
A Reduction Method for Multiplication in Finite Fields

Ç. K. Koç and A. Halbutoǧulları
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331

Technical Report, August 1998

Abstract

We propose a new table lookup based reduction method for performing the modular reduction
operation, which can be used to obtain fast software implementations of the finite field multiplication
and squaring operations. The reduction algorithm has both left-to-right and right-to-left versions,
which respectively improve the standard and Montgomery multiplication methods in GF (2k). We
also treat in detail the case in which special irreducible polynomials, e.g., the trinomials and all-
one-polynomials, are used to generate the field. Furthermore, we show that the proposed reduction
method also works in the integer case for the right-to-left reduction algorithm if the modulus n is an
odd number. However, the table lookup based left-to-right reduction algorithm in the integer case
is generally inefficient.

Key Words: Elliptic curve cryptography, finite field arithmetic, table lookup.

1 Introduction

Recently, there has been a growing interest to develop software methods for implementing GF (2k)
arithmetic operations, which find applications in elliptic curve cryptographic operations [6, 7, 8] and
the Diffie-Hellman key exchange algorithm [1] based on the discrete exponentiation. The software
implementation of the arithmetic operations in GF (2k) require that we design word-level algorithms
for efficient implementation on current general purpose microprocessors. In this paper, we propose
a new table lookup based reduction method for performing the modular reduction operation, which
can be used to obtain fast software implementations of the finite field multiplication and squaring
operations. The proposed modular reduction method has three important properties:

• The method works for an arbitrary generating polynomial n(x). It does not assume any
special structure in n(x), for example, the generating polynomial need not be a trinomial, a
sparse polynomial, or an all-one-polynomial. However, in such cases, the method simplifies
to certain modular reduction methods existing in the literature.

• The method provides word-level algorithms, enabling efficient software implementations of
finite field multiplication and squaring operations.

• The method has both left-to-right and right-to-left versions, which are useful for performing
both the standard and the Montgomery multiplications in finite fields.

1



Furthermore, it turns out that the table lookup reduction method is also applicable to the integer
case for the right-to-left reduction algorithm, giving a more efficient Montgomery multiplication
algorithm. The left-to-right reduction algorithm in the integer case turns out to be inefficient.

2 Representation of Field Elements

The elements of the field GF (2k) can be represented in several different ways [4, 5, 3]. The polyno-
mial representation seems to be useful and suitable for both hardware and software implementations.
According to this representation an element a of GF (2k) is a polynomial of length k, i.e., of degree
less than or equal to k − 1, written as a(x) =

∑k−1
i=0 aix

i, where the coefficients ai ∈ GF (2). The
element a is also represented as a k-dimensional vector a = (ak−1ak−2 · · · a1a0). Software imple-
mentations are often based on the word-level representations of the field elements. We assume that
k = sw, and partition the sw-dimensional into w-bit blocks Ai such that a = (As−1As−2 · · ·A1A0).
These Ai blocks are also represented as polynomials of degree w − 1 using the notation Ai(x).

The addition of two elements a and b in GF (2k) is performed by adding the polynomials a(x) and
b(x), where the coefficients are added in GF (2). This is equivalent to the bit-wise XOR operation
on the vectors a and b. Assuming the processor can perform the XOR of two w-bit numbers in one
cycle, the computation of c := a + b requires s cycles.

In order to multiply two elements a and b in GF (2k), we need an irreducible polynomial n(x)
of degree k over the field GF (2). The product c = a · b in GF (2k) is obtained by computing c(x) =
a(x)b(x) mod n(x), where c(x) is a polynomial of length k, representing the element c ∈ GF (2k).
Thus, the multiplication operation in the field GF (2k) is accomplished by first multiplying the input
polynomials, and then performing a modular reduction using the generating polynomial n(x).

On the other hand, the Montgomery product of two elements a(x) and b(x) is defined as the
computation of c(x) = a(x)b(x)r−1(x) mod n(x), where r(x) is a fixed element of the field [2]. It
is established that when r(x) = xk mod n(x), we can obtain efficient software implementations of
the Montgomery multiplication operation in GF (2k). In the sequel, we define the Montgomery
multiplication in GF (2k) as the computation of c(x) = x−ka(x)b(x) mod n(x), given a(x) and b(x).

3 Reduction Algorithms

The proposed modular reduction methodology uses a table of the multiples of the generating
polynomial n(x), and performs a word-level division. We start with n(x), which is a polynomial of
degree k, and compute all multiples of n(x) having degrees less than k + w. Consider the set of all
polynomials over GF (2) of length w and the set of all w-bit integers as

Qw = {1, x, x + 1, x2, x2 + 1, x2 + x, . . . , xw−1 + xw−2 + · · · + 1} ,
Iw = {0, 1, 2, . . . , 2w − 1} .

Let qi(x) be the ith element of Qw and mi(x) = qi(x)n(x) for i ∈ Iw. The polynomial mi(x) is of
degree less than k + w, which we represent as an (s + 1)-word number

mi(x) = (Mi,sMi,s−1 · · ·Mi,1Mi,0) . (1)

We then construct the table T1 containing 2w rows, in which we store the polynomial mi(x) using
its most significant word (w-bits) as the index, i.e.,

T1(Mi,s) = (Mi,s−1 · · ·Mi,1Mi,0) , (2)

2



for i ∈ Iw. An important observation is that the most significant words Mi,s for i ∈ Iw span the
set Qw, in other words, they are all unique.

