
that the output z−d(t) belongs to Bd

r′ where r′ = b2s + b and coefficients of all the
intermediate values do not exceed 2b2s. Therefore, if q is chosen as max(2b2s,b2s+
b) = 2b2s < q, no overflow is generated and SMP computes the desired result. Note
here that the carry added in Step 12 is no longer large because of working with
a convolution output, hence we take it as a constant rather than breaking it into
words.

Theorem 7.5. Algorithm 7.3.6 computes an almost modular reduction, z ≡ xy mod
n, if the parameters b,q and s satisfy 2sb2 < q.

Proof. Notice that in the initialization steps of Algorithm 7.3.6, before calculat-
ing the Fourier coefficients, we compute xbd mod n (i.e., xd(t) mod n(t)). Using
Lemma 7.3, one can see that Step 7 computes the product x(t)y(t) mods n(t) unless
overflows occur.

Since the initialization and finalization parts do not change the coefficient bounds,
one can get the minimal domain for the core SMP as 2sb2 < q using Lemma 7.4.

7.3.7 Spectral Modular Exponentiation

In general, a single classical modular multiplication is faster than a single SMM;
however, spectral methods are very effective when several modular multiplications
with respect to the same modulus are needed. An example is the case when one
needs to compute a modular exponentiation, i.e., the computation of me mod n,
where m,e and n are positive integers. Such a setup needs a consecutive use of SMM;
it also means a consecutive use of DFT and IDFT operations (obviously redundant
computations as seen in Figure 7.4). Therefore, if the data is kept in the Fourier do-
main at all times, the backward and forward transforms are bypassed. Consequently,

n
c

DFT DFTIDFTSMP

m
e

SMP DFT SMP IDFTIDFT

c

DFT SMP SMP SMP IDFT

n

m
e

Fig. 7.4 Spectral Modular Exponentiation.
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this approach decreases the asymptotic crossovers of the spectral methods to cryp-
tographic sizes while computing the modular exponentiation.

There are many methods for carrying out general exponentiation. Mostly, effi-
ciency comes from two resources; one is to decrease the time to multiply; the other
is to reduce the number of multiplications. In practice one does both. Notice that,
until now our objective was reducing the modular multiplication which is catego-
rized in the first category. For the rest of this study, we keep this goal and simply
consider using the binary method (see [8]) for the rest of our presentation.

The binary method scans the bits of the exponent either from left to right or from
right to left. A squaring is performed at each step, and depending on the scanned bit
value, a subsequent multiplication is performed. We describe the spectral modular
exponentiation algorithm by using a left-to-right binary method below.

Remark 7.5. Since the SME algorithm computes an almost modular reduction of
c ≡ me mod n, a final reduction may be needed if the output is desired in the range
[0,n−1].

Spectral Modular Exponentiation
Suppose that there exists a DFT map DFT ω

d : Bd
q → F d

q . Let n(t) be a base b polynomial for n
where deg(n(t)) = s−1, s = �d/2� and gcd(b,n) = 1.
Input: A modulus n > 0 and m,e < n
Output: An almost modular reduction, c ≡ me mod n.

1: Compute n = δ ·n such that the base polynomial
n(t) has degree d and n0 = 1

2: N(t) := DFTω
d (n(t))

3: Compute the base b polynomial (λ ′,λ ′(t)) where
λ ′ = b2d mod n.

4: Λ ′(t) := DFTω
d (λ ′(t))

5: M(t) := DFTω
d (m(t))

6: M(t) := SMP(M(t),Λ ′(t))
7: C(t) := SMP(1(t),Λ ′(t))
8: for i = j−2 downto 0
9: C(t) := SMP(C(t),C(t))
10: if ei = 1 then C(t) := SMP(C(t),M(t))
11: C(t) := SMP(C(t),1(t))
12: c(t) := IDFTω

d (C(t))
13: return c(b)

Once again, we need to guarantee that overflows do not occur; in other words, the
coefficients of intermediate or final results should not be winding over q. We start
with a lemma, stating how big the coefficients of a special polynomial get after a
convolution, then, using this result we comment on how q has to be chosen to avoid
overflows.

Lemma 7.5. Let s > 0 and x(t) = 1 + 2t + 3t3 + . . .+ sts−1, then the coefficients of
z(t) = (x(t))2 are bounded by
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B(s) =
−2s3

3
− s2 + 2s2r1 −

s
3

+
r1

3
+ 2sr1 (7.8)

where r1 = −2 +
√

3+18s2+18s
9 .

Proof. Let x(t) = 1+2t +3t3 + . . .+sts−1 be a polynomial of degree s−1. Observe
that if the convolution z(t) = (x(t))2 is computed, the coefficients of z(t) satisfies
the following recurrence:

z0 = 1

z1 = 22

z2 = 32 + z0

...

zs−1 = s2 + zs−3

zs = (s−1)(s+ 1)+ zs−2

zs+1 = 2(s−2)(s+ 1)+ zs−3

...

zs+i−1 = i(s− i)(s+ 1)+ zs−i−1

...

z2s−2 = (s−1)(s+ 1)+ z0

If these coefficients are examined carefully one realizes that the coefficients up to
the (s − 2)th are monotonously increasing and zs > zs−2 for s > 1. Therefore, a
maximum magnitude which also decides the bound has to be located somewhere in
between coefficients s−1 and 2s−2.

Observe that zi is a telescoping sequence for r < s, in other words,

zr+1 + zr = 12 + 22 + . . .+(r + 2)2 =
r+2

∑
i=1

i2 .

This sum can be written as

zr+1 + zr =
(B +(r + 2)+ 1)3−B3

3
(7.9)

where Bi stands for the ith Bernolli number (i.e., B0 = B0 = 1,B1 =−1/2,B2 = 1/6
and B3 = 1/30. Plugging Bernolli numbers to the Equation (7.9) gives

zr+1 + zr =
1
6
(2r3 + 15r2 + 37r + 30).
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Here, if r + 1 is even, then zr+1 and zr can be found as

zr = z1 + z3 + . . .+ zr =
1
6
(r3 + 6r2 + 11r + 6)

zr+1 =
1
6
(r3 + 9r2 + 26r + 24)

and, in case r + 1 is odd, one would get

zr+1 = z1 + z3 + . . .+ zr+1 =
1
6
(r3 + 9r2 + 26r + 24)

zr =
1
6
(r3 + 6r2 + 11r + 6).

Therefore, in either case, zr can be written as 1
6 (r3 +6r2 +11r+6) and a general

term of the recurrence would be found by plugging zr into the system after replacing
the index s+ i−1 by r,

zr =

⎧⎪⎨
⎪⎩

1
6(r3 + 6r2 + 11r + 6) if r < s

− 2s3

3 + s2r + 5s
3 −

r3

6 − 11r
6 + s2 + sr− r2 −1 if s ≤ r < 2s−1

In order to find the maximum value of the zr function, we substitute the roots
of the derivative ∂ zr

∂ r into the equation of zr. Observe that the root r1 = −2 +√
3+18s2+18s

9 gives the local maximum in the range s≤ r < 2s−1 and if r1 is plugged
into zr, one would get the bound B(s) as a function of s

B(s) =
−2s3

3
− s2 + 2s2r1 −

s
3

+
r1

3
+ 2sr1,

which in fact gives the desired bound.

