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Abstract

We propose new and efficient algorithms for basic arithmetic (squaring, multiplication, and
inversion) operations in the Galois fields GF (2k) where k is a composite integer as k = nm.
These algorithms are suitable for obtaining fast software implementations of the field operations on
microprocessors and signal processors, and they are particularly useful for applications in public-key
cryptography where k ∈ [160, 512].
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1 Introduction

Several algorithms for basic arithmetic operations in finite fields, suitable for hardware and software
implementations have been recently developed [11, 15, 1, 9, 13, 16, 17]. The applications of these
algorithms are found in error-correcting codes and public-key cryptography. In this paper, we
examine the existing methods and introduce new methods for software implementations of the
arithmetic operations in the Galois field GF (2k). The proposed algorithms are suitable for obtaining
high-speed implementations of the field operations on signal processors and microprocessors.

In this paper, we consider a subset of the Galois fields GF (2k), the so-called composite fields
where the exponent is a composite integer k = nm. It has been reported that efficient hardware
and software implementations can be obtained for such fields [15, 1, 9, 8]. Two particular imple-
mentation methods are presented in [15, 1], where the field elements are represented as polynomials
of length m with coefficients in the ground field GF (2n). The method in [15] carries out the field
multiplication by first multiplying the input polynomials and reducing the resulting polynomial by
a degree-m irreducible trinomial. On the other hand, the Karatsuba-Ofman algorithm is suggested
for performing the multiplication operations in [1]. In both implementations, the logarithmic table
lookup method is used for the ground field operations. The ground field is selected as GF (216) so
that the coefficients of the elements in the composite representation would fit in a single computer
word, which also makes the size of the logarithmic tables reasonable for general purpose computers.
In order to decrease the complexity of the reduction operation after the polynomial multiplication,
m is selected so that the condition gcd(16, m) = 1 holds. Unfortunately, this selection limits the
possible number of fields (i.e., the values of k), where we can take the advantage of the composite
representation. Furthermore, while the size of the lookup tables is still reasonable for GF (216), it
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would be more efficient to use smaller tables in order to take advantage of the first level cache in
computers.

In this paper, we improve the methods presented in [15, 1], and explore the implementation
issues for more general cases. We have five main contributions:

1. We introduce new efficient table lookup methods using the values of n which are not an integer
multiple of 8. For example, we can take n as 13, 14, and 15, which provide more combinations
of n and m, and thus, more composite field implementations with varying efficiency values.
This also necessitates a closer examination of the possible implementations in order to select
the most efficient one.

2. We propose the use of the optimal normal bases (the ONB1 and ONB2) in addition to the
polynomial basis for the composite fields. Although the multiplication operation is faster
for the polynomial basis representation the squaring operation in the ONB1 and ONB2 is
significantly faster than in the polynomial basis.

3. We propose the use of the specialized algorithms [5, 14] for multiplication in ONB1 and ONB2,
rather than the general-purpose Massey-Omura multiplication algorithm [7]. The resulting
methods are very efficient and provide comparable performance to the polynomial basis.

4. We give a new and efficient method for the inversion operation in the composite fields using
the optimal normal basis. The new method is based on the extended Euclidean algorithm,
and it is much faster than the Itoh-Tsujii algorithm [4].

5. We provide extensive timing results of our implementations for the composite fields in order
to determine which n and m combinations would give better performance. This provides
alternative implementations of the fields which have the same size or the similar size.

2 Composite Fields

In this section, we summarize relevant properties of the composite fields. Let GF (2k) denote the
binary extention field defined over the prime field GF (2). If the elements of the set

B1 = {1, α, α2, . . . , αk−1} (1)

are linearly independent, then B1 forms a polynomial basis for GF (2k). Thus, given an element
A ∈ GF (2k), we can write

A =
k−1∑
i=0

ai αi , (2)

where a0, a1, . . . ak−1 ∈ GF (2) are the coefficients. Once the basis is chosen, the rules for the field
operations (addition, multiplication, and inversion) can be derived.