Theorem 1 The most significant words Mi,s are all unique for i ∈ Iw.

Proof Assume Mi,s = Mj,s for i �= j. The polynomial

p(x) = mi(x) + mj(x)

is of length k since

p(x) = (Mi,sMi,s−1 · · ·Mi,1Mi,0) + (Mj,sMj,s−1 · · ·Mj,1Mj,0)
= (0Ps−1 · · ·P1P0) .

Furthermore, p(x) is divisible by n(x) since

p(x) = qi(x)n(x) + qj(x)n(x) = (qi(x) + qj(x))n(x) ,

which means p(x) can only be the zero polynomial, i.e., i = j. �

The table T1 will be used in the left-to-right algorithm for reducing polynomials modulo n(x),
i.e., we compute p(x) mod n(x). In order to perform the Montgomery-type reduction, we use a
right-to-left algorithm and obtain x−kp(x) mod n(x). This algorithm requires that we construct a
table of multiples of n(x) based on the least significant words. Similarly, we take the polynomial
mi(x) = qi(x)n(x) for i ∈ Iw, and construct the table T2 containing 2w rows. The table T2 keeps
the polynomial mi(x), where we use the least significant word Mi,0 as the index, i.e.,

T2(Mi,0) = (Mi,s · · ·Mi,2Mi,1) , (3)

The uniqueness of the least significant words Mi,0 depends on whether n(x) is not divisible by x.

Theorem 2 The least significant words Mi,0 are all unique for i ∈ Iw if only if n(x) is not divisible
by x.

Proof Assume Mi,0 = Mj,0 for i �= j. The polynomial

p(x) = x−w(mi(x) + mj(x))

is of length k since

p(x) = x−w ((Mi,sMi,s−1 · · ·Mi,1Mi,0) + (Mj,sMj,s−1 · · ·Mj,1Mj,0))
= x−w(Ps · · ·P2P10)
= (Ps · · ·P2P1) .

Furthermore, p(x) is divisible by n(x) if gcd(xw, n(x)) = 1 since

p(x) = x−w(qi(x)n(x) + qj(x)n(x)) = x−w(qi(x) + qj(x))n(x) .

Therefore, p(x) can only be the zero polynomial, i.e., i = j. The condition gcd(xw, n(x)) = 1 is
satisfied if only if n(x) is not divisible by x. �

3



The tables T1 and T2 are used to reduce a polynomial of length sw+w to a polynomial of length
sw using the irreducible polynomial n(x). Let p(x) be a polynomial of length sw+w, which is to be
reduced, denoted as p(x) = (PsPs−1 · · ·P1P0). The left-to-right algorithm computes p(x) mod n(x),
while the right-to-left algorithm computes x−wp(x) mod n(x). The resulting polynomial in both
cases is of length sw.

Left-To-Right Reduction Algorithm: In order to reduce p(x) = (PsPs−1 · · ·P1P0), we select
the entry (Ms−1Ms−2 · · ·M1M0) from the table T1 using the index Ps = Ms. Since T1 was
constructed so that the element (PsMs−1Ms−2 · · ·M1M0) resides in position Ps, we have

p(x) := (PsPs−1 · · ·P1P0) + (PsMs−1Ms−2 · · ·M1M0)
:= (0P ′

s−1 · · ·P ′
1P

′
0) ,

where P ′
j = Pj + Mj for j = 0, 1, . . . , s− 1. We also discard the most significant w bits of the

new p(x). Since we add a multiple of n(x) to p(x), and obtain a polynomial of length sw, we
effectively compute p(x) mod n(x), as required. We denote the above computation as

p(x) := p(x) + T1(Ps) . (4)

Right-To-Left Reduction Algorithm: In order to reduce p(x) = (PsPs−1 · · ·P1P0), we select
the entry (MsMs−1 · · ·M1) from the table T2 using the index P0 = M0. Since T2 was con-
structed so that the element (MsMs−1 · · ·M1P0) resides in position P0, we have

p(x) := (PsPs−1 · · ·P1P0) + (MsMs−1 · · ·M1P0)
:= (P ′

sP
′
s−1 · · ·P ′

10) ,

where P ′
j = Pj + Mj for j = 1, 2, . . . , s. We then shift the new p(x) w bits to the right, i.e.,

we multiply it by x−w. Since we add a multiple of n(x) to p(x), and then, multiply it by x−w

in order to obtain a polynomial of length sw, we effectively compute x−wp(x) mod n(x), as
required. We will denote the above computation as

p(x) := x−w(p(x) + T2(P0)) . (5)

4 Standard Multiplication with Table Lookup Reduction

The standard multiplication algorithm computes c(x) = a(x)b(x) mod n(x) given a(x), b(x), and
n(x). In order to apply the table lookup reduction method, we first construct the table T1 using
the generating polynomial n(x). The algorithm then proceeds by multiplying one word of a(x) by
the entire b(x), which is followed by a table lookup reduction to reduce the partial product. We
will call this algorithm STDMUL, whose steps are given below:

Algorithm STDMUL
Step 0: Construct T1 using n(x) and w
Step 1. c(x) := 0
Step 2. for i = s − 1 downto 0 do
Step 3. c(x) := xwc(x) + Ai(x)b(x)
Step 4. c(x) := c(x) + T1(Cs)
Step 5. return c(x)

4



The operation in Step 4 of STDMUL is performed by first discarding the sth (the most sig-
nificant) word of c(x) = (CsCs−1 · · ·C1C0), and then by adding the s-word number T1(Cs) =
(Ms−1Ms−2 · · ·M1M0) to the partial product c(x) as

Cs−1 Ci−2 · · · C1 C0

Ms−1 Ms−2 · · · M1 M0

Similarly, we perform the standard squaring operation using the table lookup reduction method.
This algorithm is denoted as STDSQU, whose steps are given below. An important saving in this
case is that the cross product terms disappear because the ground field is GF (2). Since

a2(x) =
k−1∑

i=0

aix
2i = ak−1x

2(k−1) + ak−2x
2(k−2) + · · · + a1x

2 + a0 , (6)

the multiplication step (i.e., Step 3) in STDMUL can be skipped. The standard squaring algorithm,
called STDSQU, starts with the degree 2(k − 1) polynomial c(x) = a2(x) given by

c(x) = (ak−10ak−20 · · ·0a10a0) ,

and then performs the reduction steps using the table T1.

Algorithm STDSQU
Step 0: Construct T1 using n(x) and w

Step 1. c(x) :=
∑k−1

i=0 aix
2i

Step 2. for i = 2s − 1 downto s do
Step 3. c(x) := c(x) + T1(Ci)
Step 4. return c(x)

We perform the operation in Step 3 of STDSQU by first discarding the ith (the most significant)
word of c(x) = (CiCi−1 · · ·C1C0), and then by adding the s-word number

T1(Ci) = (Ms−1Ms−2 · · ·M1M0)

to the partial product c(x) by aligning Ms−1 with Ci−1 from the left:

Ci−1 Ci−2 · · · Ci−s+1 Ci−s · · · C1 C0

Ms−1 Ms−2 · · · M1 M0

Thus, each addition operation in Step 3 requires exactly s XOR operations.

5 An Example of Standard Multiplication

We take the field GF (28) to illustrate the construction of the table T1, and also give an example
of the standard multiplication operation using the table lookup reduction method. We select the
irreducible polynomial as

n(x) = x8 + x5 + x3 + x2 + 1 . (7)

We also select w = 4, which gives s = k/w = 8/4 = 2. The table T1 is constructed by taking
a polynomial q(x) from Q4, multiplying it by n(x) to obtain m(x) = q(x)n(x), and then placing
the least significant s = 2 words of m(x) to T1 using the most significant word as the index. The
step-by-step construction of T1 is shown in Table 1. The multiples of n(x) do not necessarily come
in an increasing order, however, we have a complete set of first words, and thus, we can use these
values as their indices to store them in T1. The table T1 is shown in Table 1 in its unsorted form.

5



Table 1: The construction of T1 and T2 for n(x) = (0001 0010 1101).

q(x) m(x) i T1(i) i T2(i)
(0000) (0000 0000 0000) (0000) (0000 0000) (0000) (0000 0000)
(0001) (0001 0010 1101) (0001) (0010 1101) (1101) (0001 0010)
(0010) (0010 0101 1010) (0010) (0101 1010) (1010) (0010 0101)
(0011) (0011 0111 0111) (0011) (0111 0111) (0111) (0011 0111)
(0100) (0100 1011 0100) (0100) (1011 0100) (0100) (0100 1011)
(0101) (0101 1001 1001) (0101) (1001 1001) (1001) (0101 1001)
(0110) (0110 1110 1110) (0110) (1110 1110) (1110) (0110 1110)
(0111) (0111 1100 0011) (0111) (1100 0011) (0011) (0111 1100)
(1000) (1001 0110 1000) (1001) (0110 1000) (1000) (1001 0110)
(1001) (1000 0100 0101) (1000) (0100 0101) (0101) (1000 0100)
(1010) (1011 0011 0010) (1011) (0011 0010) (0010) (1011 0011)
(1011) (1010 0001 1111) (1010) (0001 1111) (1111) (1010 0001)
(1100) (1101 1101 1100) (1101) (1101 1100) (1100) (1101 1101)
(1101) (1100 1111 0001) (1100) (1111 0001) (0001) (1100 1111)
(1110) (1111 1000 0110) (1110) (1010 1011) (0110) (1111 1000)
(1111) (1110 1010 1011) (1111) (1000 0110) (1011) (1110 1010)

Furthermore, we also give the table T2 in Table 1, which is to be used by the right-to-left
algorithm for computing the Montgomery multiplication and squaring operations in GF (28). The
table T2 is constructed by placing the polynomial m(x) in T2 using its least significant word as the
index. As an example for STDMUL, we take

a(x) = x7 + x6 + x4 + x3 + x + 1 ,
b(x) = x7 + x5 + x3 + x2 + x .

