
Chapter 5
Fast Finite Field Multiplication

Serdar Süer Erdem, Tuǧrul Yanık, and Çetin Kaya Koç

5.1 Introduction

Finite fields are the most commonly used arithmetical structures in cryptography
[14, 16] and coding [3, 19, 21]. Many algorithms in cryptographic and coding appli-
cations are defined in terms of finite field arithmetic operations. The elliptic curve
cryptosystems [11, 17] and the Diffie-Hellman key exchange [8] algorithm are im-
portant examples of such cryptographic applications. Also, common error control
codes such as Reed-Solomon and BCH codes are based on finite field theory [4, 21].

An algebraic field consists of a set and two operations defined over this set. The
real numbers, the rational numbers, and the complex numbers under addition and
multiplication are examples of algebraic fields. In fact, algebraic fields are the gen-
eralization of these usual number systems as described below.

• One of the field operations satisfies the general properties of the usual addition.
For this operation, an identity element exists and each element has an inverse.
This identity element is called additive identity or zero element.

• The other field operation satisfies the general properties of the usual multiplica-
tion. For this operation, an identity element (multiplicative identity) exists and
each element, except the zero element, has an inverse. Also, this operation dis-
tributes over the first operation like the usual multiplication distributes over the
usual addition.

Finite fields are algebraic fields with finite number of elements. These fields take
the place of the familiar fields like the real numbers in cryptography and coding.
Because they have finite number of elements, the operations on them cannot produce
infinitely large results. Also, the finite field operations always produce exact results,
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Ç.K. Koç (ed.) Cryptographic Engineering, DOI 10.1007/978-0-387-71817-0 5,
c© Springer Science+Business Media, LLC 2009

75
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not approximate results. Thus, they do not suffer from truncation errors like the
floating point operations.

The fast implementation of the finite field multiplication is essential in crypto-
graphic and coding applications. This is because the finite field addition and mul-
tiplication are the most frequently used operations in these applications. The finite
field addition is relatively simple, compared to the multiplication. On the other hand,
the finite field multiplication is a substantially time-consuming operation in hard-
ware and software implementations.

In this chapter, the efficient finite field multiplication methods are discussed after
giving some preliminary facts about finite fields. The discussion is handled sepa-
rately for the three main classes of finite fields (prime fields, binary extension fields,
and general extension fields).

5.2 Finite Fields

A finite field with q elements is denoted by Fq. Such a field exists, if and only if
q = pm for some prime p and a positive integer m. Fq is unique up to isomorphism.
That is, every field with q elements is isomorphic to Fq.

• Fp has a prime number of elements, and thus it is called prime field.
• Fpm denotes its extension field with pm elements.
• F2m is a special case of Fpm and is called binary extension field.

The prime field Fp can be constructed by using integer modular arithmetic. In this
construction, the field elements are represented by the set of integers {0,1,2, . . . , p−
1}. And, the field operations are defined as integer addition and multiplication mod-
ulo p.

The extension field Fpm can be constructed by using polynomial modular arith-
metic. In this construction, the field elements are represented by the polynomials
over Fp of degree less than m. And, the field operations are defined as polynomial
addition and multiplication modulo a degree m irreducible polynomial over Fp.

The construction of the extension fields using polynomials over the prime fields
is possible due to the fact that the extension field Fpm is an m-dimensional vec-
tor space over the prime field Fp. As an immediate result of this fact, a basis
{α0,α1, . . . ,αm−1} always exists in Fpm such that each element a ∈ Fpm can be
given by a = a0α0 + a1α1 + · · ·+ am−1αm−1 for a unique set of ai ∈ Fp. According
to the theory of finite fields,

• A degree m irreducible polynomial over Fp always exists. The roots of these
irreducible polynomials are in Fpm .

• Let α ∈ Fpm be some root of a degree m irreducible polynomial ω(x). Then,
{1,α,α2, . . . ,αm−1} constitutes a basis for Fpm where 1 denotes the multiplica-
tive identity. Such a basis is called polynomial basis.

In conclusion, when α is a root of an irreducible ω(x), ω(x)|x=α = 0 and each el-
ement of Fpm can be given by (am−1xm−1 + · · ·+ a1x + a0)|x=α for a unique set of
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ai ∈ Fp. This is why the extension field elements can be represented by the poly-
nomials over Fp. However, since ω(x) = 0 for x = α , all arithmetic operations are
performed modulo ω(x) in this representation.

As can be understood from the discussion so far, finite field arithmetic is based
on modular arithmetic, and thus requires modular reductions. Modular reduction
operation is essentially computing the remainder of a division. Thus it is a costly
operation unless

• A special modulus is chosen to ease the division, or
• A precomputation based on the chosen modulus is used.

The Barrett and the Montgomery algorithms are two modular reduction algo-
rithms using precomputation. Because of the precomputation overhead, these al-
gorithms are used if a large number of modular reductions need to be performed.
Also, the Montgomery algorithm requires a domain transformation, while the Bar-
rett algorithm does not. This domain transformation is thus a slight drawback for
the Montgomery algorithm.

5.3 Multiplication in Prime Fields

The prime field Fp elements are represented by the set of the integers {0,1,2, . . . , p−
1}. Let a and b be two elements in Fp. Let c be their product in Fp. Then, c is defined
as follows.

c = a×b mod p .

As a result, the prime field multiplication needs two arithmetic operations:

• Integer multiplication, and
• Integer modular reduction.

The algorithms used in the modular multiplication of the integers will be studied
in this section. However, the multiple precision representation, the addition, and the
subtraction of the integers need to be be discussed first.

In practice, a hardware or software implementation supports a fixed w-bit word
size. Each w-bit word stores an integer digit and integers are represented in the base
β = 2w. Let a be an integer in Fp and ai be its ith digit. Then, the multiple precision
representation for a is

a = (an−1, . . . ,a2,a1,a0)β .

Naturally, the number of digits n in this representation must satisfy p ≤ β n so that
all the integers in the set {0,1,2, . . . , p−1} can be represented.

To perform the integer addition c = a+b, the corresponding digits of a and b are
added from the least to the most significant as follows.

(εi+1,ci) = ai + bi + εi, i = 0,1,2, . . . (5.1)

Here, ε0 = 0 and εi+1 is the carry due to the addition of the ith digits.
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Similarly, the integer subtraction c = a−b is performed as follows.

(εi+1,ci) = ai −bi− εi, i = 0,1,2, . . . (5.2)

Here, ε0 = 0 and εi+1 is the borrow due to the subtraction of the ith digits.
As seen, these digit-by-digit operations involve carry and borrow propagations

which can be handled in hardware easily. Also, the general purpose processors have
always the instructions “add with carry” and “subtract with borrow”, which are help-
ful for the carry and borrow propagations.

5.3.1 Integer Multiplication

The standard way of multiplying two integers is to multiply each digit in the first by
each digit in the second and combine the resulting partial products. It is easy to see
that this computation requires O(n2) digit operations for n-digit integers. Algorithm
1 and Algorithm 2 illustrate two different implementations of the standard integer
multiplication [6, 15].

Let β be the integer base. Algorithm 1 finds a×b using the fact that

d = a×b = ∑n−1
i=0 aib β i.

Algorithm 1 computes aib for each ai, then appropriately shifts and combines the
results. The inner loop starting at Step 5 scans the second operand digits b j and
computes A×b j = ai ×b j. The result is stored into two-digit integer (H,L) in Step
6, where H and L are the higher and lower digits respectively. The previous values of
the higher digit H and the running product digit di+ j are also added to (H,L). Note
that (H,L) can hold the result in Step 6 without any overflow because the digits
A,b j,H,di+ j ≤ β −1, and thus

A×b j + H + di+ j ≤ (β −1)(β −1)+ 2(β −1) < β 2.

