
Cryptographic Hash Functions

Çetin Kaya Koç
koc@ece.orst.edu

Electrical & Computer Engineering
Oregon State University
Corvallis, Oregon 97331

Technical Report
December 9, 2002

Version 1.5

1



1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. They are
related to conventional hash functions commonly used in non-cryptographic computer ap-
plications, however, they differ in several aspects, for example, in terms of input and output
data sizes and certain desired properties. Cryptographic hash functions are used in data
integrity and message authentication.

A hash function takes a message as input and produces an output referred to as a hash-
code, hash-result, hash-value, or hash. More precisely, a hash function H maps bitstrings of
arbitrary finite length to strings of fixed length, say n bits. Therefore, they are many-to-one
type of functions (many input values map to one output value).

We will use S∗, Sn, and Sm to denote bit strings of arbitrary length, length n, and length
m, respectively. A hash function maps an arbitrary length bit string to a bit string of length
n. Since in general input size is much larger than n, the function is many-to-one, implying
that the existence of collisions (pairs of inputs with identical output) is unavoidable. Indeed,
restricting H to a domain of t-bit inputs (t > n), we can see that if H were random in
the sense that all outputs were essentially equiprobable, then about 2t−n inputs would map
to each single output, and two randomly chosen inputs would yield the same output with
probability 2−n (which is independent of t).

The basic idea of cryptographic hash functions is that a hash-value serves as a compact
representative image (sometimes called a digital fingerprint or message digest) of an input
string, and can be used as if it were uniquely identifiable with that string.

Hash functions are used for data integrity in conjunction with digital signature schemes,
where for several reasons a message is typically hashed first, and then the hash-value, as a
representative of the message, is signed in place of the original message. A distinct class of
hash functions, called message authentication codes (MAC), allows message authentication
using secret-key cryptographic techniques. MAC algorithms may be viewed as hash functions
which take two functionally distinct inputs, a message and a secret key, and produce a fixed-
size (say n-bit) output, with the design intent that it be infeasible in practice to produce the
same output without knowledge of the key. A MAC algorithm can be used to provide data
integrity and symmetric data origin authentication, as well as identification in secret-key
schemes.

2 Usage of Hash Functions

A typical usage of hash functions for data integrity is as follows. The hashvalue corresponding
to a particular message x is computed at time T1. The integrity of this hash-value (but not
the message itself) is protected in some manner. At a subsequent time T2, the following test
is carried out to determine whether the message has been altered, i.e., whether a message
x1 is the same as the original message. The hash-value of x1 is computed and compared to
the protected hash-value; if they are equal, one accepts that the inputs are also equal, and
thus that the message has not been altered. The problem of preserving the integrity of a
potentially large message is thus reduced to that of a small fixed-size hashvalue. Since the

1



existence of collisions is guaranteed in many-to-one mappings, the unique association between
inputs and hash-values can, at best, be in the computational sense. A hash-value should be
uniquely identifiable with a single input in practice, and collisions should be computationally
difficult to find (essentially never occurring in practice).

3 Hash Functions and Compression Functions

A hash function H maps an element of S∗ to Sn as follows

H : S∗ → Sn

For example, the xor function

H(b1b2b3 . . .) = b1 ⊕ b2 ⊕ b3 ⊕ · · ·

is a hash function with output 0 or 1, while the input size is arbitrary. A hash function is
usually built upon a compression function G which maps an element of Sm to an element of
Sn, where m is a fixed positive integer. For example,

G(b1b2b3 . . . bm) = b1 ⊕ b2 ⊕ b3 ⊕ · · · ⊕ bm

is a compression function with output 0 or 1, while the input can be any one of 2m possible
binary strings. In general, it is expected that m > n.

4 Properties of Hash and Compression Functions

In order to be cryptographically useful, a hash function H and its compression function G
needs to have certain properties. These properties are described below.