We have a = (A1A0) = (1101 1011) and b = (B1B0) = (1010 1110). The algorithm starts with
c = 0 and then performs the following steps to find the result:

i = 1 Step 3: c(x) := c(x)x4 + A1(x)b(x) = (C2C1C0)
= 0 + (1101)(1010 1110) = (0111 0110 0110)

Step 4: c(x) := c(x) + T1(C2) = (C1C0) + T1(C2)
= (0110 0110) + (1100 0011) = (1010 0101)

i = 0 Step 3: c(x) := c(x)x4 + A0(x)b(x) = (C2C1C0)
= (1010 0101 0000) + (1011)(1010 1110) = (1110 1101 0010)

Step 4: c(x) := c(x) + T1(C2) = (C1C0) + T1(C2)
= (1010 1011) + (1101 0010) = (0111 1001)

Therefore, the result is found as c(x) = (0111 1001) = x6 + x5 + x4 + x3 + 1.

6 Montgomery Multiplication with Table Lookup Reduction

The Montgomery multiplication of two elements a(x) and b(x) is defined as the product

x−ka(x)b(x) mod n(x) . (8)

6



Note that the inverse element x−k = (xk)−1 exists since n(x) is an irreducible polynomial, and
thus gcd(xk, n(x)) = 1. The details of the Montgomery multiplication algorithm in GF (2k) and its
properties are found in [2]. The algorithm requires that we compute N ′

0(x) in advance which is the
least significant word of the polynomial n′(x) defined as

n′(x) = −n(x)−1 mod xk . (9)

An algorithm for computing N ′
0(x) is also described in [2]. However, it turns out that the Mont-

gomery multiplication method using the table lookup reduction algorithm does not require the
computation of N ′

0(x). This is not surprising since the table T2 keeps all 2w multiples of n(x), and
therefore, there is no need to separately compute N ′

0(x).
The steps of the Montgomery multiplication algorithm using the table lookup reduction method

are given below. The algorithm, which we call MONMUL, is based on the right-to-left reduction
algorithm described in §3.

Algorithm MONMUL
Step 0: Construct T2 using n(x) and w
Step 1. c(x) := 0
Step 2. for i = 0 to s − 1 do
Step 3. c(x) := c(x) + Ai(x)b(x)
Step 4. c(x) := x−w(c(x) + T2(C0))
Step 5. return c(x)

At the end of Step 1, we have an (s + 1)-word number C = (CsCs−1 · · ·C1C0). We discard the 0th
(the least significant) word C0, and then add the s-word number T2(C0) = (MsMs−1 · · ·M2M1) to
the partial product c(x) by aligning M1 with C1 from the right:

Cs Cs−1 · · · C2 C1

Ms Ms−1 · · · M2 M1

Thus, the 1-word shift operation denoted as the multiplication by x−w is implicitly performed.
Each addition operation in Step 4 requires exactly s XOR operations. Similarly, the Montgomery
squaring method computes

c(x) = x−ka2(x) mod n(x) . (10)

In order to compute c(x), we first obtain a2(x) using the property (6), and then reduce the result
with the help of the right-to-left reduction algorithm, as seen below.

Algorithm MONSQU
Step 0: Construct T2 using n(x) and w

Step 1. c(x) :=
∑k−1

i=0 aix
2i

Step 2. for i = 0 to s − 1 do
Step 3. c(x) := x−w(c(x) + T2(C0))
Step 4. return c(x)

When Step 1 completes, we have an (2s−1)-word number C = (C2s−2C2s−3 · · ·C1C0). In the begin-
ning of the ith step, the number c(x) is an (2s−i−1)-word number C = (C2s−i−2C2s−i−3 · · ·C1C0).
We perform the operation in Step 3 of MONSQU by first discarding the 0th (the least significant)

7



word of c(x), and then by adding the s-word number T2(C0) = (MsMs−1 · · ·M1) to the partial
product c(x) by aligning M1 with C1 from right, as follows:

C2s−i−2 C2s−i−1 · · · Cs Cs−1 · · · C2 C1

Ms Ms−1 · · · M2 M1

As in the case for the Montgomery multiplication, the 1-word shift operation, i.e., the multiplication
by x−w, is implicitly performed, and each addition operation in Step 3 requires exactly s XOR
operations.

7 An Example of Montgomery Multiplication

We take the field GF (28) and the same irreducible polynomial n(x) as the one exemplified in §5.
The construction of the table T2 was already shown in §5. In this case, we compute the Montgomery
product of the elements

a(x) = x7 + x6 + x4 + x3 + x + 1 ,
b(x) = x7 + x5 + x3 + x2 + x .