Algorithm 1: Integer multiplication (by operand scanning)

Input: n-digit integers a and b.
Output: 2n-digit integer d = a×b.

1. for i = 0 to n−1 do di = 0
2. for i = 0 to n−1 do
3. H = 0
4. A = ai

5. for j = 0 to n−1 do
6. (H,L) = A×b j + H + di+ j

7. di+ j = L
8. di+n = H
9. return(d)
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Algorithm 2 computes the digits of d = a×b one by one, from the least signifi-
cant to the most significant. Algorithm 2 uses the fact that

d = ∑2n−2
k=0 β k

(
∑i∈I

aibk−i

)
, I = {i | 0 ≤ i,k− i < n}.

For each k, the sum ∑i∈I aibk−i is computed and stored into the three-digit integer
(U,H,L) in Step 6, where U and L are the most and the least significant digits
respectively. Step 7 determines the kth digit of the product d as dk = L. Then, Step
8 removes the digit L by shifting (U,H,L) one digit right. The remaining more
significant digits U and H are used to compute the more significant digits of the
product d.

Algorithm 2: Integer multiplication (by product scanning)

Input: n-digit integers a and b.
Output: 2n-digit integer d = a×b.

1. (U,H,L) = (0,0,0)
2. for k = 0 to 2n−2 do
3. if k < n I = {i | 0 ≤ i ≤ k}
4. if k ≥ n I = {i | n > i > k−n}
5. for every i ∈ I
6. (U,H,L)+= ai ×bk−i

7. dk = L
8. (U,H,L) = (0,U,H)
9. d2n−1 = L

10. return(d)

To compare the efficiencies of Algorithms 1 and 2, the inner loops of these algo-
rithms must be considered. The inner loops of both the algorithms repeat n2 times
to perform n2 different digit multiplications. The operations in the inner loop of
Algorithm 1 are equivalent to

(H ′,L) = A×b j, (H,L) = (H ′,L)+ (0,H)+ (0,di+ j), di+ j = L.

These operations require four w-bit additions, two data reads (b j,di+ j), and one data
write (di+ j). The operations in the inner loop of Algorithm 2 are equivalent to

(H ′,L′) = ai ×bk−i, (U,H,L) = (U,H,L)+ (0,H ′,L′).

These operations require three w-bit additions and two data reads (ai,bk−i). Also,
note that the inner loops of the algorithms require multiprecision additions. These
additions are performed as shown in (5.1).

Though Algorithm 1 is more straightforward to implement in hardware, Algo-
rithm 2 is more advantageous in software. This is because Algorithm 2 requires
fewer digit additions, data reads, and data writes. Here, it is assumed that the tem-
porary variables (A, U , H, L, H ′, L′) are held in the registers of the underlying
processor; thus accessing them does not increase the data reads and writes.
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5.3.2 Integer Squaring

Algorithm 3 computes the square of an integer. This algorithm is just a simplification
of Algorithm 2 for the case that the multiplicands a and b are equal. Since a = b,
the cross products satisfy aib j = a jbi = aia j. Thus, the number of the required digit
products reduces roughly by half.

Algorithm 3 computes not all but half of the cross products using the fact

∑
i∈I

i�=k−i

aiak−i = 2 ∑
i∈I

i>k−i

aiak−i = 2 ∑
i∈I

i<k−i

aiak−i

where I = {i | 0 ≤ i,k− i < n}. Note that this can also be written as follows

∑
i∈I

i�=k/2

aiak−i = 2 ∑
i∈I

i>k/2

aiak−i = 2 ∑
i∈I

i<k/2

aiak−i .

Algorithm 3: Integer squaring

Input: n-digit integer a.
Output: 2n-digit integer d = a2.

1. (U,H,L) = (0,0,0)
2. for k = 0 to 2n−2 do
3. if k < n I = {i | 0 ≤ i < k/2}
4. if k ≥ n I = {i | n > i > k/2}
5. for every i ∈ I
6. (U,H,L)+= ai ×ak−i

7. if k is even (U,H,L) = 2(U,H,L)+ a2
k/2

8. if k is odd (U,H,L) = 2(U,H,L)
9. dk = L

10. (U,H,L) = (0,U,H)
11. d2n−1 = L
12. return(d)

5.3.3 Integer Modular Reduction

This section discusses the following methods for the reduction d mod p :

• The algorithms for moduli of special form
• The Barrett and the Montgomery algorithms using a precomputation based on

the modulus p.

The output of the modular reduction is nothing else than the remainder of the
division d/p. When the quotient calculation is omitted, the division turns into mod-
ular reduction. The multiple precision division for an arbitrary base β is a costly
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operation. References [10, 15] give a good discussion of the multiple precision di-
vision and Ref. [5] presents a multiple precision modular reduction algorithm based
on division.

The computation d mod p in the base β = 2 is rather straightforward. In this
case, the integer d is reduced bit by bit modulo p. Let 2m > p ≥ 2m−1 and p ≤
d = (dk−1, . . . ,d1,d0)2. Then, dk−12k−1 > dk−12k−1−mp ≥ dk−12k−2 and d can be
reduced as follows.

d = d−dk−12k−1−m p.

To find d mod p, the bit reductions are performed iteratively until d < p. Also,
d mod p can be computed by using the integer p̂ = 2m mod p. Then, dk−12k−1 ≡
dk−12k−1−m p̂ mod p and d can be reduced as follows.

d = (dk−2, . . . ,d0)2 + dk−12k−1−m p̂.

Algorithm 4 implements the integer modular reduction using this method.

Algorithm 4: Bit level integer modular reduction

Input: Integers d = (dk−1, . . . ,d0)2 and p̂ = 2m mod p where 2m > p ≥ 2m−1.
Output: d mod p.

1. while k > m do
2. while dk−1 �= 0 do
3. d = (dk−2, . . . ,d0)2 + 2k−1−mp̂
4. k = k−1
5. return(d)

5.3.3.1 Using Special Modulus

The commonly used base to represent the integers in processors is β = 232. Thus,
it is easier to perform reduction modulo a prime number which can be written as a
simple sum of the powers of 2 or 232, in software and hardware implementations.
The following numbers are prime and have this property,

2192 −264 −1 = β 6 −β 2 −1,

2224 −296 + 1 = β 7 −β 3 + 1,

2256 −2224 + 2192 + 296 −1 = β 8 −β 7 + β 6 + β 3 −1,

2384 −2128 −296 + 232 −1 = β 12 −β 4 −β 3 + β −1,

2521 −1.

Here, β = 232. Fast modular reduction methods can be developed for these primes
[20]. Consider the prime p = 2192 −264 −1 as an example. For β = 232,

β 6 ≡ β 2 + 1 mod p
β 7 ≡ β 3 + β mod p

β 8 ≡ β 4 + β 2 mod p
β 9 ≡ β 5 + β 3 mod p

β 10 ≡ β 4 + β 2 + 1 mod p
β 11 ≡ β 5 + β 3 + β mod p.
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Let d = (d11,d10,d9,d8,d7,d6,d5,d4,d3,d2,d1,d0)β . Then, the high digits of d can
be reduced efficiently as follows.

d7β 7 + d6β 6 = (0 , 0 ,d7,d6,d7,d6)β ,

d9β 9 + d8β 8 = (d9,d8,d9,d8, 0 , 0 )β ,

d11β 11 + d10β 10 = (d11,d10,d11,d10,d11,d10)β .

Algorithm 5 implements this fast modular reduction method.