There are various ways to represent the elements of GF (2k) depending on the choice of the
basis or on the construction method of GF (2k). If k is the product of two integers as k = nm,
then it is possible to derive a different representation method by defining GF (2k) over GF (2n).
An extension field which is not defined over the prime field but one of its subfields is known as a
composite field. It is denoted as GF ((2n)m) where GF (2n) is known as the ground field over which
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the composite field is defined. There is only one finite field of characteristic 2 for a given degree, and
both the binary and composite fields refer to the same field although their representation methods
are different. In order to represent the elements in the composite field GF ((2n)m), we can use the
basis

B2 = {1, β, β2, . . . , βm−1} , (3)

where β is the root of a degree m irreducible polynomial whose coefficients are in the base field
GF (2n). Thus, an element A ∈ GF ((2n)m) can be written as

A =
m−1∑
i=0

a′i · βi , (4)

where a′0, a
′
1, . . . , a

′
m−1 ∈ GF (2n). Since the coefficients in the composite field representation are no

longer in the prime field, we need to know how to calculate in the ground field GF (2n). The ground
field operations are carried out using pre-calculated logarithmic lookup tables in composite field
applications, and thus, the selection of the basis for the ground field is not important. However, in
order to construct the logarithmic tables, we need to find a primitive element in GF (2n).

3 Arithmetic in the Ground Field

The logaritmic table lookup method for performing arithmetic in GF (2n) for small values of n
is a well-known method [2, 15, 1]. A primitive element g ∈ GF (2n) is selected to serve as the
generator of the field GF (2n), so that an element A in this field can be written as a power of g as
A = gi, where 0 ≤ i ≤ 2n − 1. Then, we compute the powers of the primitive element as gi for
i = 0, 1, . . . 2n − 1, and obtain 2n pairs of the form (A, i).

We construct two tables sorting these pairs in two different ways: the log table sorted with
respect to A and the alog table sorted with respect to i. For example, for i = 5 and A = g5, we
have log[A] = 5 and alog[5] = A. These tables are then used for performing the field multiplication,
the squaring, and the inversion operations. The tables are particularly very useful in software
implementations. Given two elements A, B ∈ GF (2n)), we perform the multiplication C = AB as
follows:

1. i := log[A]

2. j := log[B]

3. k := i + j (mod 2n − 1)

4. C := alog[k]

This is due to the fact that C = AB = gigj = gi+j mod 2n−1. The ground field multiplication
requires three memory access, a single modular addition operation with modulus 2n − 1. The
squaring of an element A is slightly easier: only two memory access operations are required for
computing C = A2, as illustrated below:

1. i := log[A]

2. k := 2i (mod 2n − 1)
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3. C := alog[k]

Similarly, the inversion of an element A is computed using the property C = A−1 = g−i = g2n−1−i,
which requires two memory access operations:

1. i := log[A]

2. k := 2n − 1 − i

3. C := alog[k]

In order to speed the ground field operations, particularly the multiplication and the addition
operations, we propose two improvements:

• The use of the extended alog table.

The extended alog table eliminates the modular addition operation in the multiplication (Step
3) and the squaring (Step 2) operations. The extended alog table is of length 2n+1 − 1 which
is about the twice the length of the standard alog table. It contains the values (k, gk) sorted
with respect to the index k, where k = 0, 1, 2, . . . , 2n+1−2. Since the values of i and j in Step
1 and 2 of the multiplications are in the range [0, 2n−1], the range of k = i+j is [0, 2n+1−2].
Therefore, there is no need for computing the modular addition operation, and the ground
field multiplication operation is simplified as follows:

1. i := log[A]

2. j := log[B]

3. k := i + j

4. C := extended-alog[k]

Similarly, the squaring operation is given as

1. i := log[A]

2. k := 2i

3. C := extended-alog[k]

The penalty paid for gaining the improved performance is the size of the extended alog table.
It is twice the size of the standard alog table.

There is no particular reason to use the extended table for the inversion operation since
k = 2n − 1 − i is still in the range [0, 2n − 1].