Therefore, we will be computing c(x) = x−8a(x)b(x) mod n(x). The right-to-left reduction algo-
rithm for computing the product c(x) starts with a(x) = (A1A0) = (1101 1011), b(x) = (B1B0) =
(10101110), c(x) = 0, and performs the following steps:

i = 0 Step 3: c(x) := c(x) + A0(x)b(x) = (C2C1C0)
= 0 + (1011)(1010 1110) = (0100 1000 0010)

Step 4: c(x) := x−4(c(x) + T2(C0)) = (C2C1) + T2(C0)
= (0100 1000) + (1011 0011) = (1111 1011)

i = 1 Step 3: c(x) := c(x) + A1(x)b(x) = (C2C1C0)
= (1111 1011) + (1101)(1010 1110) = (0111 1001 1101)

Step 4: c(x) := (x−4c(x) + T2(C0)) = (C2C1) + T2(C0)
= (0111 1001) + (0001 0010) = (0110 1011)

The product is found as c(x) = (0110 1011) = x6 + x5 + x3 + x + 1.

8 Analysis of the Algorithms

In this section, we analyze the standard and Montgomery multiplication algorithms by calculating
the size of the lookup tables and counting the total number of the table read and the word-level
GF (2) addition and multiplication operations.

First we start the word-level GF (2) operations. The word-level addition is simply the bit-wise
XOR operation on a pair of 1-word binary numbers, which is a readily available instruction on most
general purpose microprocessors and signal processors. The word-level multiplication operation
receives two 1-word (w-bit) polynomials A(x) and B(x) defined over GF (2), and computes the
2-word polynomial C(x) = A(x)B(x). The degree of the product polynomial C(x) is 2(w− 1). For
example, given A = (1101) and B = (1010), this operation computes C as

A(x)B(x) = (x3 + x2 + 1)(x3 + x) = x6 + x5 + x4 + x = (0111 0010) .

8



The implementation of this operation, which we call MULGF2 as in [2], can be performed in three
different ways: 1) An instruction implemented on the processor, 2) The table lookup method, and
3) The emulation using the XOR and SHIFT operations. The details of the analysis of these methods
can be found in [2]. The fastest is the first one, while the slowest is the last one. In this paper, we
will simply count the number of MULGF2 operations, and assume that they are implemented using
any of the above methods. A simple method for implementing the table lookup approach is to
use two tables, one for computing the higher (H) and the other for computing the lower (L) bits of
the product. The tables are addressed using the bits of the operands, and thus, the total size of
these tables is of size 2 × 2w × 2w × w bits. We store the values H and L in two table reads. Other
approaches are also possible.

The other operation to consider is the table read operation from T1 and T2. We will denote
this operation using TABLEREAD, and count the total number of TABLEREAD operations. In regards
to the sizes of these tables, we note that the table T1 (or T2) has 2w rows, each of which contains a
polynomial of length k. This implies that the size of the tables is 2w×k bits. The space requirements
for the tables T1 (or T2) for performing the TABLEREAD operation are exemplified in Table 2.

Table 2: The size of the table in bytes for the TABLEREAD operation.

k w = 4 w = 8 w = 10 w = 16
160 320 5,120 20,480 1,310,720
256 512 8,192 32,768 2,097,152
512 1,024 16,384 65,536 4,194,304

1024 2,048 32,768 131,072 8,388,608

For example, if w = 8 and k = 160, the size of the table is 28 × 20 = 5, 120 bytes, which is quite
reasonable. However, the table size becomes excessive as we increase the wordsize. For a fixed field
size k, we can decide about the wordsize w given the memory capacity of the computer system.

We give the steps of the algorithms STDMUL and MONMUL in detail in Table 3, together with
the number of TABLEREAD, MULGF2, and XOR operations.

The total number of operations for STDMUL, STDSQU, MONMUL, MONSQU are summarized
in Table 4.

Furthermore, in Table 5, we give the coefficients of the highest term s2 in the operation counts of
the multiplication algorithms using the proposed table lookup reduction method, comparing them
to those algorithms which do not utilize the table lookup reduction method. The detailed timing
requirements of the algorithms without the table lookup reduction method are given in [2].

9



Table 3: The operation counts for the STDMUL and MONMUL algorithms.

STDMUL TABLEREAD MULGF2 XOR
for i=0 to s do - - -
C[i]:=0 - - -

for i=s-1 downto 0 do - - -
P:=0 - - -
for j=s-1 downto 0 do - - -
(H,L):=MULGF2(A[i],B[j]) - s2 -
C[j+1]:=C[j] XOR H XOR P - - 2s2

P:=L - - -
C[0]:=P - - -
for j=0 to s-1 do - - -
C[j]:=C[j] XOR T[C[s]][j] s - s2

MONMUL
for i=0 to s do - - -
C[i] := 0 - - -

for i=0 to s-1 do - - -
P := 0 - - -
for j=0 to s-1 do - - -
(H,L):=MULGF2(A[i],B[j]) - s2 -
C[j]:=C[j] XOR L XOR P - - 2s2

P := H - - -
C[s] := P - - -
for j=0 to s-1 do - - -
C[j] := C[j+1] XOR T[C[0]][j] s - s2

Table 4: The operation counts for the algorithms.

TABLEREAD MULGF2 XOR SHIFT

STDMUL s s2 3s2 -
STDSQU s - s2 -
MONMUL s s2 3s2 -
MONSQU s - s2 -

Table 5: The operation count orders for the algorithms.