Theorem 7.6. Algorithm 7.3.7 computes c ≡ me mod n if the parameters b,q and s
satisfy the following inequality

(b2 + b)2B(s)+ b2s < q (7.10)

where B(s) is given by Equation (7.8).

Proof. First of all, SME implements the binary exponentiation method with a Mont-
gomery type multiplier SMP all working in the spectrum. Thus, the algorithm works
as long as a nice domain is chosen for all intermediate values and output causing
no overflows. Recall by Theorem 7.3 that if the inputs of SMP are spectral base b
polynomials, the output of SMP algorithm is a spectral polynomial having a time
pair fitting into the frame Bs

r with r = b2s+b. However, in the case of a consecutive
SMP usage, the output of the second SMP would have larger time coefficients. For
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instance, in Steps 9, 10 and 11 the input C(t) is a spectral polynomial with time
coefficients larger than b. If these steps are examined further, one understands that
maximum magnitudes are attained from the computation of SMP(C(t),C(t)) in Step
9, since for both Steps 10 and 11, M(t) and 1(t) are spectral base b polynomials.

Now, we investigate how big the coefficients of the time polynomial get after
Step 9. In order to have a better analysis, we look at the distribution of the coeffi-
cients of the time polynomial after applying SMP. In Theorem 7.3, we showed that
after a reduction c(t) ∈ Bs

r has the form

c(t) = c0 + c1t + c2t2 + . . .+ cs−1ts−1,

where ci < (s− i)b2 +b for i = 0,1, . . . ,s−1. Since ci < (s− i)b2 +b < (s− i)(b2 +
b), we write

c(t) < (b2 + b)y(t),

where y(t) = s+(s−1)t +(s−2)t2 + . . .+ 1ts−1. If (c(t))2 is computed as seen in
Step 9, we have

(c(t))2 < (b2 + b)2(y(t))2,

and using Lemma 7.5, we guarantee that the coefficients of (y(t))2 are bounded by
B(s) 1, which implies that (b2s + b)2B(s) bounds the coefficients of (c(t))2. When
it comes to the intermediate values, because of the reduction steps, coefficients get
slightly larger which is given by Theorem 7.3 as (b2 +b)2B(s)+b2s. Therefore, if q
is chosen larger than this final bound, no overflow is generated and the DFT respects
SME over the ring Zq.

Inequality (7.10) is very centric as it gives the relation between the parameters
b,s and q in a consecutive use of SMP algorithm. In practice, these parameters are
generated in two different ways: the first one is picking s and b and then finding a
suitable ring Zq that admits a DFT of size d, while the second one is picking a ring
with q elements, decide on s, and then find out the base b. We discuss the parameter
selection-related issues in the next chapter after giving an illustrative example.

We conclude that q > 131845.0 > 217. Thus we need to search for a Fermat or
Mersenne ring with q ≥ 218 − 1 that admits a DFT with length d = 7 or d = 8 for
ω equal to a power of two. It turns out that the ring Z220+1 satisfies these conditions
with ω = 32.

7.3.8 Illustrative Example

In this section, we present the temporary values and the final result of an exponen-
tiation computation (i.e., c = me (mod n)) using the SME method with the input
values as m = 2718, e = 53, and n = 3141.

1 c(t) of Lemma 7.5 is the mirror image of y(t)
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If we select the parameters b = 23 and s = 4, Inequality (7.10) assures that SME
works correctly in a ring having q > 131845 elements. In order to have some com-
putational convenience, we chose the Fermat ring Z220+1 which admits a DFT with
length d = 7 for ω = 32.

With these selections we compute d−1 mod q and Γ (t) as

d−1 = 8−1 (mod 220 + 1) = 917505 .

and

Γ (t) = 1 + w−1t + w−2t2 + w−3t3 + w−4t4 + w−5t5 + w−6t6 + w−7t7

= 1 + 1015809t+ 1047553t2+ 1048545t3 + 1048576t4 +
32768t5 + 1024t6 + 32t7 .

We start with writing m and n in polynomial representation

n(t) = 5 + 0 · t + 1t2 + 6t3 ,

m(t) = 6 + 3t + 2t2 + 5t3 .

Note that deg n(t) = s−1 = 3 and gcd(n,b) = 1.
The steps of the SME method computing this modular exponentiation are de-

scribed below.

1. Given n = 3141, we have n0 = 5. Finding the inverse of n0 modulo b gives δ
which is mostly achieved by Extended Euclidean algorithm:

δ = n−1
0 mod b = 5 mod 8 .

Thus, n = δn = 5 ·3141 = 15705 which is equal to

n(t) = 1 + 3t + 5t2 + 6t3 + 3t4

in polynomial representation. Recall that deg(n(t)) = s = 4 and n0 = 1
2. The computation of n(t) = DFT[n(t)] can be accomplished by a matrix multipli-

cation or, for more efficiency, some FFT can be employed. We obtain the result
of the DFT as

N(t) = 18 + 201822t+ 1045504t2 + 93374t3 + 856991t5 + 3071t6 + 944959t7

Recall that we work in the finite ring Zq with q = 220 +1 = 1048577 represented
by the least residue set; thus, the coefficients of the polynomial N(t) are in the
range [0,220).

3. After computing λ ′ = 22d mod n = 816 mod 3141 = 415, the polynomial repre-
sentation of λ ′ is found

λ ′(t) = 7 + 3t + 6t2 .
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Furthermore, we obtain the spectral coefficients of Λ ′(t) using the DFT as

Λ ′(t) = 16+6247t+3073t2 +92167t3 +10t4 +6055t5 +1045506t6+944136t7

4. Given m(t), we obtain its spectral representation M(t) using the DFT as

M(t) = 16 + 165990t+ 1046533t2+ 96422t3 + 886695t5 + 2052t6 + 948071t7

5. The SMP algorithm is used to compute M(t) = SMP[M(t),Λ ′(t)] with inputs

M(t) = 16 + 165990t+ 1046533t2+ 96422t3 + 886695t5 + 2052t6 + 948071t7

Λ ′(t) = 16 + 6247t + 3073t2 + 92167t3 + 10t4 + 6055t5 + 1045506t6+ 944136t7

We then use the SMP to find the resulting polynomial M(t) given the inputs M(t)
and Λ ′(t). First we execute Step 1 in the SMP method, and obtain the initial value
of Z(t) using the rule Zi = Mi ·Λ ′

i mod q for i = 0,1, . . . ,7 as

Z(t) = 256+945454t +10250t2+236399t3+223985t5+1038347t6+691376t7

In Step 2 of the SMP method, we assign the initial value of α = 0, and start the
loop for i = 0,1, . . . ,7. We illustrate the computation of the instance of the loop
for i = 0 in Table 7.1. The for loop needs to execute the remaining values of i as
i = 1,2, . . . ,7 in order to compute the resulting product M(t) given by

M(t) = 135 + 324054t+ 36891t2 + 398677t3 + 27t4 +
779927t5 + 1011740t6 + 594712t7 .