Algorithm 5: Integer modular reduction for p = 2192 −264−1

Input: Integer d = (d11, . . . ,d0)232 < (2192 −264 −1)2.
Output: c = d mod (2192 −264−1).

1. Define the 6-digit integers in the base β = 232 :
e = (d5,d4,d3,d2,d1,d0)β , f = (0 , 0 ,d7,d6,d7,d6)β ,
g = (d9,d8,d9,d8, 0 , 0 )β , h = (d11,d10,d11,d10,d11,d10)β .

2. c = e + f + g + h mod (2192 −264−1)
3. return(c)

5.3.3.2 Barrett Modular Reduction

The Barrett method computes c = d mod p for two integers d and p using a precom-
putation based on the chosen modulus [2]. The integer c = d mod p is the remainder
of the division d/p. Thus,

c = d − pq

for the quotient q = �d/p�. The Barrett method first finds an estimate of the quotient
q using some precomputation. Let q̂ denote this estimate. Then, the Barret method
computes c′ = d − pq̂. As shown later in the text, q− 2 ≤ q̂ ≤ q. Thus, the Barrett
method actually computes c′ = d− (q−ε)p = c+ε p where ε ∈ {0,1,2}. Thus, the
subtraction of the modulus p from the final result one or two times may be needed
for correction.

Quotient Estimation:

The Barrett method exploits the simple fact that

d
p

=
(

2k

p

)(
d

2k′

)(
1

2k−k′

)

for the arbitrary integers k and k′. The divisions 2k/p and d/2k′ can be written in
terms of their quotients and remainders as follows.

d
p

=
(
�2k/p�+

2k mod p
p

)(
�d/2k′�+

d mod 2k′

2k′

)(
1

2k−k′

)
.
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Let r(1) = 2k mod p and r(2) = d mod 2k′ . Then, after some rearrangement,

d
p

=
�2k/p��d/2k′�

2k−k′
+

�2k/p�r(2)

2k +
�d/2k′�r(1)

p2k−k′
+

r(1)r(2)

p2k . (5.3)

The Barrett algorithm estimates the quotient q of the division d/p as

q ≈ q̂ =

⌊
�2k/p��d/2k′�

2k−k′

⌋
, (5.4)

i.e., the quotient of the first term in (5.3). Note that the divisions by powers of two in
this estimation can be handled in software and hardware without any cost. However,
the division 2k/p must be precomputed for efficiency.

Estimation Error:

The quotient estimation in (5.4) will be accurate if the integers k and k′ are chosen
so that the last three terms in (5.3) are rational numbers less than one. In this case,
the sum of the last three terms will be less than three. Let ε be the integer part of
this sum. Then, ε ≤ 2 and q−2 ≤ q̂ ≤ q.

In order that the last three terms in (5.3) are less than one, the denominators must
be larger than the numerators. Then,

�2k/p�(d mod 2k′) ≤ �2k/p�(2k′ −1) < 2k,

�d/2k′�(2k mod p) ≤ �d/2k′�(p−1) < p2k−k′ ,

(d mod 2k′)(2k mod p) ≤ (2k′ −1)(p−1) < p2k.

The inequalities above always hold, if 2k′ ≤ p, d ≤ 2k, and k′ ≤ k. Then, for p ≤ d,
the parameters k and k′ can be chosen as

k ≥ log2 d, k′ ≤ log2 p.

Barrett Algorithm:

Algorithm 6 implements the Barrett algorithm.

Algorithm 6: Barrett modular reduction

Input: The integers d and p.
Output: c = d mod p.

1. Precompute p̂ = �2k/p� where k ≥ log2 d.

2. u = �d/2k′� where k′ ≤ log2 p.

3. q̂ = �p̂u/2k−k′�
4. c = d− q̂p

5. while(c ≥ p) c = c− p

6. return c
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Multiprecision Implementation:

Let d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β where p ≤ d and β is a power of
two. The integers k and k′ can be chosen as

k = l log2 β ≥ log2 d, k′ = (n−1) log2 β ≤ log2 p.

Algorithm 7 implements the Barrett algorithm for 2k = β l and 2k′ = β n−1.

Algorithm 7: Multiprecision Barrett modular reduction

Input: Integers d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β > β n−1.
Output: c = d mod p.

1. Precompute p̂ = (p̂l−n, . . . , p̂0)β = �β l/p�.
2. u = (ul−n, . . . ,u0)β = (dl−1, . . . ,dn−1)β
3. v = p̂u
4. q̂ = (q̂l−n, . . . , q̂0)β = (v2(l−n)+1, . . . ,vl−n+1)β
5. c = (cn, . . . ,c0)β = d− q̂p
6. while(c ≥ p) c = c− p
7. return(c)

• Step 2 computes the integer u = �d/β n−1�.

• Step 3 computes the product v = p̂u, which can be approximated as

v ≈ v′ = ∑i+ j≥l−n−1 p̂iu jβ i+ j.

Note that the error due to the ignored terms is

v− v′ = ∑0≤i+ j≤l−n−2 p̂iu jβ i+ j ≤ ∑0≤k≤l−n−2(k + 1)(β −1)2β k .

It can be shown that v− v′ ≤ β l−n−1((l −n−1)β − l + n)+ 1. Moreover,

v− v′ < β l−n+1

for β ≥ (l −n−1).

• Step 4 finds the estimate q̂ = �v/β l−n+1�. q̂ can be approximated as �v′/β l−n+1�.
The resulting error will be less than one as shown below.

�v/β l−n+1�−�v′/β l−n+1� ≤ 1 .

• Step 5 finds (d mod p + ε p) where ε = q− q̂. Since p < β n and ε is a small
number, the result of Step 5 will not be more than n digits in the worst case.
Thus, only the lower n digits of the product q̂p need to be computed in this step.
Step 6 removes ε p.
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5.3.3.3 Montgomery Modular Reduction

The Montgomery modular reduction computes dθ−1 mod p for two integers d and
p [13, 18]. Here, θ is preferably a power of two such that gcd(p,θ ) = 1 and pθ > d.
The Montgomery method requires some precomputation and domain transforma-
tion.

The Montgomery method is used to reduce the products of the integers rep-
resented in the Montgomery residue domain. Let a′ and b′ be two integers. Let
c′ = a′b′ mod p be their modular product. In the Montgomery residue domain, these
integers are represented by

a = a′θ mod p , b = b′θ mod p , c = c′θ mod p .

Let d = ab be the product of the integers in the residue domain. Then, the Mont-
gomery modular reduction dθ−1 mod p yields their product in the residue domain
c as shown below.

dθ−1 mod p = (a′θ mod p)(b′θ mod p)θ−1 mod p
= a′b′θ mod p
= c′θ mod p
= c.

The Montgomery method computes c = dθ−1 mod p as follows.

c =
d− (d p−1 mod θ )p

θ
− ε p (5.5)

where d < pθ and ε ∈ {0,1}. This computation leads to an efficient modular reduc-
tion algorithm when θ is a power of two and p−1 mod θ is precomputed.

The correctness of the Montgomery modular reduction method can be shown by
using the Bezout’s identity. Because θ and p are relatively prime,

θ θ̂ + pp̂ = gcd(θ , p) = 1

where θ̂ = θ−1 mod p and p̂ = p−1 mod θ . Then, d = dθ θ̂ + d pp̂. Since d < pθ ,

d = dθ θ̂ + d pp̂ mod pθ
= (dθ θ̂ mod pθ )+ (d pp̂ mod pθ )+ ε pθ

where ε ∈ {0,1}. Moreover, it can be written that

d = (dθ̂ mod p)θ +(d p̂ mod θ )p + ε pθ
= (dθ−1 mod p)θ +(d p−1 mod θ )p + ε pθ
= cθ +(d p−1 mod θ )p + ε pθ
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using the rules of modular arithmetic. See that Equation (5.5) can be obtained by
rearranging the above equation.