Using this method MULGF2 XOR SHIFT

STDMUL 1 3 0
STDSQU 0 1 0
MONMUL 1 3 0
MONSQU 0 1 0

Using the method in [2]

STDMUL 1 3w
2 + 3 2(w + 1)

STDSQU 0 9w
4 3w

MONMUL 2 4 0
MONSQU 1 2 0

10



9 Special Irreducible Polynomials

The presented table lookup reduction method and the resulting multiplication algorithms work
for an arbitrary generating polynomial. The tables T1 (or T2) are constructed and used without
assuming a special structure in n(x). This is an important property of the table lookup reduction
method, making it applicable for any value of k and for arbitrary generating polynomials. However,
it may be possible to avoid the construction of the table or to reduce the size of it or to reduce
the time taken by the algorithm when the generating polynomial has a special structure. In this
section we consider several different forms irreducible polynomials for generating the field GF (2k).

We start with the case in which the generating polynomial n(x) is of the form

n(x) = xk + ajx
j + aj−1x

j−1 + . . . + a1x + a0 ,

where j = tw and t < s is an integer. This implies that xk is the only nonzero term among the
(s − t)w most significant terms of n(x), and thus, there is no need to prepare the whole table T1

as the multiples of n(x) will have all zeros in the most significant s − t words, except the most
significant word which is used as an index. It suffices to store the least significant t words of the
multiples of n(x) to reduce the partial product. Therefore, the size of the table T1 will be 2w×t×w
instead of 2w × s×w, i.e., the table size reduces linearly depending on the value of t. Furthermore,
we only add the t least significant words of the operands during the addition operation since we
know the remaining s − t words are zero. Therefore, Step 4 of STDMUL is performed by first
discarding the sth (the most significant) word of c(x) = (CsCs−1 · · ·C1C0) and then by adding the
t-word number T1(Cs) = (Mt−1Mt−2 · · ·M1M0) to the partial product as

Cs−1 Cs−2 · · · Ct Ct−1 · · · C1 C0

Mt−1 · · · M1 M0

The most significant s − t words are not added since (Ms−1Ms−2 · · ·Mt) is known to be all zero.
This operation requires t word-level XOR operations in the reduction step (Step 4) instead of s.

9.1 Trinomials

When the irreducible polynomial is a trinomial of the form

n(x) = xk + xj + 1 ,

where 1 ≤ j < k, then, it turns out that there is no need to prepare the table T1 (or T2). We can
use the the most significant (or the least significant) word of the partial product in order to reduce
it. There are different approaches, depending on the value of j. If j is an integer multiple of the
word size w, i.e., j = tw, we can use the word-level shifts of the partial product. If j is not an
integer multiple of w, i.e., j = tw + u for some 1 ≤ u < w, then, certain bit-level operations will
need to be performed.

For j = tw, the left-to-right algorithm reduces the (s + 1)-word partial product c(x) =
(CsCs−1 · · ·C1C0) by adding Cs multiple of the irreducible polynomial n(x) to it as

c(x) := c(x) + (xsw + xtw + 1)Cs .

This implies that we need to add Cs to Cs, Ct, and C0 in Step 4 of the algorithm STDMUL.
However, we do not perform the first addition Cs + Cs = 0, as follows:

Cs−1 · · · Ct+1 Ct · · · C1 C0

Cs Cs

11



Thus, during the ith step of the reduction, we perform 2 XOR operations. The multiplication
algorithms described in [7, 8] are essentially the same.

The right-to-left reduction algorithm, on the other hand, uses C0 to reduce the partial product
from the right (the least significant). Effectively, it performs the operation

c(x) := c(x) + (xsw + xtw + 1)C0 ,

in order to reduce the partial product 1-word from the right. This implies that we add C0 to C0,
Ct, and Cs as follows:

Cs Cs−1 · · · Ct+1 Ct · · · C1

C0 C0

Similarly, we do not perform the addition of the least significant words C0 + C0 = 0, and obtain
the s-word partial product using only 2 XOR operations.

If j is not a multiple of w, but, say j = tw + u for a positive integer 1 ≤ u < w, we need to
perform the operation

c(x) := c(x) + (xsw + xtw+u + 1)Cs

to reduce the most significant word of Cs of c(x). This implies that Cs is added to Cs and C0, which
takes care of the part c(x)+(xsw +1)Cs. In order to add xtw(xuCs) to the partial product, Cs needs
to be shifted u bits to left, which produces a 2-word number (M1M0). Let Cs = (ck+w−1 · · · ck+1ck),
then, (M1M0) is obtained as

(M1) (M0) = (0 · · · 0 ck+w−1ck+w−2 · · · ck+w−u) (ck+w−u−1 · · · ck+1ck 0 · · · 0) .

We then add M1 and M2 to Ct+1 and Ct, respectively. The operations required to reduce c(x)
using the left-to-right algorithms are shown below:

Cs−1 · · · Ct+1 Ct · · · C1 C0

M1 M0 Cs

Similarly, the addition of the most significant words Cs + Cs = 0 is ignored. In summary, the
reduction operation during the ith step requires a few bit operations to obtain M1 and M0, and
then 3 word-level XOR operations.