Table 7.1 The SMP for loop instance i = 0.

Step Operation and Result

4: z0 = d−1 · (Z0 +Z1 +Z2 +Z3 +Z4 +Z5 +Z6 +Z7) (mod q)
z0 = 917505 · (256+945454+10250+236399+223985+

1038347+691376) (mod 1048567) = 42

5: β = −(z0 +α) (mod b) = −(42+0) (mod 16) = 6

6: α = (z0 +0+β )/b = (42+6)/16 = 3

7: Zi = Zi +β ·Ni (mod q)
Z(t) = 364+59232t +1040389t2 +796643t3+

123046t5 +8196t6 +69668t7

8: Zi = Zi − (z0 +β ) = Zi −48 (mod q)
Z(t) = 316+59184t +1040341t2 +796595t3 +1048529t4+

122998t5 +8148t6 +69620t7

9: Zi = Zi ·Γi (mod q)
Z(t) = 316+526138t +45048t2 +723385t3 +48t4+

717053t5 +1003513t6 +130686t7



152 Gökay Saldamlı and Çetin Kaya Koç

6. In this step, the SMP method is used to compute C(t) = SMP[1(t),Λ ′(t)] with
inputs

1(t) = 1 + t + t2 + t3 + t4 + t5 + t6 + t7 ,

Λ ′(t) = 16 + 6247t + 3073t2 + 92167t3 + 10t4 + 6055t5 + 1045506t6+ 944136t7

We will not give the details of this multiplication since it is similar to the previous
one. The result is obtained as

C(t) = 106 + 13591t+ 39979t2 + 217142t3 + 28t4 +
11095t5 + 1008684t6+ 806969t7 .

7. Exponentiation Loop: The loop starts with the values of M(t) and C(t) com-
puted above as

M(t) = 135 + 324054t+ 36891t2 + 398677t3 + 27t4 +
779927t5 + 1011740t6 + 594712t7 ,

C(t) = 106 + 13591t+ 39979t2 + 217142t3 + 28t4 +
11095t5 + 1008684t6+ 806969t7 .

Given the exponent value e = (53)10 = (110101)2, the exponentiation algorithm
performs squarings and multiplications using the SMP method. Since j = 6, the
value of i starts from i = 5 and moves down to zero, and computes the new value
of C(t) using the binary method of exponentiation as described. The steps of the
exponentiation and intermediate values of C(t) are tabulated in Table 7.2. The
final value is computed as

C(t) = 174 + 327348t+ 43062t2 + 592243t3 + 54t4 +
782837t5 + 1005623t6 + 395062t7 .

8. After the exponentiation loop is completed, we have the final value C(t). In this
step, we have an SMP execution followed by an inverse DFT calculation.

9. We obtain C(t) from C(t) = SMP[C(t),1(t)] using the inputs

C(t) = 174 + 327348t+ 43062t2 + 592243t3 + 54t4 +
782837t5 + 1005623t6 + 395062t7 .

1(t) = 1 + t + t2 + t3 + t4 + t5 + t6 + t7 .

This computation finds C(t) as

C(t) = 169 + 438168t+ 48142t2 + 842167t3 + 27t4 +
696537t5 + 1000463t6 + 120506t7 ,
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Table 7.2 The steps of the exponentiation loop.

i ei Operation C(t)
Start 106+13591t +39979t2 +217142t3+

28t4 +11095t5 +1008684t6 +806969t7

C(t) =SMP[C(t),C(t)] 127+13519t +36931t2 +118862t3+
5 55t4 +11215t5 +1011780t6 +905297t7

1 C(t) =SMP[C(t),M(t)] 135+324054t +36891t2 +398677t3+
27t4 +779927t5 +1011740t6 +594712t7

C(t) =SMP[C(t),C(t)] 127+118020t +35890t2 +178339t3+
4 45t4 +967557t5 +1012787t6 +833510t7

1 C(t) =SMP[C(t),M(t)] 175+434919t +42016t2 +648646t3+
45t4 +693672t5 +1006625t6 +320201t7

C(t) =SMP[C(t),C(t)] 119+526344t +16391t2 +982536t3+
3 27t4 +589897t5 +1032200t6 +1047114t7

0 119+526344t +16391t2 +982536t3+
27t4 +589897t5 +1032200t6 +1047114t7

C(t) =SMP[C(t),C(t)] 202+128046t +60499t2 +955597t3+
2 72t4 +976047t5 +988244t6 +37904t7

1 C(t) =SMP[C(t),M(t)] 192+628407t +33843t2 +586390t3+
54t4 +494072t5 +1014836t6 +388633t7

C(t) =SMP[C(t),C(t)] 265+755301t +60454t2 +460547t3+
1 63t4 +422502t5 +988199t6 +459208t7

0 265+755301t +60454t2 +460547t3+
63t4 +422502t5 +988199t6 +459208t7

C(t) =SMP[C(t),C(t)] 296+546702t +74843t2 +734828t3+
0 90t4 +606607t5 +973916t6 +209585t7

1 C(t) =SMP[C(t),M(t)] 174+327348t +43062t2 +592243t3+
54t4 +782837t5 +1005623t6 +395062t7

10. We obtain c(t) using the inverse DFT function c(t) = IDFT[C(t)], which gives

c(t) = 56 + 59t + 42t2 + 12t3 .

Thus, the final value becomes c(b) = 9360 ≡ 3078 mod 3141, which is equal to

3078 = 2271853 mod 3141

as required.

7.4 Applications to Cryptography

Modular exponentiation is one of the most important arithmetic operation in modern
cryptography. For example, the RSA algorithm requires exponentiation in Zn for
some positive integer n, whereas Diffie-Hellman key agreement and the ElGamal
scheme use exponentiation in some large prime fields (see [9]).
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In this chapter, we describe the methodologies of selecting the parameters for
SME in order to use the method in public-key cryptography. We carefully investigate
suitable rings and structures that makes spectral techniques available for modular
arithmetic. In particular, the Inequality (7.10) presents a solid basis for the relation
between the parameters b,q and s.

7.4.1 Mersenne and Fermat rings

An integer ring for which q is of the form 2v ± 1 is the most suitable for the
SME computation since the modular arithmetic operations for such q are simplified.
Moreover, if the principal root of unity is chosen as a power of 2, spectral coeffi-
cients are computed only using additions and circular shifts. The rings of the form
2v−1 are called the Mersenne rings , while the rings of the form 2v +1 are called the
Fermat rings . In Table 7.3, we tabulate some suitable Fermat and Mersenne rings
for SME function. Furthermore, we also tabulate a root of unity and the DFT length
for each ring.