• The use of n values other than 8 or 16.

The previous methods sugguest that we take n as 8 or 16 [2, 15]. We propose to use other
values of n, particularly, n = 13, 14, 15 which are more useful for general purpose computer
implementations. Since it is recommended to have relatively prime n and m, we obtain more
composite fields with these choices of n. Furthermore, when we select n as 13, 14, or 15,
we can also limit the size of the extended alog table to still fewer than 216 words. Since the
size is given as 2n+1 − 1, the largest table becomes of 215+1 − 1 = 216 − 1 words. We do
not recommend the use of the extended alog table for n = 16 since in this case the length
of the extended alog table becomes 217 − 1 = 131, 071 words or 262, 142 bytes which may be
considered excessive (may not fit most caches).
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4 Polynomial Basis Representation of Composite Fields

The elements of GF ((2n)m) are treated as m-dimensional vectors over GF (2n) in the composite
field representation. Since the coefficients in this representation are n-bit words, it is more advan-
tageous for implementation on microprocessors, particularly when n is selected properly. In our
implementation, we use the ground fields of degrees 13, 14, 15, and 16. Therefore, 16-bit computer
words are sufficient to store the coefficients, however, we do not utilize a few bits in the most
significant positions of the computer word. This is not a significant loss, but it can cause the num-
ber of words to represent composite field elements to increase, especially when n = 13. Since the
arithmetic operations have to handle more words this can slow down the implementation. Using
smaller lookup tables, on the other hand, will have better performance due to the localization of
the memory access.

In the polynomial basis implementation, an irreducible polynomial of degree m with coefficients
from GF (2n) is chosen to perform arithmetic operations in GF ((2n)m). An m-th degree polynomial
which is irreducible over GF (2) is also irreducible over GF (2n) if gcd(n, m) = 1. Since we use both
even and odd numbers between 13 and 16 for n such selections of n and m do not limit m to
odd numbers as in [15]. We tabulate all possible composite field degrees between 160 and 512 for
n = 13, 14, 15, 16 in Table 1. The rule for obtaining Table 1 is as follows:

• gcd(n, m) = 1 and n ∈ [13, 16] and nm ∈ [160, 512].

These are the composite fields for which we can produce efficient implementations by selecting
the aforementioned values of n. This gives much more composite fields than we can obtain by using
n = 16 only.

The use of the composite field representation substantially speeds up the reduction operation
following the polynomial multiplication operation. The reduction operation can be accelerated
even further if an irreducible trinomial or pentanomial is used. It is established that for each
integer m ∈ [2, 10000] there exists either an irreducible trinomial or pentanomial [12]. In our
implementation, we performed arithmetic in the composite fields using the polynomial basis similar
to [15] whenever the field polynomial is an irreducible trinomial. However, when there does not
exist an irreducible trinomial for a particular degree of m, we used an irreducible pentanomial. It
is observed that the performance is still good for pentanomials.

We give the timing results for the field operations in Table 2 for a subset of the composite fields
enumerated in Table 1. As can be observed from Table 2, the advantage of using the values of n
other than 16 is apparent. For example, while the multiplication for (n, m) = (16, 15) takes 14.1
microseconds, it takes only 10.8 microseconds for (n, m) = (15, 16). Since lookup tables for n = 15
are smaller than those for n = 16, the memory access times are shorter, hence the multiplication is
faster.

5 Optimal Normal Basis Representation of Composite Fields

A normal basis for the binary field GF (2k) is given as

B = {β, β2, β22
, . . . , β2k−1} (5)

with the property that the elements of B are linearly independent. There exists at least one
normal basis for GF (2k) for every positive integer k. The normal basis representations have the
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computational advantage that the squaring of an element can be performend by a circular shift.
On the other hand, the multiplication of two distinct elements requires a more complicated circuit,
whose complexity is reduced only for a subset of normal bases, called the optimal normal bases [6].