Montgomery Algorithm and its Multiprecision Implementation:

Let d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β where β is a power of two. The
integer θ can be chosen as θ = β l−n. Then, Equation (5.5) is given by

c =
⌊

d
β l−n

⌋
−
⌊

(d p̂ mod β l−n)p
β l−n

⌋
− ε p

where gcd(β , p) = 1, p̂ = p−1 mod β l−n, and d < pβ l−n.

Algorithm 8 implements the Montgomery algorithm.

Algorithm 8: Multiprecision Montgomery modular reduction

Input: Integers d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β such that gcd(β , p) = 1
and d < pβ l−n.
Output: c = dβ−(l−n) mod p.

1. Precompute p̂ = (p̂l−n−1, . . . , p̂0)β = p−1 mod β l−n.

2. u = (ul−n−1, . . . ,u0)β = d p̂ mod β l−n

3. v = up
4. c = (dl−1, . . . ,dl−n)β − (vl−1, . . . ,vl−n)β
5. while(c ≥ p) c = c− p
6. return(c)

• Step 2 computes the (l −n)-digit integer u = d p̂ mod β l−n as follows.

u = (∑i+ j<l−n di p̂ jβ i+ j) mod β l−n

= ∑i+ j<l−n−1 di p̂ jβ i+ j +(∑i+ j=l−n−1 di p̂ j mod β )β l−n−1.

• Step 3 computes the product v = up, which can be approximated as

v ≈ v′ = (∑l−n−2≤i+ j ui p jβ i+ j).

Note that the error due to the ignored terms is

v− v′ = ∑0≤i+ j≤l−n−3 p̂iu jβ i+ j ≤ ∑0≤k≤l−n−3(k + 1)(β −1)2β k .
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It can be shown that v− v′ ≤ β l−n−2((l −n−2)β − l + n + 1)+ 1. Moreover,

v− v′ < β l−n

for β ≥ (l −n−2).
• Step 4 computes

c = �d/β l−n�−�v/β l−n� ≈ �d/β l−n�−�v′/β l−n� .

Note that, when v is approximated by v′, the error in c is less than one since
v− v′ < β l−n.

• After Step 4, c = d mod p + ε p for a small number ε . Step 5 removes ε p.

5.4 Multiplication in Binary Extension Fields

The binary extension field F2m elements are represented by the set of the polynomi-
als of degree less than m with coefficients in F2. That is

F2m = {a(x) | a(x) = am−1xm−1 + · · ·+ a1x + a0, ai ∈ F2} .

Let a(x) and b(x) be two elements in F2m . Let c(x) be their product in F2m . Then,
c(x) is defined as follows.

c(x) = a(x)×b(x) mod ω(x)

where ω(x) is a degree m irreducible polynomial over F2. As a result, the binary
extension field multiplication needs two arithmetic operations:

• Polynomial multiplication over F2, and
• Polynomial modular reduction over F2.

The algorithms used in the modular multiplication of the polynomials over F2

will be studied in this section. However, the multiple precision representation, the
addition, and the subtraction of the polynomials over F2 need to be discussed
first.

Let a fixed w-bit word size be supported in a hardware or software implemen-
tation. Each w-bit word can store w polynomial coefficients since the polynomial
coefficients are in F2 and represented by the integers {0,1}. Let a(x) be a polyno-
mial over F2 and ai be its ith coefficient. Let Ai = ∑w−1

k=0 aiw+kxk. Then, each Ai is a
w-coefficient polynomial stored in a single word and the multiple precision repre-
sentation for a(x) is

a(x) = An−1x(n−1)w + . . .+ A2x2w + A1xw + A0 . (5.6)
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In this representation, n is the number of the single word polynomials Ai. Naturally,
n must satisfy the inequality xm ≤ xwn so that all the polynomials of degree less than
m over F2 can be represented.

To perform the polynomial addition c(x) = a(x)+ b(x) and the polynomial sub-
traction c(x) = a(x)−b(x), the corresponding coefficients of a(x) and b(x) must be
added and subtracted in F2 respectively. The binary-valued elements of F2 {0,1}
are added or subtracted modulo 2. As a result, the addition and the subtraction in
F2 are just equivalent to XOR operation. Thus, c(x) = a(x)±b(x) are performed by
bitwise XORing the corresponding words as follows.

Ci = Ai XOR Bi, i = 0,1,2, . . . (5.7)

The bitwise XOR operation is ubiquitously found in hardware and software imple-
mentations.

5.4.1 Polynomial Multiplication over F2

Let d(x) = a(x)b(x). If a(x) and b(x) are represented as shown in (5.6),

d(x) = (∑n−1
i=0 Aixiw)b(x)

= ∑n−1
i=0 (∑w−1

k=0 aiw+kxk)xiwb(x)

= ∑w−1
k=0 xk ∑n−1

i=0 aiw+kxiw(∑n−1
j=0 B jx jw)

= ∑w−1
k=0 xk ∑n−1

i=0 aiw+k ∑n−1
j=0 B jx(i+ j)w .

This discrete summation formula leads to the right-to-left and the left-to-right mul-
tiplication methods implemented in Algorithms 9 and 10 for the polynomials over
F2, respectively.

Algorithm 9: Right-to-left comb method

Input: Polynomials over F2 a(x) and b(x) of degree less than m ≤ nw.
Output: d(x) = a(x)b(x).

1. for i = 0 to 2n−1 do Di = 0
2. for k = 0 to w−1
3. for i = 0 to n−1
4. if the kth bit of Ai is 1
5. for j = 0 to n
6. Di+ j = Di+ j + B j

7. if k �= w−1 then b(x) = ∑n
l=0 Blxlw = xb(x)

8. return(d(x))
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Algorithm 10: Left-to-right comb method

Input: Polynomials over F2 a(x) and b(x) of degree less than m ≤ nw.
Output: d(x) = a(x)b(x).

1. for i = 0 to 2n−1 do Di = 0
2. for k = w−1 downto 0
3. for i = 0 to n−1
4. if the kth bit of Ai is 1
5. for j = 0 to n−1
6. Di+ j = Di+ j + B j

7. if k �= 0 then d(x) = ∑2n−1
l=0 Dlxlw = xd(x)

8. return(d(x))

Algorithm 11 is a faster implementation of the left-to-right comb method given
in Algorithm 10. However, this implementation requires more memory. Algorithm
11 computes all the possible products b(x)u(x) where u(x) is a polynomial of degree
less than four and stores the resulting polynomials into the local variable space as a
lookup table.

Algorithm 11: Left-to-right comb method with 4-bit window

Input: Polynomials over F2 a(x) and b(x) of degree less than m ≤ nw−3.
Output: d(x) = a(x)b(x).