Observe that, it is possible to attain larger transform lengths; however, such a
principal root of unity brings some further complexity to the computations. To be
specific, multiplications with roots of unity involve additions as well as cyclic shifts.
Some cases such as ω = ±

√
2 can be tolerable for longer transform sizes but other

choices could be very costly. For instance, in Z220+1, ω = 4100 is not a power of 2,
hence every single multiplication with roots of unity is a 20-bit by 20-bit multipli-
cation and not tolerable for our purposes.

Table 7.3 Parameters of NTT for 216 < q < 281.

ring Zq prime factors (ω , NTT length)

216 +1 65537 (4,16) (2,32)
217 −1 131071 (2,17) (−2,34)
219 −1 524287 (2,19) (−2,38)
220 +1 17 ·61681 (32,8) (4100,16)
223 −1 47 ·178481 (2,23) (−2,46)
224 +1 97 ·257 ·673 (8,16) (

√
8,32)

229 −1 233 ·1103 ·2089 (2,29) (−2,58)
231 −1 2147483647 (2,31) (−2,62)
232 +1 641 ·6700417 (4,32) (2,64)
237 −1 223 ·616318177 (2,37) (−2,74)
240 +1 257 ·4278255361 (32,16) (

√
32,32)

241 −1 13367 ·164511353 (2,41) (−2,82)
264 +1 274177 ·67280421310721 (4,64) (2,128)
279 −1 2687 ·202029703 ·1113491139767 (2,79) (−2,158)
280 +1 414721 ·44479210368001 (32,32) (

√
32,64)
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In general, the transform lengths tabulated above are considered too short for
most of the digital signal processing applications. On the other hand, these lengths
seem reasonable for cryptographic applications and our purposes.

7.4.2 Pseudo Number Transforms

The Mersenne and Fermat rings are not the only suitable rings for efficient arith-
metic, if m (not necessarily a prime) is a small divisor of n. The rings of the form
Zn/m are also quite useful.

Definition 7.17. Let n and m be positive integers and m divides n. The NTT defined
over Zn/m is called a pseudonumber transform (PNT) .

In general, arithmetic in Zn/m is difficult; however, since m is a factor of n,
the arithmetic modulo (n/m) can be carried in the ring Zn. By selecting Zn as a
Mersenne or Fermat ring one simplifies the overall arithmetic. The next theorem
makes the importance of PNT more clear.

Theorem 7.7. Let n = n1n2 . . .nl = me1
1 me2

2 . . .mel
l , where ni = mei

i for i = 1,2, . . . , l
for distinct primes mi and positive integers ei and l. Let R be a proper subset of the
set {n1,n2, . . . ,nl} and R′ = {mi −1 : mei

i ∈ R}. If S = {m1 −1,m2 −1, . . . ,ml −1},
then gcd(S) ≤ gcd(R′) =: d′ and a PNT of length-d′ can be defined over Zn/m for
m = ∏ni �∈R ni.

Proof. First, R � S ⇒ gcd(S)≤ gcd(R′). For the second part, let R be a proper subset
of the set {n1,n2, . . . ,nl} such that n/m = ∏ni∈R ni . Using Corollary 7.1, there exists
an NTT with length d′ = gcd({mi−1 : mei

i ∈ R}) over Zn/m.

Example 7.6. In Z215−1, Corollary 7.1 states that the maximum transform length is
gcd(6,30,150) = 6. This MNT length is very short if the size of the ring is con-
sidered. On the other hand, if a PNT is employed in the ring Z(215−1)/7, we get the
transform lengths up to gcd(30,150) = 30.

At first glance, the arithmetic in the ring Z(215−1)/7 seems difficult; however, it is
possible to perform the actual computation in the ring Z(215−1) with a final reduction

to modulo (215 −1)/7.

Remark 7.6. Observe that PNT tailors the rings in a way that larger length trans-
forms are possible. But while doing that, the size of the ring shrinks. The most
interesting PNTs are the ones which enlarge the lengths with minimal shrinkage.
The effective size of the decreased ring has to be concerned when PNTs are used.

In Table 7.4, we present parameters of some suitable pseudo-Mersenne and Fer-
mat rings. If Tables 7.3 and 7.4 are combined, it is seen that for almost every v
(recall that n = 2v ± 1) in between 16 and 41 there exists some sets of parameters
for a nice NTT. Therefore, PNTs enrich the possible design choices which equip us
to meet the marginal needs of particular applications.
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Table 7.4 Suitable NTTs with ω and d values, � shows that n/m is a prime.

Ring PNT Modulus ω d ω d

n n/m

217 +1 (217 +1)/3� −2,4 17 2 34

220 +1 (220 +1)/17� 4 20 2 40

223 −1 (223 −1)/47� 2 23 −2 46

223 +1 (223 +1)/3� −2,4 23 2 46

225 −1 (225 −1)/31 2 25 −2 50

227 −1 (227 −1)/511 2 27 −2 54

228 +1 (228 +1)/17� 4 28 2 56

229 +1 (229 +1)/3 −2,4 29 2 58

231 +1 (231 +1)/3� −2,4 31 2 62

234 −1 (234 −1)/3 2 34 −2 68

234 +1 (234 +1)/5 4 34 2 68

237 +1 (237 +1)/3 −2,4 37 2 74

239 −1 (239 −1)/7 2 39 −2 78

239 +1 (239 +1)/9 −2,4 39 2 78

7.4.3 Parameter Selection for RSA

In this section, we tabulate some SME parameters for modular exponentiation cal-
culation suitable for RSA cryptosystems. Once the underlying ring, the DFT length
and the principal root of unity are selected, the maximum modulus size used in the
SME method is computed by finding the base b = 2u. The relation between these
parameters is computed after determining the maximum b satisfying the Inequality
(7.10).

In Table 7.5, some sample rings with DFT parameters are given. We give an
example to show how we get these figures. We first select a ring, for instance, let

Table 7.5 SMP parameter selection for SME.

Bits Ring DFT Root Wordsize Words

k Zq d ω u s

513 (257 −1)/7 114 -2 9 57

518 273 −1 73 2 14 37

704 264 +1 128 2 11 64

1,185 279 −1 158 -2 15 79

2,060 (2103 +1)/3 206 2 20 103

2,163 2103 −1 206 -2 21 103

3,456 (2128 +1) 256 2 27 128

4,260 (2142 +1)/5 284 2 30 142
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us take q = 279 −1. This comes with the principal root of unity ω = −2, the length
d = 158 and s = �d/2�= 79. Plugging these values into the Inequality (7.10) gives

138754.3b4 + 277508.7b3+ 138833.3b2 < 279 −1

and then, by inspection, b = 215 ⇒ u = 15 is found. Therefore, we may perform an
exponentiation of maximum operand size equal to k = s · u = 79 · 15 = 1185 using
SME with the specified parameters.