There exists two types of the optimal normal bases which are historically named as the optimal
normal basis of type 1 (ONB1) and the optimal normal basis of type 2 (ONB2). There are 117 and
319 m values in the range m ∈ [2, 2001], such that the field GF (2m) has an optimal normal basis
of type 1 and type 2, respectively [6]. In other words, the ONB2 is more abundant, and thus, this
representation is much more useful.

The composite field elements can be represented using optimal normal bases when there exists
an ONB1 or ONB2 for GF (2m) in the setting GF ((2n)m). As long as gcd(n, m) = 1, a linearly
independent set which forms an optimal normal basis for a binary field GF (2m) also forms an
optimal normal basis for the composite field GF ((2n)m). The element A in the composite field can
be written as

A =
m−1∑
i=0

Ai βi , (6)

where Ai ∈ GF (2n). Since the degree-m normal polynomial is also a normal polynomial in
GF ((2n)m), every algorithm for performing arithmetic in the binary field for the normal bases
also works in the composite field without any modification.

In Table 3, we enumerate all possible composite fields expressed using the ONB1 and ONB2 for
160 < nm < 512, where the ground field is taken as GF (2n) for n = 13, 14, 15, 16. As expected, we
have more composite fields expressed in ONB2 than in ONB1 in this range. The rule for obtaining
Table 3 is as follows:

• ONB1 for GF ((2n)m):

An ONB1 exists for GF (2m) and gcd(n, m) = 1 and n ∈ [13, 16] and nm ∈ [160, 512].

• ONB2 for GF ((2n)m):

An ONB2 exists for GF (2m) and gcd(n, m) = 1 and n ∈ [13, 16] and nm ∈ [160, 512].

In the following, we present the squaring, multiplication, and inversion algorithms for the optimal
normal bases, which are used in obtaining the composite field implementations. The Massey-Omura
[7] algorithm can be used for multiplication of elements represented using the ONB1 and ONB2,
however, there are also specialized algorithms [5, 14]. We promote the use of these specialized
algorithms for the multiplication operation in the composite fields.

5.1 Squaring in ONB1 and ONB2

The squaring in a normal basis is simply a bitwise circular shift of the binary vector. For the
composite fields, the squaring is performed using a circular word shift after each word is squared
in the ground field GF (2n) using the lookup tables. This squaring operation is significantly more
efficient than the one in the polynomial basis because it does not require a modular reduction. Let
A ∈ GF ((2n)m) be represented using an m-dimensional vector as

A = (A0, A1, . . . , Am−2, Am−1) , (7)

where Ai ∈ GF (2n) for i = 0, 1, . . . , m − 1. Using the property β2m
= β, we obtain A2 as follows:

A2 = (
m−1∑
i=0

Aiβ
2i

)2 =
m−1∑
i=0

A2
i β

2i+1
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= (A2
m−1, A

2
0, A

2
1, ..., A

2
m−3, A

2
m−2) .

5.2 Multiplication in ONB1

We use the algorithm proposed in [5] in our implementation. Here we give a brief description of this
multiplication algorithm. An ONB1 is generated by an element β ∈ GF ((2m)n) of order p = m+1.
Since 2 is primitive modulo p, the set which is the basis for the ONB1 representation

N = (β, β2, β22
, ..., β2m−1

) (8)

is equivalent to the set
M = (β, β2, β3, ..., βm−1) . (9)

The set M is called the shifted polynomial basis, and its field polynomial is an irreducible all-
one-polynomial [5]. Furthermore, M is obtained from N by a permutation. Let the field element
A ∈ GF ((2n)m) be expressed in ONB1 as

A =
m−1∑
i=0

Aiβ
2i

. (10)

We can also express A in the shifted polynomial basis as

Ā =
m−1∑
i=0

Āiβ
i+1 . (11)

The conversion between them is established using the following permutation P :

Ā(2i−1) (mod m+1) = Ai for i = 0, 1, . . . , m − 1 . (12)

The multiplication in the ONB1 reduces to the polynomial multiplication taking advantage of the
arithmetic with an irreducible all-one-polynomial [5].