1. Compute f (u(x)) = b(x)u(x) for all u(x) with deg(u(x)) < 4.

2. for i = 0 to 2n−1 do Di = 0

3. for k = 4�(w−1)/4� downto 0 by 4

4. for i = 0 to n−1

5. u(x) = �Ai/xk� mod x4

6. b′(x) = ∑n−1
l=0 B′

lx
lw = f (u(x))

7. for j = 0 to n−1

8. Di+ j = Di+ j + B′
j

9. if k �= 0 then d(x) = ∑2n−1
l=0 Dlxlw = x4d(x)

10. return(d(x))

Note that the polynomial u(x) has 24 = 16 different possible values and the prod-
uct b(x)u(x) has m+3 coefficients. Thus, the required memory space for the lookup
table is 16(m + 3) bits. Algorithm 11 multiplies each four consecutive polynomial
terms of a(x) by b(x) using the lookup table. The window size four can be increased,
but then a larger lookup table will be needed and the overhead of the lookup table
computation will increase.
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5.4.2 Polynomial Squaring over F2

Let a(x) = am−1xm−1 + am−2xm−2 + · · ·+ a1x + a0 be a polynomial over F2. The
square of a polynomial is given by

a(x)2 = ∑m−1
i=0 aix2i + ∑0≤ j<i<m 2ai+ jx

i+ j︸ ︷︷ ︸
0

.

As shown above, multiplication by 2 yields zero result in a characteristic 2 field.
Thus, the cross products are zero and

a(x)2 = ∑m−1
i=0 aix2i = am−1x2(m−1) + · · ·+ a1x2 + a0 .

Algorithm 12 computes the square of the polynomials over F2 where the word
size w is divisible by 8. This algorithm precomputes and stores the square of all
possible polynomials of degree less than 8 in a lookup table. Then, it computes the
square of each consecutive eight terms of the input polynomial using the lookup
table. The lookup table contains 28 polynomials of degree less than 16, and thus is
of size 512 bytes.

Algorithm 12: Squaring of Polynomials over F2 where 8 | w

Input: A polynomial over F2 a(x) of degree less than m ≤ nw.
Output: d(x) = a(x)2.

1. Precompute f (u(x)) = u(x)2 for all u(x) with deg(u(x)) < 8.
2. for i = 0 to n−1

3. C2i = 0

4. for k = 8�(w/2−1)/8� downto 0 by 8

5. u(x) = �Ai/xk� mod x8

6. C2i = C2i + f (u(x))x2k

7. C2i+1 = 0

8. for k = 8�(w−1)/8� downto 8�w/16� by 8

9. u(x) = �Ai/xk� mod x8

10. C2i+1 = C2i+1 + f (u(x))x2k

11. return(d(x))

5.4.3 Polynomial Modular Reduction over F2

This section discusses the following methods for the modular reduction of the poly-
nomials d(x) mod ω(x):
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• The algorithms for moduli of special form
• The Barrett and the Montgomery algorithms using a precomputation based on

the modulus ω(x).

In general, d(x) mod ω(x) over F2 can be performed as follows.

d(x) = d(x)+ dkxk−mω(x)

where k = deg(d(x)) and m = deg(ω(x)). To find d(x) mod ω(x), the coefficient
reductions are performed iteratively until d(x) < ω(x). Algorithm 13 implements
the integer modular reduction using this method.

Algorithm 13: Polynomial modular reduction over F2

Input: Polynomials d(x) and ω(x) where deg(d(x)) = k and deg(ω(x)) = m.
Output: d(x) mod ω(x).

1. while k > m do
2. if dk �= 0 do
3. d(x) = d(x)+ xk−mω(x)
4. k = k−1
5. return(d(x))

5.4.3.1 Using Special Modulus

It is easy to see that Algorithm 13 can be optimized when the modulus ω(x) is a
sparse polynomial. In practice, ω(x) is used to construct the field F2m and must be
irreducible. Irreducible polynomials with the minimum number of terms are trino-
mials and pentanomials. A trinomial is a polynomial with only three terms, while
a pentanomial is a polynomial with only five terms. A trinomial or a pentanomial
always exists for any field size m < 1000 [9].

The following irreducible trinomials and pentanomials are recommended in the
FIPS 186-2 standard by NIST:

x163 + x7 + x6 + x3 + 1 ,

x233 + x74 + 1 ,

x283 + x12 + x7 + x5 + 1 ,

x409 + x87 + 1 ,

x571 + x10 + x5 + x2 + 1 .

The general form ω(x) = xm +xm1 +xm2 +xm3 +1 can be assumed for trinomials
and pentanomials. Algorithm 14 performs fast modular reduction for a modulus in
this special form.
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Algorithm 14: Polynomial modular reduction for pentanomials

Input: Polynomials d(x) and ω(x) = xm + xm1 + xm2 + xm3 + 1.
Output: d(x) mod ω(x).

1. Set κ = �m/w� and κi = �(m−mi)/w�.
2. Set λ = m mod w and λi = (m−mi) mod w.
3. for i = �deg(d(x))/w� downto n
4. Di−κ1 += Di � λ1, Di−κ1−1 += Di � (w−λ1)
5. Di−κ2 += Di � λ2, Di−κ2−1 += Di � (w−λ2)
6. Di−κ3 += Di � λ3, Di−κ3−1 += Di � (w−λ3)
7. Di−κ += Di � λ , Di−κ −1 += Di � (w−λ )
8. i = n−1
9. Di−κ1 += Di � λ1, if(i > κ1) then Di−κ1−1 += Di � (w−λ1)

10. Di−κ2 += Di � λ2, if(i > κ2) then Di−κ2−1 += Di � (w−λ2)
11. Di−κ3 += Di � λ3, if(i > κ3) then Di−κ3−1 += Di � (w−λ3)
12. Di−κ += Di � λ , if(i > κ ) then Di−κ −1 += Di � (w−λ )
13. return(d(x))

This algorithm uses the following equivalance relations for fast modular
reduction.

xm ≡ xm1 + xm2 + xm3 + 1 mod ω(x) ,

1 ≡ x−(m−m1) + x−(m−m2) + x−(m−m3) + x−m mod ω(x) ,

1 ≡ x−κ1w−λ1 + x−κ2w−λ2 + x−κ3w−λ3 + x−κw−λ mod ω(x) .

Here, the parameters κ = �m/w�, κi = �(m−mi)/w�, λ = m mod w, and λi = (m−
mi) mod w.

5.4.3.2 Barrett Modular Reduction

The Barrett method for integers can be adapted to the polynomials over F2 to com-
pute c(x) = d(x) mod ω(x) efficiently [7].

Quotient Estimation:

For the arbitrary integers k and k′, the following equality always holds

d(x)
ω(x)

=
(

xk

ω(x)

)(
d(x)
xk′

)(
1

xk−k′

)
.

This equality leads to a result similar to (5.3)
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d(x)
ω(x)

=
�xk/ω(x)��d(x)/xk′ �

xk−k′
+

�xk/ω(x)�r(2)(x)
xk

+
�d(x)/xk′�r(1)(x)

ω(x)xk−k′
+

r(1)(x)r(2)(x)
ω(x)xk

(5.8)

where r(1)(x) = xk mod ω(x) and r(2)(x) = d(x) mod 2k′ .
Then, the quotient q(x) of the division d(x)/ω(x) is estimated as

q(x) ≈ q̂(x) =

⌊
�xk/ω(x)��d(x)/xk′ �

xk−k′

⌋
. (5.9)

Note that this estimation for polynomials is the same as the one for integers in (5.4),
except the powers of two are replaced with the powers of x.

Estimation Error:

The quotient estimation in (5.9) will be exact, if the integers k and k′ are chosen so
that the last three terms in (5.3) are rational functions whose denominator degrees
are greater than their numerator degrees. For this case, the quotients of the last three
terms in (5.3) are zero and the quotient of the first term q̂(x) = �d(x)/ω(x)�= q(x).

The denominators of the last three terms in (5.3) are greater than their numera-
tors, if

deg(�xk/ω(x)�)+ deg(r(2)(x)) < deg(xk) ,

deg(�d(x)/xk′ �)+ deg(r(1)(x)) < deg(ω(x))+ deg(xk−k′) ,

deg(r(1)(x))+ deg(r(2)(x)) < deg(ω(x))+ deg(xk) .