Easy Computation: It should be easy to compute H(x) given x. This property is im-
portant only from the point of time and storage area needed to compute the hash
value

Preimage Resistance: For essentially all pre-specified outputs, it should be computation-
ally infeasible to find any input which hashes to that output, i.e., to find any preimage
x such that H(x) = y when given y for which a corresponding input x is not known.
Another terminology used for this property is that the hash function is one-way hash
function.

Second-Preimage Resistance: It should be computationally infeasible to find any second
input which has the same output as any specified input, i.e., given x, to find a second-
preimage y such that H(x) = H(y) however, x 6= y. Another terminology to describe
this property is that the hash function is weak collision resistant.

2



Collision Resistance: It should be computationally infeasible to find any two distinct
inputs x and y which hash to the same output, i.e., such that H(x) = H(y). Note that
here there is free choice of both inputs. Another terminology to describe this property
is that the hash function is strong collision resistant.

Here, the terms easy and computationally infeasible (or hard) are understood according
to the context. Easy might mean polynomial time and space; or more practically, within
a certain number of machine operations or time units, perhaps seconds or milliseconds. A
more specific definition of computationally infeasible might involve super-polynomial effort;
require effort far exceeding understood resources; specify a lower bound on the number of
operations or memory required in terms of a specified security parameter; or specify the
probability that a property is violated be exponentially small.

There are certain relationships between the between the stated properties of hash func-
tions. We will briefly describe them below,

• Collision resistance implies second-preimage resistance. If H has collision resistance,
then it is computationally hard two find any two inputs x and y which hash to the
same value H(x) = H(y), therefore, it is at least as difficult (or more difficult) when x
is fixed and we are trying to find a y.

• Collision resistance does not guarantee preimage resistance. There are some patho-
logical examples of hash functions which are collision resistant, however, they are not
one-way (they are not preimage resistant). However, in practice, we can safely say that
collision resistance indeed implies preimage-resistance.

5 Example Hash Functions and Their Properties

5.1 Modulo-32 Checksum

A simple modulo-32 checksum (32-bit sum of all 32-bit words of a data string) is an easily
computed function which offers compression, however, this hash function is not collision
resistant. Let xi be the ith word of the input data, assuming i = 1, 2, . . . , k (i.e., there k
words, each of which is 32 bits). Then the final hash value z is computed using

z = x1 ⊕ x2 ⊕ · · · ⊕ xk

Given z, we can first randomly choose a sequence of yis for i = 1, 2, . . . , k − 1 such as

y1y2 · · · yk−1

and then choose yk as
yk = z ⊕ (y1 ⊕ y2 ⊕ · · · ⊕ yk−1)

3



It is easy to show the sequence y1y2 · · · yk has the same hashvalue as the sequence x1x2 · · ·xk
since

H(y1y2 · · · yk) = y1 ⊕ y2 ⊕ · · · ⊕ yk−1 ⊕ yk
= (y1 ⊕ y2 ⊕ · · · ⊕ yk−1)⊕ z ⊕ (y1 ⊕ y2 ⊕ · · · ⊕ yk−1)
= z

5.2 Modular Squaring

Another hash function example is the squaring of integers modulo a prime p, e.g.,

H(x) = x2 (mod p)

which behaves in many ways like a random mapping. However, H(x) is not one-way function
because finding square roots modulo primes is easy (there is a polynomial algorithm for it).
On the other hand,

H(x) = x2 (mod n)

is a one-way function for appropriate randomly chosen primes p and q where n = pq and
the factorization of n is unknown, as finding a preimage (i.e., computing a square root
mod n) is computationally equivalent to factoring and thus intractable. However, finding a
second-preimage, and, therefore, collisions, is trivial: given x, n− x yields a collision since

(n− x)2 = x2 (mod n)

5.3 Block Cipher

A one-way function can be constructed from DES or any block cipher E which behaves
essentially as a random function, as follows:

H(x) = Ek(x)⊕ x

for any fixed known key k. The one-way nature of this construction can be proven under the
assumption that E is a random permutation. An intuitive argument follows. For any choice
of y, finding any x (and key k) such that y = Ek(x) ⊕ x is difficult because for any chosen
x, Ek(x) will be essentially random (for any key k) and thus Ek(x)⊕ x will be random too.
Therefore, for a given y = H(x), where x is unknown, our chances of finding x is as good as
guessing x at random

By similar reasoning, if one attempts to use decryption and chooses an x, the probability
that x = E−1k (x⊕ y) is not better than random chance. Thus H(x) appears to be a one-way
function. As it is, H(x) can handle only fixed-length inputs, therefore, it is not a hash
function (it is a compression function), but it can be extended to yield a hash function, i.e.,
by building a hash function on top of the compression function.