7.4.4 Parameter Selection for ECC over Prime Fields

An elliptic curve E over a prime field GF(p), p odd prime, is determined by param-
eters a,b ∈ GF(p) which satisfy 4a3 + 27b2 �= 0. The curve consists of the set of
solutions or points p = (x,y) for x,y ∈ GF(p) to the equation

y2 ≡ x3 + ax + b mod p (7.11)

together with an extra point o called the point at infinity. The set of points on
E forms a group under the following addition rule: Let (x1,y1) ∈ E(GF(p)) and
(x2,y2) ∈ E(GF(p)) be two points such that x1 �= x2. Then, we have (x1,y1) +
(x2,y2) = (x3,y3), where

x3 = λ 2 − x1 − x2 ,

y3 = λ (x1 − x3)− y1 ,

where λ = y2−y1
x2−x1

.
Observe that all computations are performed within the finite field GF(p). There-

fore, spectral modular algorithms of the previous sections can be used for field op-
erations. In particular, SMP can be used for multiplications.

The security provided by ECC is guaranteed by the difficulty of the discrete
logarithm problem in the elliptic curve group. The discrete logarithm problem is
the problem of finding the least positive number, e, which satisfies the equation

q = e×p= p+p+ · · ·+p︸ ︷︷ ︸
e times

,

where p and q are points on the elliptic curve. Naturally, the basic computation
(called point multiplication ) in ECC is finding the eth (additive) power of an el-
ement p in the group. This involves additions, multiplications, and inversions of
integers which are in the coordinates of the points. That is, it relies completely upon
calculations in the underlying field, GF(p).

Therefore, the elliptic point multiplication operation can be performed using the
SMP consecutively. Once again, Inequality (7.10) helps us to find parameters for
ECC use. In Table 7.6, some sample rings with DFT parameters are given.
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Table 7.6 SMP Parameter selection for ECC use.

Bits Ring DFT Root Wordsize Words

k Zq d ω u s

513 (257 −1)/7 114 -2 9 57

518 273 −1 73 2 14 37

704 264 +1 128 2 11 64

1,185 279 −1 158 -2 15 79

2,060 (2103 +1)/3 206 2 20 103

2,163 2103 −1 206 -2 21 103

3,456 (2128 +1) 256 2 27 128

4,260 (2142 +1)/5 284 2 30 142

7.5 Spectral Extension Field Arithmetic

Spectral methods can be be applied to extension fields. Since binary and mid-size
characteristic extensions are mostly of interest in practice, we breifly discuss these
cases.

7.5.1 Binary Extension Fields

The most essential point of applying the spectral methods to binary field arithmetic
is to find some suitable DFT domains having acceptable transform lengths for cer-
tain principal roots of unity. Unfortunately, if p is small, Zp admits very short trans-
form lengths (e.g., Z2 allows only a transform of length two). One way to overcome
this problem is to use some polynomial rings over Zp as the domain of DFT allows
longer transform lengths because of their larger cardinality.

7.5.1.1 Suitable Polynomial Ring Spectrums

Spectral methods generally partition bigger problems into small pieces and then
process the pieces in a parallel fashion. Notice that the computations in these pieces
are carried in the ring, R = Z2[γ]/(g(γ)), hence for a proper g(γ) selection, spectral
methods benefit the most.

The most convenient choice of g(γ) is a binomial. Moreover, if the principal
root of unity, ω is chosen as a power of γ , the spectral coefficients are computed
only using XORs and circular shifts. However, DFTs over polynomial rings having
defining binomials suffer from the short transform lengths. For instance, γn + 1 has
the linear factor Φ1(γ) = γ + 1 for all n, and by Theorem 1 of Pollard [2], only a
transform length of two can be defined over these rings. Nevertheless, it is possible
to overcome such restrictions using pseudotransforms (PT).
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Pseudonumber transforms (PNT) are initially defined over subrings of Mersenne
or Fermat rings. They support longer transform lengths and benefit the simplified
arithmetic of the parent Mersenne or Fermat rings [10]. A similar approach can
possibly be used for constructing pseudotransforms over polynomial rings. If g(γ) =
γn + 1 is considered, a nice transform with a longer length can be grasped in a
subring defined by a proper factor of g(γ).

In general, factoring γn + 1 is not an easy problem which is closely related to
the cylotomic polynomials. Since we are interested in binomials having fairly small
degrees, even using a general purpose computer algebra system is satisfactory for
our needs. Nevertheless, we present some pleasant arguments for the factors of cy-
lotomic polynomials.

Definition 7.18. Let n be a positive integer, and let ω be primitive nth root of unity.
The polynomial

Φn(t) = ∏
gcd(n,k)=1

(t −ωn) for 1 ≤ k < n,

is called the nth cyclotomic polynomial .

The nth cyclotomic polynomial Φn(t) has degree ϕ(n), where ϕ is the Euler’s
quotient function. These polynomials are irreducible over the rational numbers for
every positive integer n but when they are considered over finite fields, this is no
longer correct in general.

Since cyclotomic polynomials are minimal polynomials of the roots of unity,
g(γ) = γn ± 1 factor into cyclotomic polynomials. Consequently, the polynomial
γn −1 can be written as

γn −1 = ∏
d|n

Φd(t).

Note that the above factorization is not necessarily prime over finite fields. For
instance, γ5 −1 = φ1(γ)φ4(γ) but φ4(γ) = (t +1)2 over GF(2). Letting p be an odd
prime, some interesting examples over GF(2) are as follows;

t p + 1 = Φ1(t)Φp(t),

t2p + 1 = Φ1(t)Φ2(t)Φp(t)Φ2p(t),

t4p + 1 = Φ1(t)Φ2(t)Φp(t)Φ2p(t)Φ4p(t),
...

One finds the first few remaining values of n as t +1 = Φ1(t), t2+1 = Φ1(t)Φ2(t),
t4+1 = Φ1(t)Φ2(t)Φ4(t), t8 +1 = Φ1(t)Φ2(t)Φ4(t)Φ8(t) and t9+1 = Φ1(t)Φ3(t)Φ9(t).

Remark 7.7. In general, arithmetic in the factor rings is harder than the one in R,
but being defined over a subring, PT calculations can be carried modulo γn + 1 for
intermediate values and then the results are transformed to the factor ring by a final
reduction. Such an approach simplifies the overall computation.
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Example 7.7. Let us consider the DFT over R = Z2[γ]/(γ7 + 1) with the principal
root of unity ω = γ . Since γ7 + 1 has the following factorization

γ7 + 1 = (γ + 1)︸ ︷︷ ︸
Φ1(γ)

(γ3 + γ2 + 1)(γ3 + γ + 1)︸ ︷︷ ︸
Φ7(γ)

,

the ring R admits transform of lengths at the most two but if the ring R′ =
Z2[γ]/(Φ7(γ)), we get a 7-point DFT satisfying the convolution property over the
ring R′. Besides that, one needs a Φ7(γ) reduction while working in R′ which is
obviously harder than the arithmetic in R. However, since R′ is a subring of R, all
calculations can be carried over R with a final Φ7(γ) whenever necessary.