Let deg(d(x)) ≥ deg(ω(x)). The inequalities above always hold, if

k ≥ deg(d(x)) , k′ ≤ deg(ω(x)) .

Barrett Algorithm:

Algorithm 15 implements the Barrett algorithm. This algorithm is very similar to
Algorithm 6. However, the powers of two are replaced with the powers of x. Also,
the final correction step after Step 4 is omitted since the quotient estimation is
exact.

Algorithm 15: Barrett modular reduction in F2[x]

Input: Polynomials over F2 d(x) and ω(x).
Output: c(x) = d(x) mod ω(x).

1. Precompute ω̂(x) = �xk/ω(x)� where k ≥ deg(d(x)).
2. u(x) = �d(x)/xk′ � where k′ ≤ deg(ω(x)).
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3. q̂(x) = �ω̂(x)u(x)/xk−k′ �
4. c(x) = d(x)+ q̂(x)ω(x)
5. return c(x)

Multiprecision Implementation:

The multiprecision Barrett implementation for integers in Algorithm 6 can be
adapted for polynomials over F2 simply by replacing the powers of two with the
powers of x.

Let d(x) and ω(x) be polynomials such that deg(d(x)) < lw and (n − 1)w <
deg(ω(x)) ≤ nw. Then, the integers k and k′ in the Barrett method can be chosen as

k = lw ≥ deg(d(x)), k′ = (n−1)w ≤ deg(ω(x)).

to compute d(x) mod ω(x). Algorithm 16 gives the resulting Barrett algorithm using
the notation in (5.6).

Algorithm 16: Multiprecision Barrett modular reduction in F2[x]

Input: d(x) and ω(x) in F2[x] where d(x) < xlw and x(n−1)w < ω(x) ≤ xnw.
Output: c(x) = d(x) mod ω(x).

1. Precompute ω̂(x) = ∑l−n
i=0 Ω̂ixiw = �xlw/ω(x)�.

2. u(x) = ∑l−n
i=0 Uixiw = �d(x)/x(n−1)w�

3. v(x) = ∑l−n≤i+ j≤2(l−n) Ω̂iUjxi+ j

4. q̂(x) = ∑l−n
i=0 Q̂ixiw = �v/xl−n+1�

5. c(x) = ∑n−1
i=0 Dixi + ∑i+ j<n Q̂iΩ jxi+ j mod xnw

6. return(c(x))

Note that only the required terms of v(x) in Step 3 are computed. But this does not
cause any approximation error since there is no carry propagation in the polynomial
arithmetic. Step 5 is performed modulo xnw since the quotient estimation is exact,
and thus c(x) = d(x) mod ω(x) < xnw in this step.

Algorithm 17 illustrates a w-bit Barrett modular reduction scheme presented in
the work in [7]. In this scheme,

k = deg(ω(x))+ w−1, k′ = deg(ω(x)),

and �d(x)/ω(x)� < xw.

Algorithm 17: w-bit Barrett modular reduction in F2[x]

Input: d(x) and ω(x) in F2[x] such that nw≥ deg(ω(x))> (n−1)w and �d(x)/ω(x)�
< xw.
Output: c(x) = d(x) mod ω(x).
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1. Precompute Q(1) = �xk/ω(x)� where k = deg(ω(x))+ w−1.

2. Find Q(2) = �(Dnxw + Dn−1)/xk′ mod w� where k′ = deg(ω(x)).
3. Q̂ = �Q(1)Q(2)/xw−1�
4. c(x) = ∑n−1

i=0 Di + ∑n−1
i=0 Q̂Ωi mod xnw

5. return c(x)

5.4.3.3 Montgomery Modular Reduction

The analog of the Montgomery modular reduction for polynomials in F2[x] is pro-
posed in [12]. The Montgomery modular reduction for polynomials is given by
d(x)θ−1(x) mod ω(x) where gcd(ω(x),θ (x)) = 1 and ω(x)θ (x) > d(x). For an ef-
ficient computation, θ (x) is chosen as a power of x preferably.

The Montgomery reduction c(x) = d(x)θ−1(x) mod ω(x) is given by

c(x) =
d(x)+ (d(x)ω(x)−1 mod θ (x))ω(x)

θ (x)
(5.10)

where d(x) < ω(x)θ (x). This computation leads to an efficient modular reduction
algorithm when θ (x) is a power of x and ω(x)−1 mod θ (x) is precomputed.

Equation (5.10) is similar to the Montgomery computation in (5.5) given for
integers, except, there is no need for an extra subtraction with modulus. This is
because no carry propagation occurs in the polynomial arithmetic. Thus, ε = 0 in
the following equation is obtained by using the Bezout’s identity.

d(x) = d(x)θ (x)θ̂ (x)+ d(x)ω(x)ω̂(x) mod ω(x)θ (x)

= (d(x)θ (x)θ̂ (x) mod ω(x)θ (x))+
(d(x)ω(x)ω̂(x) mod ω(x)θ (x))+ εω(x)θ (x) .

As a result, a derivation similar to the integer case yields Equation (5.10).

Montgomery Algorithm:

Let d(x) and ω(x) be polynomials in F2[x] such that d(x) < xw(l−n)ω(x) and
gcd(ω(x),x) = 1.

The polynomial θ can be chosen as θ = xw(l−n). Then, Equation (5.10) is given
by

c(x) =
⌊

d(x)
xw(l−n)

⌋
+

⌊
(d(x)ω̂(x) mod xw(l−n))ω(x)

xw(l−n)

⌋

where ω̂(x) = ω(x)−1 mod xw(l−n).
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5.5 Multiplication in General Extension Fields

The extension field Fpm elements are represented by the set of the polynomials of
degree less than m with coefficients in Fp. That is

Fpm = {a(x) | a(x) = am−1xm−1 + · · ·+ a1x + a0, ai ∈ Fp} .

Let a(x) and b(x) be two elements in Fpm . Let c(x) be their product in Fpm . Then,
c(x) is defined as follows.

c(x) = a(x)×b(x) mod ω(x)

where ω(x) is a degree m irreducible polynomial over Fp. As a result, the extension
field multiplication needs two arithmetic operations:

• Polynomial multiplication over Fp, and
• Polynomial modular reduction over Fp.

The algorithms used in the modular multiplication of the polynomials over Fp

will be studied in this section. However, the multiple precision representation, the
addition, and the subtraction of the polynomials over Fp need to be discussed
first.

Let a fixed w-bit word size be supported in a hardware or software implementa-
tion. Each w-bit word can store a single polynomial coefficient in Fp, if p < 2w. Let
a(x) be a polynomial over Fp and ai be its ith coefficient. Then, each ai is an integer
stored in a single word and a(x) is represented by an m-word array.

To perform the polynomial addition c(x) = a(x)+b(x) or the polynomial subtrac-
tion c(x) = a(x)− b(x), the corresponding coefficients of a(x) and b(x) are added
or subtracted in Fp respectively. The coefficient additions and subtractions can be
handled by single-word addition and subtraction operations ubiquitously found in
the hardware and software implementations.

The previous section focuses on arithmetic in binary extension fields F2m , which
is a special case of the general extension field Fpm . The binary extension fields
are preferred in hardware implementations due to the fact that subfield elements
are easily representable using the signals logic zero and logic one. Also, the bi-
nary circuit technology makes the implementation of arithmetic operations rather
straightforward. The addition and subtraction in the binary extension field can be
performed simply by XOR operation and the multiplication involves shift and XOR
operations.