4



6 Attacks on Hash Functions

Given a specific hash function, it is desirable to prove a lower bound on the complexity of
attacking it under specific scenarios. However, such lower bound proofs are very scarce and
they depend on the mathematical properties of the hash function. Typically the best we can
do is to obtain the complexity of an applicable known attack, which gives on upper bound
on security.

An attack of complexity 2t means that the attack requires 2t operations or time units in
order to be successful. Here, typically, an operation means the execution of the compression
function of the hash function. The storage complexity of an attack should also be considered
for realistic scenarios.

In the following we describe the known attacks on generic hash functions and their com-
pression functions. We assume that the input size of the compression function is m, while the
outputsize of the compression function and the hash function is n with n < m. These attacks
are algorithm independent attacks which can be applied to any hash function, treating it as
a block-box whose only significant property is its output size in bits, which is n.

Naive Attack: Given a fixed message x of length t bits, and a hash function H, a naive
method of finding an input colliding with x is to exhaustively search all t-bit binary
numbers y until one is found with H(x) = H(y). The storage requirement is negligible
since after an inequality, we discard H(y) and start a new computation. Assuming the
hashcode is a random value, the probability of a match for a single test is 2−n (which
is independent of t). This implies that a collision will be found much earlier than after
exhaustively trying all 2t values since t > n.

Birthday Attack: For an n-bit hash function (or compression function) H(x) with input
x, we may expect a guessing attack to find a preimage x or second-preimage y (with
H(x) = H(y)) within 2n hashing operations. This problem is related to the following
observation, which is known as birthday paradox.

When drawing randomly with replacements from a set of N elements, a
repeated element will be encountered after approximately

√
N selections

with probability more than 1/2.

More accurately: If r =
√

2λN tries can be made on a hash function of N
possible values, then a collision can be found with probability (1− e−λ).

For example, if we attack an n-bit hash or compression function, after approximately

√
2× 8× 2n = 4× 2

n
2

tries, we will obtain a collision with probability 1− e−8 = .9997, which is nearly 1.

Birthday Attacks with Storage: More sophisticated versions of the birthday attacks can
devised by using a storage to save some of the hash values computed during the attack.
In the following, we describe such an attack.

5



Input: A legitimate x1 and a fraudulent x2 and n-bit hash function H
Output: x′1 and x′2 which are obtained from x1 and x2 with minor

modifications with H(x′1) = H(x′2)

Step 1. Generate t = 2n/2 minor modifications x′1 of x1
This can be accomplished by selecting n/2 bit locations
in x1 and then complementing each bit for all n/2 bits, and
obtaining 2n/2 distinct messages from x1

Step 2. Hash each such modified message, and store them in a table
so that they can be searched according to the hashvalue
This can be done in t operations and requires t entries in the table

Step 3. Generate minor modifications from x′2 of x2 and compute each
H(x′2) and check in the table for H(x′2) = H(x′1)
Continue until a match is found. Each table lookup requires
constant time, and a match is expected within t = 2m/2 tries

The above attack is a real, practical attack, and applicable to real-world situations.
There are several other attacks, most of which are theoretical attacks based on random
collisions in the compression function or the hash function, which may not mean much
in terms of meaningful messages. In this attack, we are able to construct a fraudulent
(but meaningful) message which hashes to another legitimate (and meaningful) message
using essentially 2n/2 operations and a table of 2n/2 entries.