On the other hand, the right-to-left reduction algorithm performs the operation

c(x) := c(x) + (xsw + xtw+u + 1)C0

in order to reduce the least significant word of C0 of c(x). This implies that we add C0 to Cs

and C0, taking care of the part c(x) + (xsw + 1)C0. In order to perform, the operation c(x) :=
c(x) + xtw(xuC0), we shift C0 to the left u times, obtaining a 2-word number (M ′

1M
′
0) as before.

We then add M ′
1 and M ′

0 to Ct+1 and Ct, respectively. The final reduction operation is

Cs · · · Ct+1 Ct · · · C2 C1

C0 M ′
1 M ′

0

The addition of the least significant words C0 + C0 = 0 is ignored. The right-to-left reduction
algorithm requires a few bit operations to compute M ′

1 and M ′
0, followed by 3 word-level XOR

operations.

12



9.2 All-One-Polynomials

In this case, the generating polynomial n(x) will be of the form

n(x) = xk + xk−1 + · · · + x + 1 .

It is known that an all-one-polynomial is irreducible if and only if k + 1 is prime and 2 is primitive
modulo k + 1 [5]. For k ≤ 100, the all-one-polynomial is irreducible for the following values of k:
2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, and 100.

The reduction is often performed using the polynomial (x + 1)n(x) = xk+1 + 1. Since k + 1 is
not an integer multiple of w, the exact word-level shifting is not possible with this polynomial. In
this case, we need to perform the operation on the (s + 1)-word partial product c(x)

c(x) := c(x) + (xsw+1 + 1)A

where A is a 1-word number obtained from Cs, as we will explain shortly. Since the most significant
word of the new c(x) needs to be zero, we obtain

Cs + (Ax) = 0 ,

and therefore, Ax = Cs. If the least significant bit of Cs, denoted as ck, is equal to zero, the
computation of A is very simple: A = Cs/x, i.e., Cs is shifted 1 bit to the right to obtain A. Thus,
A is actually an (w − 1)-bit number, and when Ax is added to Cs, the result is zero. The final
reduction is performed using only one XOR operation as

Cs−1 Cs−2 · · · C1 C0

A

However, when ck is not equal to zero, we have no other choice except to add the entire n(x) to
c(x). This implies that we add the w-bit all-one-polynomial 2w − 1 = (11 · · · 1) = 1w to each word
of c(x) starting from 0 ending at s − 1, as

Cs−1 Cs−2 · · · C1 C0

1w 1w · · · 1w 1w

This operation makes the least significant bit ck zero. Therefore, if ck is nonzero, we need to
perform an additional s XOR operations to reduce the (s + 1)-word partial product c(x).

On the other hand, the right-to-left reduction algorithm performs

c(x) := c(x) + (xsw+1 + 1)C0

in order to reduce the least significant word C0 of c(x). When C0 is added to c(x), the new least
significant word C0 will be zero. However, we also need to add xsw+1C0 to c(x). If the most
significant bit cw−1 of C0 is zero, this operation is easily accomplished. We compute A0 = C0x,
and since cw−1 is zero, A0 fits into w bits, i.e., 1-word. The following operation accomplishes the
reduction:

Cs Cs−1 · · · C1

A0

If cw−1 is not zero, then A0 is no longer a 1-word number: it is a (w + 1)-bit number containing a
one its wth position: A0 = (1cw−1cw−2 · · · c00). The reduced partial product in this case becomes

c(x) := (1 CsCs−1 · · ·C2C1) .

13



As in the case for the left-to-right reduction algorithm, we have no other choice except to add the
entire all-one-polynomial n(x) in order to reduce the most significant bit:

Cs Cs−1 · · · C2 C1

1w 1w · · · 1w 1w

Therefore, when cw−1, we need to perform an additional s XOR operations to reduce the (s+1)-word
partial product c(x).

10 Integer Case

In this section we consider the extension of the table lookup reduction method to the integers. We
are interested in reducing the (s + 1)-word integer a modulo n, where n is an arbitrary integer of
length s words. In the following, we show that the right-to-left reduction algorithm works if and only
if n is odd. On the other hand, the left-to-right reduction algorithm works for n > 2k+w/(2w + 1),
but it is inefficient.

First we concentrate on the right-to-left reduction algorithm. Let i ∈ Iw and mi = in. Since
n is an s-word number and 0 ≤ i ≤ 2w − 1, the number mi for all i is an (s + 1)-word number,
represented as

mi = (mi,smi,s−1 · · ·mi,1mi,0) .

The table T2 is constructed by the right-to-left reduction algorithm using the least significant words
mi,0 as

T1(−mi,0) = (mi,smi,s−1 · · ·mi,1) .

We note the minus sign in the index, which helps us to add the table entry to the partial product,
instead of subtracting it. An important requirement is that all mi,s be unique for i ∈ Iw. This
way we construct the complete table of the multiples of n to be added to the partial product. The
uniqueness of the least significant words depends on whether n is odd, which is easily proven as
follows.

Theorem 3 The least significant words of mi = in are unique for i ∈ Iw if and only if n is odd.