Because the bit operations are slower in the general purpose processors, bi-
nary extension fields are not so great from the software point of view. The gen-
eral purpose processors perform word level operations faster. Thus, some special
classes of Fpm called OEF are proposed to exploit this fast word level operation
capability [1].

Let w denote the word size supported by the underlying system. An optimal
extension field (OEF) is a finite field Fpm where
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• p = 2w−1 ±α is a pseudo-Mersenne prime such that log2 α ≤ � 1
2 w�.

• An irreducible bionomial ω(x) = xm −λ exists over Fp.

In an OEF, elements are represented as degree m−1 polynomials as follows:

a(x) = am−1xm−1 + · · ·+ a1x + a0

where ai ∈ Fp. Addition of the two elements a(x) and b(x) is given by

a(x)+ b(x) =
m−1

∑
i=0

cix
i,

where ci = (ai +bi) mod p. To add two OEF elements we need at the most m coeffi-
cient subtractions where p is the subtrahend. Subtraction is done similarly. Choosing
the prime p close to but smaller that the word size of the underlying hardware archi-
tecture makes it possible to use the efficient integer arithmetic instructions supported
by the hardware. With such a choice, the result of a coefficient multiplication will
fit into a double word, where it can be accessed and reduced efficiently.

5.5.1 Field Multiplication in OEF

The two steps of the field multiplication in OEF are as follows:

• The OEF elements a(x) and b(x) are multiplied.

d(x) = a(x)b(x) = d2m−2x2m−2 + · · ·+ d1x + d0

where di ∈ Fp. The polynomial d(x) is calculated by m2 coefficient multiplica-
tions and (m−1)2 coefficient additions.

• The reduction c(x) = d(x) mod ω(x) is performed where ω(x) = xm −λ is an
irreducible binomial over Fp. Since the binomial ω(x) has only two terms, re-
duction with ω(x) can be done efficiently. The terms of d(x) with degree greater
than m−1 can be given by dm+ixm+i for i ≥ 0. These terms can be reduced by

dm+ix
m+i = λ dm+ix

i mod ω(x)

for i = 0,1, · · · ,m−2.

Since the degree of d(x) is at most 2m−2, we need at most m−1 multiplications
by λ and m−1 coefficient additions to obtain the reduced polynomial c(x) where

c(x) = dm−1xm−1 +[λ d2m−2 + dm−1] xm−2 + · · ·+

[λ dm+1 + d1] x +[λ dm + d0] mod ω(x).

The following algorithm integrates the reduction into the multiplication steps
without focusing on the coefficient arithmetic operations.
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Algorithm 18: OEF Modular Multiplication Algorithm

Input: OEF elements a(x),b(x) with degree at most m−1. ω(x) = xm −λ .
Output: c(x) = a(x)b(x) mod ω(x).

1. for i = 0 to m−1 do ci = 0
2. for i = 0 to m−1
3. for j = 0 to m−1
4. if i+ j ≤ m−1 then ci+ j = ci+ j + bia j

5. else ci+ j−m = ci+ j−m + bia j w
6. return c(x)

In Step 4 and Step 5 of Algorithm 18, we are performing coefficient multiplica-
tions and additions. If we skip the coefficient addition operation for i+ j = 0 in these
steps, we end up with (m−1)2 coefficient additions. The total number of coefficient
multiplications is m2 + m + 1 where m− 1 of them come from the multiplication
by λ . When ω(x) is selected as ω(x) = xw − 2, the coefficient multiplications by
λ become simple right shift operations which can be implemented very fast. OEF’s
with this optimization are called Type II OEF’s.

5.5.2 Coefficient Multiplication and Reductions

The coefficient multiplications and reductions can be calculated efficiently when
p = 2w−1 ±α is a pseudo-Mersenne prime not exceeding the word boundary and
α is a small number. The result of the coefficient multiplication can be stored in a
double word before reduction is performed. The reduction operation will reduce the
result allowing it to fit into a single word. Algorithms that perform this reduction are
reported in the literature. Algorithm 19 performs such a reduction operation where
the α term is fixed to a negative integer.

Algorithm 19: Coefficient Reduction Algorithm

Input: p = 2w−1 −α . Coefficient c < p2.
Output: c mod p.

1. q0 =
⌊
c/2w−1

⌋
, r0 = c−q02w−1

2. r = r0, i = 0
3. while qi > 0
4. qi+1 =

⌊
qiα/2w−1

⌋
5. ri+1 = qiα −qi+12w−1

6. i = i+ 1, r = r + ri

7. while r ≥ p do r = r− p
8. return r
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In Step 1 of Algorithm 19, q0 is initialized with the upper word and r0 is ini-
tialized with the lower word of the input c. We want to reduce the upper word in
one big step by taking out q02w−1. But by doing so we have taken out an extra q0c
value. We need to add this value back to the remainder. In Steps 5 and 6, we can
see this effort. But, before adding this value back we further reduce it with in Steps
4 and 5. Because α is small, Step 4 is executed at the most twice. If α is selected
as 1 the multiplications in Steps 3 and 4 become trivial. An OEF that supports this
optimization is named as Type I.

5.6 Karatsuba–Ofman Algorithm

In this section, the fast multiplication method Karatsuba–Ofman is discussed for
polynomials. This algorithms can also be used in the multiplication of large integers.
In this case, x can be thought as the radix value in the multidigit representation of
the integers.

Let a0 +a1x and b0 +b1x be two polynomials over a ring R. As seen below, their
multiplication using the schoolbook method

(a0 + a1x)(b0 + b1x) = a0b0 +(a0b1 + a1b0)x + a1b1x2

needs the computation of four ring products. The Karatsuba method performs this
multiplication by computing only three ring products as follows

(a0 + a1x)(b0 + b1x) = a0b0 + a1b1x2 +[a0b0 + a1b1 +(a0 −a1)(b1 −b0)]x
= a0b0(1 + x)+ a1b1(x + x2)+ (a0 −a1)(b1 −b0)x.

This method can be generalized for arbitrary degree polynomials. Let y = xn. Let
ai(x) and bi(x) be polynomials with degree at the most n−1. Then,

(a0(x)+ a1(x)y) (b0(x)+ b1(x)y) (5.11)

is a product of the polynomials with degree at most 2n− 1 and can be computed
with the Karatsuba method using the following three half-sized products

a0(x)b0(x), a1(x)b1(x), (a0(x)−a1(x))(b1(x)−b0(x)). (5.12)

Here, ai(x) and bi(x) are the coefficients of the linear polynomials in y in the ring
R[x].

As seen, the Karatsuba method computes a product from three half-sized prod-
ucts. In the same fashion, it computes each of these half-sized products from three
quarter-sized products. This process goes recursively. When the products get very
small, the recursion stops and these small products are computed by the schoolbook
method. This recursive computation constitutes a multiplication method asymptoti-
cally faster than the O(n2) schoolbook method.
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5.6.1 Complexity

It can be shown that the Karatsuba multiplication is O(n1.58) [10]. Let T (n) de-
note the complexity of the multiplying polynomials with degree n− 1. Then, the
complexity of the multiplying polynomials with degree 2n−1 is T (2n). And, if the
Karatsuba method is used in the computation,

T (2n) ≤ 3T (n)+ αn

for some constant α , since the Karatsuba method uses three half-sized products plus
some additions and subtractions. The recursion above implies by induction that

T (2k) ≤ α(3k −2k), k ≥ 1.

Then, T (n) ≤ α(3�log2 n� −2�log2 n�) < α31+log2 n = 3α3log2 n = 3αnlog2 3 ≈ 3αn1.58.