7 Current Hash Functions

In recent years, there has been considerable effort and some successes of attacks on hash
functions. In order to withstand to these attacks, new hash function design methodologies
have been developed. The most prevalent of these methods is the iterated hash functions
based on compression functions. The hash algorithm H involves repeated use of its com-
pression function G. The compression function G takes two inputs: an m-bit data block
and n-bit chaining variable which comes from the previous step. At the start of the hash
algorithm, the initial value of the chaining variable is set to a fixed value. The input M
is broken into m-bit blocks M1M2 · · ·ML and applied to the compression function together
with the initial fixed value of the chaining variable C0 as follows:

C0 = Fixed initial n-bit value

Ci = G(Ci−1,Mi) for i = 1, 2, . . . , L

Final hash value = CL

Therefore, the hash of the entire message M (which is of Lm bits) is the final value of the
chaining variable, CL. All previous chaining variable values are discarded.

The hash methods which have been widely used and standardized are MD5 and SHA-1.
MD5 method was proposed by RSA Security, part of the PKCS (Public-Key Cryptography

6



Standards). MD5 is an iterated hash function with output hash value which is 128 bits. The
input block length of MD5 is 512 bits.

On the other hand, SHA was proposed by NIST, together with the Digital Signature
Standard [2]. MD5 and SHA are based on same principles, however, the output of SHA-1 is
160 bits. The input block length of SHA-1 is also 512 bits.

Applying the birthday attack on MD5, we see that if we make

r =
√

2× 23 × 2128 = 266

tries, then, we will find a collision with probability 1− e−8 ≈ 1. Similarly, a birthday attack
on SHA-1 requires approximately

r =
√

2× 23 × 2160 = 282

in order to be successful with 99.97 % probability.

8 Long Term Security of Hash Functions

We need an estimation of work needed to perform 266 or 282 tries, in terms of the budget and
the amount of time needed to conclude such computation. This analysis was performed here
[1] based on the current state of art in computing today and in the future, using a particular
model of estimation for computing power. This model is based on Moore’s Law, which is
a prediction made by one of the founders of Intel, nearly 20 years ago, which remains true
until now. Moore’s Law states that density of components per integrated circuit doubles
every 18 months. A more popular interpretation of the Law is that computing power per
computer doubles every 18 months. From economics point of view , Moore’s Law can be
stated as computing power and RAM which can be purchased per dollar doubles every 18
months. The last interpretation gives a good idea about the cost of building and operating
a special-purpose hash breaking machine versus the time needed to break the same hash on
a single PC. The results are shown in the following table.

Number Budget for Years

Year of Tries Attack in 1 day on PII 450MHz

2002 272 $ 160 million 45 millions

2005 274 $ 196 million 226 millions

2010 278 $ 277 million 3 billions

2015 282 $ 392 million 45 billions

2020 286 $ 555 million 654 billions

This table is interpreted as follows: In year 2002, in order to perform 272 tries in a single
day one needs a budget of $ 160 million to build a special-purpose computer. Or, it will take
low-budget hacker with a single 450-MHz Pentium II PC approximately 45 million years to
perform 272 tries. What this implies is that a government or a large company can perhaps
break a hash function of 144 bits, but it is beyond the grasp of a low-budget hacker.

7



9 New Hash Functions

The above analysis assumes that the particular hash function is safe from mathematical
analysis. As of now, no mathematical attack has been found to completely break either
MD5 or SHA-1. However, the current US Government standard [2] does not include MD5
anymore due to the its size which is 128 bits. It is definitely breakable by a midsize company
or a government since 266 tries are now within grasp of our technology with a few million
dollars of budget.

SHA-1 is relatively safer: it can be broken with a budget of $ 392 million in the year 2015
(using the technology estimated to be available in 2015). This is obviously not sufficiently
safe to build an multibillion dollar business on top of it, or to trust the nation’s infrastructure.
These considerations led NIST to search for bigger and better hashes, and in May 2001, three
new hash functions were proposed: SHA-256, SHA-384, and SHA-512. As the names suggest,
the output sizes of these hash functions are 256, 384, an 512 bits. These methods are currently
open for review. It should be noted that these methods are not direct generalizations of SHA,
and they are based on some new methods and constructs. We will need thorough security
analyses of these new hashes before standardization and deployment.