In Table 7.7, we present the parameters for some suitable pseudotransform rings.
One can find an appropriate g(γ) by simply examining the transform length d in
order to meet the marginal needs of a particular application.

Table 7.7 Suitable Polynomial Rings for an odd prime d.

Ring, g(γ) ω lenght

(γd +1)/(γ +1), (γ2d +1)/(γ2 +1) γ d

(γd2
+1)/(γd +1), (γ2d2

+1)/(γ2d +1) γ d2

Remark 7.8. While embedding the input to the pseudotransform domain, the size of
the subring should be considered rather than the size of ring R. In fact, the most inter-
esting pseudotransforms are the ones enlarging the lengths with minimal shrinkage
in size. For further discussion we refer the reader to [11].

7.5.1.2 Suitable Finite Field Spectrums

We discuss the arithmetic simplifications when the factor rings are finite fields (i.e.,
defining polynomials are irreducible).

Note that binary extension fields can be seen as n-dimensional vector spaces
over GF(2): if {α1, . . . ,αn} is taken as the basis set, each element of GF(2n) can be
represented as a linear combination of the elements of this basis set. Among various
bases, there are two special types having particular importance. The first one is the
canonical polynomial basis {1,α,α2, . . . ,αn−1}, made up of powers of a defining
(mostly primitive) element α of GF(2n). The second one is the normal basis of the
form

N = {α,αq, . . . ,αqn−1} (7.12)

and consists of a normal element α ∈ GF(qn) and its conjugates with respect to
GF(2).

For every finite field there exists a normal basis, in fact, several such bases may
exist for the same field. Those bases having the minimal complexity while multiply-
ing field elements are the most important ones for computations (also called optimal
normal bases (ONB) ).
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For our purposes type I ONBs have the utmost importance in which the element
α is taken as the principal root of unity. Observe that this is the case where the basis
(7.12) and the set of roots of unity (i.e., {1,ω ,ω2, . . . ,ωn−1}) become set equivalent
(not necessarily equal as ordered sets); hence, one can change the basis from normal
to polynomial or vice versa by simply ordering the terms. Unfortunately, not all the
finite fields have type I ONB; the following proposition gives a condition for their
existence.

Proposition 7.7. Suppose n + 1 is a prime and q is primitive in Zn+1, where q is
a prime or prime power. Then the n nonunit (n + 1)th roots of unity are linearly
independent and they form an ONB of GF(qn) over GF(q).

Proof. See Mullin et al. [12]

Using the above result, one can get that for k = 4,10,12,18,28,36,52, 58,60, . . .
the binary extension field GF(2k) has type I ONB.

In a normal basis representation, squaring a field element corresponds to a simple
circular shift which seems well-suited for the realizations of public-key cryptosys-
tems employing some form of repeated square and multiply methods, but in general,
these representations mostly suffer from the complicated bases conversions and field
multiplications. Eventually, type I ONB are optimal by giving the simplest conver-
sion and multiplication realizations. Therefore, they initially favor a great interest in
realizations of ECC but because of some security concerns, the use of elliptic curves
over composite fields (type I ONB only exist in these extensions) is explicitly ex-
cluded from standards such as ANSI X9.63 [13].

Remark 7.9. We tend to choose a field having a type I ONB for transform do-
main. Observe that such a selection is implementation-related that does not change
any ECC parameter, hence it never jeopardizes the security of the crypto- system.

7.5.1.3 Parameter Selection for ECC over Binary Fields

The size of the underlying structure (which also defines the key length) is a common
security measure for public-key cryptosystems. After discarding the weak family of
elliptic curves, standard documents [13] and [14] recommend some curves serving
different needs of security levels. Referencing to the key sizes of these curves, in
Table 7.8, we tabulate some suitable polynomial rings that admit nice DFT struc-
tures. Note that unlike SMM, when SMP is used for ECC, the word size u ≈ v/4 as
a result of successive SMP usage. In fact, a modification of SMP may give a much
better u, (see the research project 1 of Section 7.8).

7.5.2 Midsize Characteristic Extension Fields

The ideas of the previous sections could be applied to the polynomial rings having
midsize characteristics. In particular, extension fields GF(q) with q = pk, p an odd
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Table 7.8 Standard Parameter Selection for SMP; † shows the domains having Type I ONB.

Bits PT ring DFT Root Wordsize Words

k g(γ) d w u s

171 (γ37 +1)/(γ +1)† 37 γ 9 19

210 (γ41 +1)/(γ +1) 41 γ 10 21

242 (γ43 +1)/(γ +1) 43 γ 11 22

288 (γ47 +1)/(γ +1) 47 γ 12 24

450 (γ59 +1)/(γ +1)† 59 γ 15 30

578 (γ67 +1)/(γ +1)† 67 γ 17 34

special prime, are good study cases. As we have seen in Section 7.5.1, when p is a
small prime, DFTs suffer from short transform lengths. On the other hand, taking p
such that p ∈ [25,232] gives great opportunities. Moreover, since the elements of the
GF(q) could be represented by polynomials modulo p, one does not need to worry
about the carries or coefficient overflows. In fact, this considerably simplifies SMP
and any related computation. Let us start by giving the simplified SMP algorithm,
and then we continue with further discussions.

7.5.2.1 Irreducible Binomials and Trinomials

As we mentioned in Section 7.5.1, the cryptosystems designed over extension fields
give us the opportunity of choosing the parameter p and f (t) freely. Certainly, we
picked p as a Mersenne or Fermat prime or a large divisor of non-prime such num-
bers, and tend to choose f (t) as a low hamming weight polynomial such as a bino-
mial or a trinomial. Moreover, we insist on fixing the coefficients to powers of two,
so that multiplications on the coefficients enjoy shifts instead of full multiplications.

We discussed the suitability of Mersenne and Fermat numbers earlier. Here, we
start by giving the existence characterization of irreducible binomials. The next the-
orem is due to [15];

Spectral Modular Product
Assume that there exists a DFT map DFT ω

d : Z
d
p → F d

p, and X(t),Y (t) and F(t) are transform
pairs of x(t),y(t) and f ′(t) respectively, wherein, x(t) and y(t) are in the frame Z

s
p with s = �d/2�,

and f ′(t) is a multiple of the defining polynomial f (t) in Z
s+1
p and f ′0 = 1.