5.6.2 Number of Scalar Multiplications

Let #mul(n) denote the number of the scalar products required for the multiplication
of two degree n−1 polynomials. As can be understood from (5.11) and (5.12), the
Karatsuba method computes a product of degree 2n−1 polynomials from the three
products of degree n−1 polynomials. Thus,

#mul(2n) = 3 #mul(n)

for the Karatsuba method. As a result, if n is a power of two,

#mul(n) = 3log2 n = nlog2 3 ≈ n1.58.

Let n be a power of 2, the number of scalar products

#mul(2n) = 2 #mul(n)+ #mul(n−1)−1.

5.6.2.1 Integer Multiplication

To multiply two n-digit integers a and b with the Karatsuba–Ofman method, these
integers are first split into the half-sized integers

aH = (an−1, . . . ,a�n/2�), aL = (a�n/2�−1, . . . ,a0),
b H = (b n−1, . . . ,b �n/2�), b L = (b �n/2�−1, . . . ,b 0).

(5.13)

The integers above are made up from the higher and the lower digits of a and b.
Thus, a = aL + aHβ �n/2� and b = bL + bHβ �n/2� where β is the integer base. Next,
the three subproducts f = aLbL, g = aHbH , and e = (aL−aH)(bL−bH). Finally, the
results are combined to produce
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d = f + gβ 2�n/2�+( f + g− e)β �n/2�. (5.14)

Notice f + g− e = aLbH + aHbL gives the sum of the cross products. Thus, the
Karatsuba–Ofman method actually computes

d = aLbL + aHbHβ 2�n/2� +[aLbH + aHbL]β �n/2� = a×b.

Algorithm 20 multiplies two integers using Karatsuba–Ofman method. In Step
1, the standard multiplication is used without any recursion, if the inputs are smaller
than a threshold. Otherwise, the remaining steps are executed. First, f + g− e =
aLbL + aHbH − (aL − aH)(bL − bH) needs to be computed from the half-sized
operands. To work with only positive operands, this term can also be computed
as f +g− e = aLbL +aHbH − sasb|aL−aH ||bL−bH | where sa = sign(aL −aH) and
sb = sign(bL −bH).

Algorithm 20: Karatsuba–Ofman multiplication for integers

Input: n-digit integers a and b.
Output: 2n-digit integer d = a×b.

1. if n ≤ nthreshold then d = a×b, return(d)
2. Split a into aH = (an−1, . . . ,a�n/2�) and aL = (a�n/2�−1, . . . ,a0).
3. Split b into b H = (b n−1, . . . ,b �n/2�) and b L = (b �n/2�−1, . . . ,b 0).
4. sa = sign(aL −aH) (Use Algorithm 21.)
5. sb = sign(b L −b H) (Use Algorithm 21.)
6. if sa = +1 then aM = aL −aH else aM = aH −aL

7. if sb = +1 then b M = b L −b H else b M = b H −b L

8. e = sa sb recursive-call(aM,bM)
9. f = recursive-call(aL,bL)

10. g = recursive-call(aH ,bH)
11. h = f + g− e
12. d = f + gβ 2�n/2�+ hβ �n/2�

13. return(d)

The signs sa and sb are obtained by Algorithm 21.

Algorithm 21: Integer comparison

Input: k-digit integer u and l-digit integer v where k ≥ l.
Output: s = sign(u− v).

1. s = +1, i = k
2. while i > l and ui = 0 do i = i−1
3. if i = l then
4. while i ≥ 0 and ui = vi do i = i−1
5. if i ≥ 0 and ui < vi then s = −1
6. return(s)
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Algorithm 20 requires some multiprecision additions and subtractions. These op-
erations are performed as shown in (5.1) and (5.2). The subtractions in Steps 6 and
7 have at the most �n/2�-digit operands and produce a positive �n/2�-digit result.
The addition and the subtraction in Step 11 have at the most 2�n/2�-digit operands.
These operations produce h = aLbH + aHbL. Element h is an (n + 1)-digit positive
integer since the sizes of aLbH and aHbL are �n/2�+ �n/2� = n digits. Also, the
multiplications by the powers of the base β in Step 12 are nothing else than multi-
digit left shifts.

5.7 Exercises

1. As shown in Section 5.2, the elements in Fp can be represented by the inte-
gers {0,1,2, . . . , p− 1} and the field multiplication in Fp can be defined as the
multiplication modulo p in Z. Show that every non-zero field element has a mul-
tiplicative inverse according to this definition. Hint: Use the Bezout’s identity for
integers uû+ vv̂ = gcd(u,v) and investigate the case u = p and 0 ≤ v < p.

2. As shown in Section 5.2, the elements in Fpm can be represented by the poly-
nomials over Fp of degree less than m. Also, the field multiplication in Fpm can
be defined as the polynomial multiplication modulo ω(x) where ω(x) is degree
m irreducible polynomial over Fp. Show that every non-zero field element has a
multiplicative inverse according to this definition. Hint: Use the Bezout’s iden-
tity for polynomials

u(x)û(x)+ v(x)v̂(x) = gcd(u(x),v(x))

and investigate the case u(x) = ω(x) and 0 ≤ deg(v(x)) < m.
3. Use the equality ∑n−1

k=0 kβ k−1(β −1)2 = n(β −1)β n− (β n −1) and show that the
three digit number (U,H,L) in Algorithm 2 does not overflow, if n(β −1) ≤ β 2

where β is the integer base and n is operand size in the number of digits.
4. Use Algorithm 5 as an example and construct an efficient algorithm to reduce the

integers modulo 2224 −296 + 1.
5. As shown in the chapter, the Barret Algorithm for integers estimates the quotient

�d/p� with at most two errors, if the parameters k and k′ satisfy that k ≥ log2 d ≥
log2 p ≥ k′. Let these parameters be chosen such that k ≥ log2 d − u and k′ ≤
log2 p + v where k ≥ k′ still holds. Show that the quotient estimation error will
be at most 2u + 2v.

6. As shown in the chapter, the Barret Algorithm for polynomials over F2 estimates
the quotient �d(x)/ω(x)� without any error, if the parameters k and k′ satisfy
that k ≥ deg(d(x)) ≥ deg(ω(x)) ≥ k′. Let these parameters be chosen such that
k ≥ deg(d(x))−u and k′ ≤ deg(ω(x))+ v where k ≥ k′ still holds. What will be
the error in the quotient estimation?

7. Algorithm 19 fixes the pseudo-Mersenne prime to the form of p = 2w−1 −α .
What changes do you need to make to this algorithm so that it will support
pseudo-Mersenne primes in the form p = 2w−1 ±α .
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5.8 Projects

1. Implement the recursive Karatsuba-Ofman algorithm in C for integer multiplica-
tion and polynomial multiplication in F2.

2. Implement the algorithms given in this chapter in an algebraic computational
system (such as, Maple, Mathematica, or Matlab).
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15. A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton, FL, 1997.

16. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullen, S. A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers,
Boston, MA, 1993.

17. V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Ad-
vances in Cryptology—CRYPTO 85, Proceedings, Lecture Notes in Computer
Science, No. 218, pp. 417–426. Springer, Berlin, Germany, 1985.

18. P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, April 1985.

19. W. W. Peterson and E. J. Weldon Jr. Error-Correcting Codes. MIT Press,
Cambridge, MA, 1972.

20. J. Solinas. Generalized Mersenne numbers. Technical Report CORR 99-39,
Dept. of C&O, University of Waterloo, 1999.

21. S. B. Wicker and V. K. Bhargava, editors. Reed-Solomon Codes and Their
Applications. IEEE Press, New York, NY, 1994.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