10 Safeback Hashing Method

The hashing method used in the Safeback product is based two compression functions F and
G as follows:

F : output size = 16 bits

input size = 60× 1024 bits

G : output size = 32 bits

input size = 60× 1024 bits

A large message M is broken into L blocks such that each block is 60× 1024 bits:

message : M1M2 · · ·ML

Each block Mi is hashed independently using the compression function F to obtain the hash
values Ai as Ai = F (Mi). Therefore, the first group of hash values are

A1A2 · · ·AL with Ai = F (Mi)

These values are kept as the output hash values. Additionally, a single final hash value is
produced using the chaining method via the compression function G with the help of a 32-bit
chaining variable Ci as follows:

C0 = Fixed initial 32-bit value

Ci = G(Ci−1,Mi) for i = 1, 2, . . . , L

Final hash value = CL

8



The final total hash of the entire message M1M2 · · ·ML is obtained as

A1A2 · · ·AL CL

such that each of Ai is 16 bits and CL is 32 bits.

11 Analysis of the Safeback Compression Functions

In the following, we analyze the Safeback hashing mechanism as a blackbox, i.e., without
analyzing the mathematical properties of the underlying functions. We first start analyzing
the compression functions, and show how to obtain collisions.

The compression functions F and G used in the Safeback has output sizes 16 and 32,
which are far below the required security levels of the compression functions. As a com-
parison, the output sizes of the compression functions for MD5 and SHA-1 are 128 and 160
bits.

In order to find a collision in F , we need to perform about 28 to 210 hashing operations,
while finding a collision in G requires 216 to 218 hashing operations. Both of these tries are
trivially accomplished on a PC in a few seconds. This analysis is a worst-case analysis, and
does not involve the mathematical properties of the either compression function.

Also note that the fact that the input size is so large (60 × 1024 bits) makes our job of
finding collisions easier not harder. Since input data is so large, we are more likely to find
meaningful collisions since there are more bit locations to tamper with (by complementing).

• For F , the input size is 60×1024 and the output is only 16 bits. Therefore, the number
of inputs which map to the same hash value is

260×1024

216
=

261440

216
= 261424

This is indeed a large number of possibilities. Let Mi is a data block for which we
would like to find a collision on F . We locate 8 to 10 bit locations in Mi (among 61440
bit locations) and complement the input bits and obtain the modified messages M ′

i

and check to see if
F (Mi) = F (M ′

i)

The chance of finding a collision is nearly 1.

• For G, the input size is 32 + 60× 1024 plus 32 since G takes two inputs: Ci−1 (32-bit
chaining variable) and Mi (the data block). The output of G is 32 bits. Therefore, the
number of inputs which map to the same has value is

232+60×1024

232
=

261472

232
= 2614440

This is also a large number of possibilities. Let Mi is a data block for which we would
like to find a collision on G. We locate 16 to 18 bit locations in Mi (among 61440 bit

9



locations) and complement the input bits and obtain the modified messages M ′
i and

check to see if
G(Ci−1,Mi) = G(Ci−1,M

′
i)

The chance of finding a collision is nearly 1.

• We will also consider the composite function FG, which takes two inputs: a chaining
value Ci−1 (which is 32 bits) and a data block Mi (which is 60×1024 bits). The output
of the composite function is the 48-bit value which is the concatenation of Ai and Ci

Ai|Ci = FG(Ci−1,Mi)

such that Ai = F (Mi) and Ci = G(Ci−1,Mi). The number of inputs which map to the
same has value is

232+60×1024

248
=

261472

248
= 261424

Since the output is 48 bits, it will require 4× 224 hashing operations to find a collision
for FG with probability 0.9997. Therefore, finding an M ′

i for FG is only as difficult as
performing about 64 million hashes on a PC, which should take on the order of several
minutes.