Input: X(t),Y (t) and F(t); spectral polynomials
Output: Z(t), spectral modular reduction of x(t) · y(t) mod f (t),
procedure SMP(X(t),Y (t))

1: Z(t) := X(t)�Y (t)
2: for i = 0 to d −1
3: z0 := d−1 · (Z0 +Z1 + . . .+Zd) mod p
4: Z(t) := Z(t)− z0 ·F(t) mod p
5: Z(t) := Z(t)�Γ (t) mod p
6: end for
7: return Z(t)
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Theorem 7.8. Let l ≥ 2 be an integer and a ∈ GF∗(q). Then the binary polynomial
tl −a is irreducible in GF(q)[t] if and only if the following conditions are satisfied:
(i) each prime factor of l divides the order e of a in GF∗(q) but not (q− 1)/e; (ii)
q ≡ 1 mod 4 if l ≡ 0 mod 4.

Proof. See pages 124–125 of [15].

As a corollary we specify the existence of irreducible binomials over Mersenne
fields.

Corollary 7.3. Let q = 2r−1 be a Mersenne prime and ω =±2, the binomials, tr−
ω i are irreducible in GF(q)[t] if and only if r2 does not divide q−1 and gcd(r, i) = 1
for i = 1,2, . . . ,2r.

Proof. We simply check whether the conditions of Theorem 7.8 are satisfied or not.
We start with condition (ii); r has to be odd in order that q be a prime. Hence, r does
not divide 4 and condition (ii) is always satisfied.

For condition (i), the order of ω i surely divides the order of ω which is |ω | = r
or 2r. Since the set of roots of unity forms a cyclic subgroup of order r or 2r , those
elements with power relatively prime to r or 2r have order equal to r or 2r; others
are proper divisors.

As an example; by using Corollary 7.3, the irreducible binomials in GF(q)[t] for
q = 213 − 1 that interest us most are given simply the form t13 − 2i for i �= 13 and
i ∈ {1,2, . . . ,25}.

When trinomials are considered, it is hard to characterize the conditions com-
pactly. Therefore, once again we refer the reader to [15] for further reading. In fact,
since we are interested in relatively small degree polynomials and these polynomi-
als are comparably dense in GF(p)[t], searching methods are suitable for finding
such polynomials. In order to give some samples, we tabulate such polynomials in
Table 7.9.

7.5.2.2 SMP with Binomials or Trinomials

If special irreducible binomials or trinomials are used for SMP algorithms, a signif-
icant improvement is possible. To be more specific, in Step 3 of SMP method we

Table 7.9 Some irreducible trinomials in GF(q)[t] for q = 213 −1.

t13 + t +2 t13 + t +210 t13 + t +219

t13 + t +22 t13 + t +211 t13 + t +220

t13 + t +23 t13 + t +212 t13 + t +221

t13 + t +24 t13 + t +213 t13 + t +222

t13 + t +25 t13 + t +214 t13 + t +223

t13 + t +26 t13 + t +215 t13 + t +224

t13 + t +27 t13 + t +216 t13 + t +225

t13 + t +28 t13 + t +217 t13 + t +226

t13 + t +29 t13 + t +218
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subtract the z0 multiple of F(t) from the partial sum. If f (t) is a random irreducible
polynomial, this multiplication corresponds to a v× v multiplication but with the
special trinomials or binomials this multiplication is performed by simple shifts.

Let f (t) = tm + ω−s0 with an integer s0 be an irreducible binomial, f ′(t) simply
equals f ′(t) = 1 + ωs0tm. If the transform pair of f ′(t) is computed, one gets

F(t) = 1 + ωs0 +(1 + ωs0+m)t + · · ·+(1 + ωs0+m(d−1))td−1.

Hence it is easily seen that the Step 3 of SMP follows

z0 ·Fi = z0(1 + ωs0+mi)
= z0 + z0ωs0+mi

for i = 0,1, . . . ,d − 1. Observe that all the z0ωs0+mi are computed by simple shifts
because ω = 2. Similarly, if f (t) is a trinomial, another shift-add has to be per-
formed.

7.5.3 Parameter Selection for ECC over Extension Fields

Spectral multiplication can be extremely efficient for extension fields having medium
characteristics. By “medium” we mean the typical wordsize of today’s architectures.
For instance, if the field GF(pk) is considered we assume 27 < p < 232.

In the literature, the security of an ECC employment is given according to the
length of the key sizes. These key sizes are determined according to the complexi-
ties of the best-known algorithms known for solving the discrete logarithm problem
in elliptic curve groups over the fields GF(pk). In Table 7.10, we tabulated the pa-
rameter selection of some nice Mersenne and Fermat fields that target some popular
key sizes.

As mentioned in Section 7.4.2, psuedotransforms are also very convenient for
employing spectral algorithms. In this context, if the prime p is chosen to be a

Table 7.10 Parameter Selection for ECC over GF(pk).

Bits GF(pk) DFT Root Wordsize Words

s ·u p d ω v s = k

153 217 −1 17 2 17 9

169 213 −1 26 -2 13 13

190 219 −1 19 2 19 10

256 216 +1 32 2 16 16

289 217 −1 34 -2 17 17

361 219 −1 38 -2 19 19

496 231 −1 31 2 31 16

512 216 +1 64
√

2 16 32

961 231 −1 62 -2 31 31
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Table 7.11 Parameter Selection for ECC over GF(pk) using PNTs.

Bits GF(pk) DFT Root Wordsize Words

s ·u k d ω u s

150 (220 +1)/17 20 4 15 10

170 (219 +1)/3 19 4 17 10

255 (217 +1)/3 34 -2 15 17

323 (219 +1)/3 38 -2 17 19

352 (232 +1)/641 32 4 22 16

464 (231 +1)/3 31 4 29 16

483 (223 +1)/3 46 2 21 23

644 (228 +1)/17 56 2 14 23

899 (231 +1)/3 62 2 29 31

divisor of the psuedo-Mersenne or Fermat number, one gets the parameters in Ta-
ble 7.11 for efficient implementations. Although arithmetic modulo p might be dif-
ficult, the actual computation is carried in the chosen Mersenne or Fermat ring with
a final modulo p reduction.

7.6 Notes

In this chapter new techniques of performing modular multiplication and exponenti-
ation are proposed. Especially, modular exponentiation is one of the most important
arithmetic operations for methods of modern cryptography, such as the RSA and
Diffie-Hellman algorithms. The proposed methods use the Discrete Fourier Trans-
form over finite rings, and relies on new techniques to perform the modular reduc-
tion operation.

The wonders of the convolution property has been known over decades. Obtain-
ing modular arithmetic algorithms fully working in the spectrum would benefit the
convolution property to the maximum extent. For carrying modular arithmetic, one
need obviously has to deal with the concept of modular reduction. In [10] and later
in a more compact text [16], after defining the spectral reduction and related con-
cepts, a spectral reduction algorithm is introduced using the linearity and shifting
property of DFT. Spectral modular multiplication (SMM) and spectral modular ex-
ponentiation (SME) come quite naturally once a reduction is defined.