Proof The least significant word of mi is given as in mod 2w. The set of residues in mod 2w for
i ∈ Iw is complete if and only if gcd(n, 2w) = 1. This is satisfied when n is odd. �

Therefore, the right-to-left reduction algorithm used in the Montgomery multiplication and
squaring algorithms works in the integer case for an odd n only. This gives us a table lookup
based Montgomery multiplication algorithm, which is more efficient than the regular Montgomery
multiplication since the reduction step is significantly simplified. Furthermore, there is no need to
compute n′

0 = −n−1
0 .

Unfortunately, the left-to-right reduction algorithm does not work as well. It is impractical for
two main reasons: 1) The most significant words are not always unique, 2) Even when they are
unique, the left-to-right reduction cannot use addition in place of subtraction since this will cause
a carry to higher order bits. As an example, we take w = 3 and n = 35 = (100 011), and produce
the table of values mi = in below:

14



i mi = in

001 000 100 011
010 001 000 110
011 001 101 001
100 010 001 100
101 010 101 111
110 011 010 010
111 011 110 101

An inspection of the above table shows that the most significant words are not unique for n = 35,
for example, 001, 010, and 011 appear twice, while 100, 101, 110, and 111 do not appear. We prove
below that collisions occur if n < 2k+w/(2w + 1).

Theorem 4 If n < 2k+w/(2w + 1), then, there is always a collision, i.e., there are at least two
equal most significant words. Otherwise, the most significant words are unique.

Proof We consider all multiples with s words. Let I be the integer such that In < 2k+w ≤ (I+1)n,
i.e., In is the greatest multiple of n, that has (s + 1) words. Note that the difference of any two
consecutive multiples is n, which is less than 2k, and thus, the difference of the most significant
words of the consecutive multiples can be at most one. In particular, In has 2w − 1 = 1 · · · 1 as the
most significant word. Thus, the most significant words form a monotone increasing sequence. As
the largest one is 1 · · · 1, all possible single words exist among them. Therefore, we have I ≥ 2w.
When I = 2w, we have uniqueness and when I > 2w we have collision(s).

For n < 2k+w/(2w + 1), using the definition of I, we have

2k+w ≤ (I + 1)n < (I + 1)(2k+w)/(2w + 1) ,

which yields 2w < I, i.e., we always have a collision. For n ≥ 2k+w/(2w +1), again by the definition
of I, we have

2k+w > In ≥ 2k+w/(2w + 1)I ,

which yields 2w + 1 > I, i.e., we have no collision. �

During the reduction, we need to make sure that the number we subtract is less than the partial
product. This can be done by comparison, and if the selected multiple is larger, we can use the
previous multiple of n instead. If the most significant words of mis are not unique, i.e., if there are
collisions, then we have the problem of choosing the correct multiple. We can solve this problem by
assigning the smallest multiple for all of the of the indices at which the collision occurs, which will
reduce the probability of a negative result. For example, for the most significant word 001, we can
assign the smaller multiple which is 001 000 110. Similarly, we can use 010 001 100 and 011 010 010,
for the most significant words 010 and 011, respectively. However, in order to reduce the products
with the most significant words not in our list, we will have to either assign the largest multiple
011 110 101 to all of them or continue to produce more multiples until we get all possible most
significant words. Note that, even after using this method, we still have to compare the numbers
and use the previous multiple if necessary. In short, when there is a collision, the proposed table
lookup approach is not practical.

15



11 Conclusions

In this paper, we proposed a table lookup based reduction method for performing the standard
and Montgomery multiplication and squaring operations in GF (2k) using the polynomial basis.
The proposed method yields word-level algorithms, enabling software implementations of the finite
field arithmetic operations which find applications most notably in elliptic curve cryptography. We
treated the special irreducible polynomials and the integer case in detail and gave the algorithmic
details for these methods together with the complexity analysis in terms of the number of basic
arithmetic operations. The proposed algorithm is more efficient than the previously published
results, and in the case of special irreducible polynomials (particularly, trionomials), the proposed
method reduces to already known algorithms found in the literature.

In the integer case, the right-to-left reduction algorithm works well, providing an efficient version
of the Montgomery multiplication algorithm. However, the left-to-right reduction algorithm is not
efficient mainly due to the fact that the most significant words of the integer multiples of the
modulus are not unique.

References

[1] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22:644–654, November 1976.

[2] Ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). Design, Codes and Cryptography,
14(1):57–69, April 1998.

[3] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. New York,
NY: Cambridge University Press, 1994.

[4] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Boston, MA: Kluwer
Academic Publishers, 1987.

[5] A. J. Menezes, editor. Applications of Finite Fields. Boston, MA: Kluwer Academic Publishers,
1993.

[6] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Boston, MA: Kluwer Academic
Publishers, 1993.

[7] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key exchange with elliptic
curve systems. In D. Coppersmith, editor, Advances in Cryptology — CRYPTO 95, Lecture
Notes in Computer Science, No. 973, pages 43–56. New York, NY: Springer-Verlag, 1995.

[8] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A fast software
implementation for arithmetic operations in GF(2n). In K. Kim and T. Matsumoto, editors,
Advances in Cryptology — ASIACRYPT 96, Lecture Notes in Computer Science, No. 1163,
pages 65–76. New York, NY: Springer-Verlag, 1996.

16