12 Attack on the Safeback Hashing Method

Based on these observations we construct an attack on Safeback hashing method. We assume
that a message which consists of L blocks (such that each block Mi is of length 60 × 1024
bits) is given and together with its hash values

message: M1 M2 · · · ML

hash: A1 A2 · · · AL CL

We will now construct a new message which differs from the original message only in its first
block. However, both the original message and the changed will have the same hash values.

original message: M1 M2 · · · ML

changed message: M ′
1 M2 · · · ML

Using the attack on F , we can easily find M ′
1 such that A1 = F (M1) = F (M ′

1), while
M1 6= M ′

1. Since the other message blocks are not affected, their Ai values will remain the
same.

message: M ′
1 M2 · · · ML

hash: A1 A2 · · · AL C ′L

However, this change in M ′
1 will possibly change the final hash value computed by the

compression function G. Therefore, the question is whether we can find an M ′
1 that will

10



keep both A1 and final CL unchanged. In order to accomplish this, we need to closely
examine the temporary values of the chaining variable Ci.

message: M1 M2 · · · ML

hash: A1 A2 · · · AL
chain: C1 C2 · · · CL

Note that we have the relationships

C0 = Fixed initial value

C1 = G(C0,M1)

C2 = G(C1,M2)
...

CL = G(CL−1,ML)

Since C0 is the same for all data blocks, and we find a collision for M ′
1 such that both of

these conditions hold

A1 = F (M1) = F (M ′
1)

C1 = G(C0,M1) = G(C0,M
′
1)

This implies that we find a collision for the composite function FG

A1|C1 = FG(C0,M1) = FG(C0,M
′
1)

As we have examined before in Section 11, finding collisions for the composite function is FG
is a little more work than finding collisions in either F or G, however, it can be accomplished
within several minutes on a PC.

Once we find M ′
1 which keeps the hash and chain values A1 and C1 the same, then the

remaining hash and chain values will be unchanged:

C0 = Fixed initial value (same)

A1|C1 = FG(C0,M1) = FG(C0,M
′
1)

A2|C2 = FG(C1,M2)
...

AL|CL = FG(CL−1,ML)

Therefore, the hash values of the original and changed message will be the same.
This attack can be generalized by finding a collision for any block of the message, rather

than the first block. Assuming we want to construct a message which differs from the original
message in the kth block.

original message: M1 · · · Mk−1 Mk Mk+1 · · · ML

changed message: M1 · · · Mk−1 M ′
k Mk+1 · · · ML

11



First we notice that the hash and chain values until the (k − 1)st block will be the same
since we have not changed the message blocks M1M2 · · ·Mk−1.

C0 = Fixed initial value (same)

A1|C1 = FG(C0,M1)

A2|C2 = FG(C1,M1)
...

Ak−1|Ck−1 = FG(Ck−2,Mk−1)

Therefore, we need to find M ′
k which is different from Mk, however, it collides with Mk on

the composite function FG.

Ak|Ck = FG(Ck−1,Mk) = FG(Ck−1,M
′
k)

Find such a collision is the same amount work as finding a collision for M1. Since Ak and
Ck are now unchanged (due to collision property), the remaining hash and chain values will
remain the same as well

Ak+1|Ck+1 = FG(Ck,Mk+1)

Ak+2|Ck+2 = FG(Ck+1,Mk+1)
...

AL|CL = FG(CL−1,ML)

13 Conclusions

Hash functions are cryptographic mechanisms for the purpose of checking the integrity data
blocks, files, messages, etc. The state of the art hash functions are iterative hash functions
with output size at least 128 bits, and the US Government standards suggest output sizes
160 bits up to 512 bits. The input size is unlimited, however, the data is broken into blocks
of fixed length, which is usually 512 bits. Making the input block size very small (less than
128) or very large (more than 1024 bits) weakens the hashing mechanism.

References

[1] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,
14(4):255–293, 2001.

[2] National Institute for Standards and Technology. Digital Signature Standard (DSS),
January 2000. FIPS 186-2.

12