1. Obtain the shifted polynomial representation of A and B using permutation P .

2. Perform the polynomial multiplication and obtain C̄.

3. Apply inverse permutation P−1 to C̄ and obtain the result in the ONB1.

Since the permutation gives shifted polynomial representation of A and B, we need to perform an
extra correction in Step 2 of the algorithm. Let A, B ∈ GF ((2n)m) be represented in the shifted
polynomial basis as A = (Ā0, Ā1, . . . , Ām−1) and B = (B̄0, B̄1, . . . , B̄m−1). After the multiplication
operation, the result is obtained as F = ĀB̄/β2, and represented in polynomial base as follows:

F = F0 + F1β + F2β
2 + . . . + Fm−1β

m−1 .

In order to obtain the correct result, we first multiply F by β2 (i.e., we shift F two words to the
left), and obtain

E = F0β
2 + F1β

3 + . . . + Fm−1β
m+1 .

However, the result is still not in the shifted polynomial basis since the weight of the term Fm−1 is
βm+1, which needs to be reduced using the relation

βm+1 = β + β2 + . . . + βm .
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Therefore, after the correction operation, we obtain the shifted polynomial representation of the
result as

C = Fm−1β + (Fm−1 + F0)β + . . . + (Fm−1 + Fm−2)βm .

We then need to apply the inverse permutation P−1 to C, and obtain the final result expressed in
ONB1.

5.3 Multiplication in ONB2

We used the multiplication algorithm proposed in [14] in this case. Since this algorithm is not
published, we will provide a description. It is somewhat similar to the algorithm described in the
previous section. It also requires a basis conversion from the ONB2 to a new type of basis. However,
the new basis is not a polynomial basis, and the multiplication in this new basis is more complicated.
An ONB2 for the field GF ((2n)m) is constructed using the normal element β = γ + γ−1 where γ is
a primitive (2m + 1)th root of unity, i.e. γ2m+1 = 1 and γi �= 1 for any 1 ≤ i ≤ 2m + 1. It turns
out that an ONB2 can be constructed if p = 2m + 1 is prime and also if either of the following two
conditions holds:

• 2 is primitive modulo p

• p ≡ 3 (mod 4) and 2 generates the quadratic residues modulo p [6].

An element A ∈ GF ((2n)m) is represented using the ONB2

N = {β, β2, . . . , β2m−1} = {γ + γ−1, γ2 + γ−2, γ22
+ γ−22

, . . . γ2m−1
+ γ−2m−1}

as follows:
A = A0β + A1β

2 + . . . + Am−1β
2m−1

.

A basis element can be written as β2i
= γj +γ−j for j ∈ [1, 2m] following the fact that 2 is primitive

modulo p. The set
M = {γ + γ−1, γ2 + γ−2, γ3 + γ3, . . . γm + γm}

is a permutation of the ONB2 basis N , hence forms another basis for GF ((2n)m). Then A ∈
GF ((2n)m) is expressed in the new basis M as

A = Ā0β1 + Ā1β2 + . . . + Ām−1βm .

where βi = γi + γ−i. The conversion from one representation to the other involves only a permu-
tation, which can be given in terms of coefficients Āj = Ai as

j =

{
k if k ∈ [1, m]
(2m + 1) − k if k ∈ [m + 1, 2m]

,

where k = 2i−1 (mod p) for i = 1, 2, . . . , m. The multiplication in basis M is performed using the
formulae which were derived in [14]. Let A, B ∈ GF ((2n)m) are represented in M as

A =
m∑

i=1

Āiβi and B =
m∑

i=1

B̄iβi .
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Then, the product C = AB can be calculated using C = C1 + D1 + D2, where

C1 =
∑

1≤i,j≤m
i�=j

ĀiB̄jβi−j

D1 =
m∑

i=1

m−i∑
j=1

ĀiB̄jβi+j

D2 =
m∑

i=1

m∑
j=m−i+1

ĀiB̄jβi+j

Then, the ONB2 representation of the result is obtained using the inverse permutation.