When it comes to the practicability of the proposed methods, there were many
directions to go because of the richness of the spectral theory. A first experiment
could possibly work in a complex spectrum but, because of massive computations
in the spectrum, the round-off errors could be hard to control (but still an analysis is
needed). Therefore, a smart move is to employ the finite ring spectrums for not ad-
mitting the round-off errors in the computations. Additionally, from a computational
point of view, calculations in some special rings such as Fermat and Mersenne can
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exploit the special arithmetic. In fact, there are excellent references [17], [18], [19]
and [20] demonstrating efficient arithmetic in these rings. Moreover, one can check
[4] for arithmetic in pseudotransform arithmetic.

The ideas utilized for modular operations of large integers are extendable to poly-
nomial rings. The extension to the rings having mid-size characteristic is the easiest
by simply using the underlying ring as the domain of the DFT. In fact, because of
this simplicity, one does not need to worry about the carries or coefficient overflows
and can have a very convenient method for the ring arithmetic. The method is inde-
pendently proposed in [21] and [22]. Later a coprocessor [23] based on the method
is introduced.

On the other hand, because of very short transform lengths (e.g., the ring Z2

allows only a transform two length of) using the spectral methods for binary or
small characteristic ring extensions is a little cumbersome. One way to overcome
this problem is to use some polynomial rings over Zp as the domain of DFT allowing
longer transform lengths [11] because of their larger cardinality.

Because of working in the spectrum, there exists a vast amount of parallelism
potential in computations. Therefore, these methods have the chance of yielding
efficient and highly parallel architectures especially for hardware implementations.
Although we do not discuss implementation aspects in this text, the reader could find
architectures and unit-gate analysis of the described methods in [10], [16], [11], [21]
and [23].

7.7 Exercises

1. What is the maximum DFT lenght that can be defined over the ring Z220+1,
Z231−1 and Z279−1? What will be this maximum if the principle root of unity
is an integer power of two?

2. What are the best pseudotransform rings for Z220+1, Z225−1 and Z239+1 maximiz-
ing the DFT length? What will be these maximum lengths if the principle root of
unity is an integer power of two?

3. What is the maximum modulus size that can be used for SME over the ring
Z220+1? What will be this maximum if the principle root of unity is an integer
power of two?

4. Assume that we want to use SME for an RSA system having a 1100 bits modulus.
What is the smallest Mersenne and Fermat ring for the DFT such that SME works
without overflows, if the principle root of unity is chosen as integer power of two.

5. Calculate c = me (mod n) for m = 2718, e = 53, and n = 3141 using SME over
the ring Z219−1.

6. What is the maximum DFT length (and relative the principal root of unity) that
can be defined over the ring R = Z2[γ]/(g(γ)) where g(γ) = (γ29 + 1), g(γ) =
(γ29 +1)/(γ +1), g(γ) = (γ49 +1) and g(γ) = (γ49 +1)/(γ7 +1)? What will be
this maximum if the principal root of unity is power of γ?
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7. What is the biggest binary field which its arithmetic can be carried using DFT
over the ring R = Z2[γ]/(g(γ)), where g(γ) = (γ19 + 1)/(γ + 1)? What will be
this field if the principal root of unity is a power of γ?

8. In characteristic three rings, DFT also suffers from short lengths. However, spec-
tral methods can be applied similar to binary extensions. What is the maximum
DFT length (and relative the principal root of unity) that can be defined over
the ring R = Z3[γ]/(g(γ)), where g(γ) = (γ23 + 1), g(γ) = (γ23 + 1)/(γ + 1),
g(γ) = (γ31 + 1) and g(γ) = (γ49 − 1)/(γ7 − 1)? What will be this maximum if
the principal root of unity is power of γ?

9. Assume that we want to employ a DFT for arithmetic in GF(pk) What is the max-
imum DFT length that can be defined over the ring Z213+1, Z213−1 and Z279−1?
What will be this maximum if the principal root of unity is an integer power of
two?

10. Let m(t) = 6+3t +2t2 +5t3 ∈ GF(pk) for p = 27 −1 and k = 7. If f (t) = t7 −2
is the defining polynomial for GF(pk) then calculate c(t) = (m(t))e ∈ GF(pk)
for e = 53.

7.8 Projects

1. If the SMP (i.e., Algorithm 7.5.2.1) is considered, notice that our bound analysis
depends heavily on β ·N(t) multiplication of Step 7. In fact, it is possible to
replace this multiplication by a multioperand addition at a cost of some pre-
computations and extra memory.
To be more specific, let b = 2u and ni(t) be the polynomial representation of an
integer multiple of n such that the zeroth coefficient of ni(t) satisfies (ni)0 = 2i−1

for i = 1,2, . . . ,u (note that n(t) = n1(t)). We can now write β ·N(t) as

β ·N(t) =
u

∑
i=1

βi ·Ni(t) , (7.13)

where βi is a binary digit of β and Ni(t) = DFTω
d (ni(t)) for i = 1,2, . . . ,u. Note

that β < b and βi = 0 for i ≥ u.
Plugging the Equation (7.13) into the Algorithm 7.5.2.1 gives a modified spectral
modular product (MSMP) algorithm. Observe the benefit of this approach since
this replacement gives a reasonable amount of radius shrinkage. Calculate the
new bound with respect to this modified algorithm.

2. In many situations it is desirable to break a congruence mod n into a system of
small congruences modulo factors of n. Once necessary computations are per-
formed in the small factor rings, using CRT , the resultant system of congruences
is replaced by a single congruence under certain conditions.
When spectral algorithms are considered, CRT can be used in two different ways.
The first one is for degree that can be adopted from Quisquater and Couvreur [24]
where the second one is for radius that is based on the ideas proposed for integer
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multiplication by J. M. Pollard [25], and independently by A. Schönhage and V.
Strassen [1].
Examine these two utilizations and present algorithms for both methods. Give a
boundary anaylsis for both of the algorithms. Give a parameter selection table
for popular RSA sizes using SMP and MSMP.

3. Note that Mersenne arithmetic corresponds to one’s complement arithmetic
whereas Fermat arithmetic may be implemented in different fashions. Research
on efficient Fermat ring arithmetic ([20] and [17] could be two decent starting
articles), then design parallel and digit serial Mersenne and Fermat multipliers
for Z213−1 and Z224+1 respectively. Plot the relation between the area and digit
size.

4. Consider the Fermat ring Z224+1. If ω = 8 is taken, one gets a DFT having length
16. Calculate the parameters u and b in order to determine the maximum sup-
ported RSA length. Design a hardware architecture for SMP over the Fermat
ring Z224+1.

5. Consider the Mersenne ring Z213−1. If ω = −2 is taken, one gets a DFT having
length 26. Design a an SMP architecture over the ring Z213−1 performing GF(pk)
arithmetic for p = 213 −1, k = 13 and f (t) = t13 −2 is the defining polynomial.
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