5.4 Inversion in ONB1 and ONB2

The Itoh-Tsujii algorithm [4] for inversion in the binary fields using the normal bases is also sug-
gested for the composite fields using the polynomial basis in [1]. The algorithm reduces the inversion
problem in the composite field to the inversion in the ground field GF (2n). However, it requires
several field multiplications, and the number of these multiplications increases as m gets larger. On
the other hand, the inversion algorithm for the polynomial basis described in [15] is very efficient,
and it is possible to apply the same algorithm to calculate the inversion of the composite field ele-
ments expressed in a normal basis. A method for inversion in the binary extension fields expressed
in the optimal normal basis was described in [10]. We generalize the methodology to the composite
fields expressed using the optimal normal basis.

In order to invert an element given in the optimal normal basis, we need to transform it to the
polynomial basis using the field polynomial of the normal basis. Although the field polynomial of
the normal basis may have many non-zero terms, this is not a disadvantage since using an arbitrary
field polynomial does not affect the performance of the inversion operation. The inversion operation
is performed on the transformed element, and finally the result is mapped back into the normal
basis. Although the conversion operations seem to complicate the calculation, our experimental
results show that we can obtain better results with the new algorithm.

The inversion algorithm in polynomial basis is based on the extended Euclidean algorithm,
which can be given as follows:

• Input: A ∈ GF ((2n)m) and P (the irreducible field polynomial)

• Output: B ∈ GF ((2n)m) such that AB = 1 (mod P )

1. Initialize polynomials B := 1, C := 0, F := A, and G := P

2. if F = 1 then return B · F−1

3. if deg(F ) < deg(G) then exchange F & G and exchange B & C

4. δ := deg(F ) − deg(G)

5. α = Fdeg(F ) · Gdeg(G)

6. F := F + αxδG and B := B + αxδC

7. Go to Step 2
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We implemented the Itoh-Tsujii and the extended Euclidean algorithms in the C language, and
obtained some timing results using the Microsoft Visual C++ 5.0 on a 450-MHz Pentium II based
PC running Windows NT 4.0. The timing values given in Table 4 are in microseconds. As can be
observed from Table 4, the extended Euclidean algorithm is much faster when the subfield degree
is large since the length of F decreases in each iteration.

In order to apply the polynomial inversion algorithm for optimal normal bases, the elements rep-
resented in the optimal normal basis need to be converted to the polynomial basis. The polynomial
basis constructed using the field polynomial of the normal basis provides considerable advantage for
this conversion because only XOR and assignment operations are required during the conversion.
The field polynomials for the ONB1 bases are irreducible all-one-polynomials. On the other hand,
the field polynomials for the ONB2 can be computed using the following recursion:

f0(x) = 1
f1(x) = x + 1
fn(x) = xfn−1(x) + fn−2 for n ≥ 2 (13)

More information about field polynomials of optimal normal bases can be found in [6]. The change
of basis matrix which allows us to perform the conversion between optimal normal basis and poly-
nomial basis can be calculated using the algorithms given in [3, pages 37-39].

We now give an example in order to illustrate the use of a polynomial basis inversion algorithm
in an optimal normal basis. Let A ∈ GF ((2n)11) be expressed in the ONB2 as

A = A0β + A1β
2 + A2β

22
+ · · · + A10β

210
,

where gcd(n, 11) = 1. We first compute the field polynomial for GF ((2n)11) using the recursion
(13), and obtain it as

f11(x) = x11 + x10 + x8 + x4 + x3 + x2 + 1 .

Let the polynomial representation of A be

A = Ā0 + Ā1α + Ā2α
2 + . . . + Ā10α

10 ,

where α is a root of f11(x). We then use the field polynomial and the algorithm in [3] in order the
obtain the change of basis matrices between the polynomial basis and the ONB2. We summarize
the final change of basis formulae below. The conversion from the ONB2 representation to the
polynomial is performed using:

Ā0 = A0

Ā1 = A0 + A4 + A5 + A6 + A8 + A10

Ā2 = A1 + A7 + A9 + A10

Ā3 = A6 + A8

Ā4 = A2 + A10

Ā5 = A4 + A5 + A10

Ā6 = A7 + A9

Ā7 = A4 + A5

Ā8 = A3 + A10

Ā9 = A5 + A10

Ā10 = A7 + A10 .
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The conversion from the polynomial representation to the ONB2 representation is performed using:

A0 = Ā1 + Ā3 + Ā7 + Ā10

A1 = Ā2 + Ā6 + Ā0

A2 = Ā4 + Ā0

A3 = Ā8 + Ā0

A4 = Ā7 + Ā9 + Ā0

A5 = Ā9 + Ā0

A6 = Ā5 + Ā7 + Ā0

A7 = Ā10 + Ā0

A8 = Ā3 + Ā5 + Ā7 + Ā0

A9 = Ā6 + Ā10 + Ā0

A10 = Ā0 .

6 Implementation Results and Conclusions

In order to test the proposed methods, we wrote test routines in C, and obtained the timing results
using the Microsoft Visual C++ 5.0 on a 450-MHz Pentium II based PC running Windows NT 4.0.
The timing results are summarized in Tables 2, 4, 5, 6 and Figures 1, 2, 3. These timing values are
all in microseconds.

The timing results for the polynomial basis implementation of the composite fields are given in
Table 2. The squaring, multiplication, and the inversion methods are the same as in [15] except that
we allow irreducible trinomials and pentanomials while the methods in [15] cover only irreducible
trinomials. Table 2 clearly illustrates the advantage of using the subfields other than GF (216). For
example, the multiplication operation in GF ((216)13) takes 11.0 microseconds, while it takes only
9.6 microseconds for GF ((213)16). Since the lookup tables for n = 13 are smaller than those for
n = 16, the memory access times are shorter, and thus, the multiplication is faster.

The squaring algorithm for the ONB1 and ONB2 was described §5.1. Its timing values are
tabulated in Tables 4 and 5. The multiplication algorithms for the ONB1 and ONB2 were described
in §5.2 and §5.3, respectively, which are based on the previously developed methods reported in
[5, 14]. Both algorithms use a permutation to convert the elements expressed in the optimal normal
basis to the polynomial basis (actually, to a basis similar to the polynomial basis), and perform
the multiplication operation in the polynomial basis using these specialized algorithms, and the
convert the result back to the optimal normal basis.

The inversion method we proposed in §5.4 for the composite fields is an alternative to the
well-known Itoh-Tsujii [4] algorithm. Our method performs the inversion of an element expressed
in ONB1 or ONB2 by first converting it to the polynomial basis using the field polynomial of
the optimal normal basis. It then uses the extended Euclidean algorithm to obtain the inverse of
the given element in the polynomial basis. The result is converted back to the optimal normal
basis. The field polynomial is an all-one-polynomial for the ONB1 and a random polynomial for
the ONB2. The type of the field polynomial makes a difference only in the conversions between
the optimal normal basis and the polynomial basis: there will be more additions (XORs) for the
ONB2 case in general. The performance of the extended Euclidean algorithm is the same for any
field polynomial. We compare the timings of the Itoh-Tsujii algorithm and the extended Euclidean

11



algorithm in Table 4, which shows that even though the overhead of the conversions slows down
the inversion operation, the extended Euclidean algorithm as proposed for the composite fields is
still faster than Itoh-Tsujii algorithm; in some cases it is more than twice faster. Thus, we used
the extended Euclidean in the rest of our implementation. The inversion timings given in Tables 5
and 6 are obtained using the extended Euclidean algorithm.

In Figures 1, 2, and 3, we illustrate the squaring, multiplication, and inversion timings together
in order to compare the performance of these three bases. We clearly see from these figures that
the squaring operation in the ONB1 and ONB2 is much faster than in the polynomial basis since
the reduction is avoided. On the other hand, the multiplication operation is only slightly slower
for the optimal normal bases than for the polynomial basis. Furthermore, comparing the timing
results for the inversion operation in these three bases, we notice that their timings are very close
to one another. Between the ONB1 and ONB2, we also see that the ONB2 is more advantageous
since it provides more composite fields in the specified range [160, 512] as it can be seen in Table 3.
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Table 1: Composite field degrees (165 < k < 512) using the polynomial basis.

n m nm n m nm n m nm n m nm

13 14 182 14 13 182 15 11 165 16 11 176
15 195 15 210 14 210 13 208
16 208 17 238 16 240 15 240
17 221 19 266 17 255 17 272
18 234 23 322 19 285 19 304
19 247 25 350 22 330 21 336
20 260 27 378 23 345 23 368
21 273 29 406 26 390 25 400
22 286 31 434 28 420 27 432
23 299 33 462 29 435 29 464
24 312 31 465 31 496
25 325 32 480
27 351 34 510
28 364
29 377
30 390
31 403
32 416
33 429
34 442
35 455
36 468
37 481
38 494
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Table 2: The timings in microseconds for the polynomial basis.

n m nm Squaring Multiplication Inversion
13 14 182 1.29 7.6 29

15 195 1.28 8.6 32
16 208 1.70 9.6 36
18 234 1.56 12.1 43
23 299 1.84 18.6 66
28 364 2.23 24.4 93
29 377 2.30 25.9 99
30 390 2.38 27.6 104
33 429 2.40 32.9 125
35 455 2.49 36.4 137
36 468 2.58 38.3 148
38 494 2.97 43.1 164

14 13 182 1.53 7.4 28
15 210 1.37 9.1 35
19 266 2.02 14.2 53
23 322 1.97 19.4 72
27 378 2.73 25.7 96
29 406 2.46 28.2 109
33 462 2.66 35.6 137

15 11 165 1.20 5.8 23
13 195 1.59 7.6 29
14 210 1.44 8.4 33
16 240 1.88 10.8 42
19 285 2.08 14.6 55
23 345 2.05 19.9 75
26 390 2.75 24.4 100
28 420 2.49 27.2 107
29 435 2.57 29.0 113
31 465 2.34 33.2 127
34 510 2.63 38.7 151

16 11 176 1.44 8.9 30
13 208 1.79 11.0 40
15 240 1.79 14.1 50
23 368 2.60 31.0 97
27 432 3.25 42.1 127
29 464 2.90 46.5 144
31 496 3.30 54.9 164
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Table 3: Composite field degrees (160 < k < 512) using the ONB1 and ONB2.

ONB1 ONB2
n m nm n m nm

13 18 234 13 14 182
28 364 18 234
36 468 23 299

15 28 420 29 377
30 390
33 429
35 455

14 23 322
29 406
33 462

15 11 165
14 210
23 345
26 390
29 435

16 11 176
23 368
29 464

Table 4: The inversion timings in microseconds.

n m nm Itoh-Tsujii Extended Euclid
13 14 182 62 29

18 234 108 45
15 11 165 33 22

14 210 64 34
16 11 176 44 27

Table 5: The timings in microseconds for the ONB1.

n m nm Squaring Multiplication Inversion
13 18 234 0.96 13.21 46

28 364 1.33 28.50 98
36 468 1.60 44.80 149

15 28 420 1.65 32.26 114
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Table 6: The timings in microseconds for the ONB2.

n m nm Squaring Multiplication Inversion
13 14 182 0.73 12.37 29

18 234 0.86 21.93 45
23 299 1.04 26.81 70
29 377 1.23 43.00 106
30 390 1.27 43.18 113
33 429 1.38 55.21 135
35 455 1.45 61.82 153

14 23 322 1.18 28.45 73
29 406 1.42 46.34 118
33 462 1.57 59.22 148

15 11 165 0.78 8.31 22
14 210 0.89 13.70 34
23 345 1.28 35.27 76
26 390 1.48 36.75 94
29 435 1.51 47.55 124

16 11 176 1.01 10.38 27
23 368 1.73 38.16 100
29 464 2.12 59.71 154

Figure 1: Squaring timings in microseconds.
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Figure 2: Multiplication timings in microseconds.
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Figure 3: Inversion timings in microseconds.
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