
A Divide-and-Conquer Algorithm

for Functions of Triangular Matrices ∗

Ç. K. Koç
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331

Technical Report, June 1996

Abstract

We propose a divide-and-conquer algorithm for computing arbitrary functions of upper triangular
matrices, which requires approximately the same number of arithmetic operations as Parlett’s algo-
rithm. However, the new algorithm has better performance on computers with two levels of memory
due to its block structure and thus, less memory-cache traffic requirements. Like Parlett’s algorithm,
the new algorithm also requires that the eigenvalues (main diagonal elements) of the input matrix
be distinct, and computes the matrix function nearly as accurately.

1 Introduction

Let A be an n × n matrix with entries from the real or complex field, and f(·) be an analytic
function. We are interested in computing the matrix function f(A). Specific methods have been
developed for specific functions, e.g., matrix square-root, matrix sign function, matrix exponential,
and so on. The preferred approach for computing an arbitrary function of a square matrix is via
Schur decomposition: We first decompose A as A = QTQH , and then compute f(A) = Qf(T)QH ,
where T is an upper triangular matrix [3]. This way the computation of f(A) for an arbitrary
matrix A is reduced to the computation of F = f(T) for an upper triangular matrix T . Parlett has
given an O(n3) algorithm for computing arbitrary functions of upper triangular matrices [5]. In
fact, to the best of our knowledge, Parlett’s algorithm is the only algorithm known for performing
this task. Parlett’s algorithm is derived using the property that the matrices T and F commute,
i.e.,

FT = TF . (1)

Parlett shows that by expanding the matrix multiplication and solving for fij in the above, we
obtain the summation formula

fij = tij
fjj − fii

tjj − tii
+

1
tjj − tii

j−1∑
k=i+1

(tikfkj − fiktkj) . (2)

Parlett’s algorithm starts with computing the main diagonal entries of F . Since the main diagonal
entries tii are the eigenvalues of T , fii is calculated by applying f to each tii, i.e., fii = f(tii).

∗This work is supported in part by the National Science Foundation under grant ECS–9312240.

1

This step requires Kn arithmetic operations, assuming a single scalar function evaluation requires
K arithmetic operations. After computing the main diagonal entries, the algorithm computes the
superdiagonals one at a time, using the summation expression (2). The Lth superdiagonal contains
n−L elements for L = 1, 2, . . . , n−1. Since the computation of each superdiagonal element requires
4L arithmetic operations, the number of arithmetic operations for computing F is found as

Kn +
n−1∑
L=1

(n − L)(4L) = Kn +
2
3

(n3 − n) . (3)

We must remark that when T has repeated (or very close) eigenvalues, i.e., tii = tjj (or tii ≈ tjj)
for some i �= j, Parlett’s algorithm cannot be used (or will give inaccurate results). Alternative
techniques for the repeated eigenvalue case are discussed in [5, 3].

In this paper we provide a divide-and-conquer algorithm as an alternative to Parlett’s algorithm,
which is also derived from the commutativity relationship (1). The new algorithm is of the same
order of complexity as Parlett’s algorithm, however, it seems to have some advantages.

2 Derivation of the Algorithm

Let n = 2k and the matrices T and F be partitioned as

T =

[
T1 T2

0 T3

]
and F =

[
F1 F2

0 F3

]
,

respectively. Here T1, F1 ∈ Ck×k and T3, F3 ∈ Ck×k are upper triangular, and T2, F2 ∈ Ck×k are
full matrices. Here we use the commutativity relationship (1), and expand the matrix equation
FT = TF in terms of the products of the matrix blocks as

T1F1 = F1T1 ,
T3F3 = F3T3 ,

T1F2 + T2F3 = F1T2 + F2T3 .

Since T1 and T3 are upper triangular, we have F1 = f(T1) and F3 = f(T3). Assuming F1 and
F2 have already been computed, we calculate C = F1T2 − T2F3, and proceed to solve the matrix
equation

T1F2 − F2T3 = C (4)

in order to compute F2. This matrix equation is known as the Sylvester equation [3]. Let λi and µi

for i = 1, 2, . . . , k be the eigenvalues (diagonal elements) of T1 and T3, respectively. The Sylvester
equation (4) has a unique solution F2 if and only if λi �= µj for all i and j. This unique solution
can be found using the Bartels-Stewart algorithm [1].

Thus, the divide-and-conquer matrix function evaluation algorithm first calls itself twice in
order to compute the half-sized matrices F1 = f(T1) and F3 = f(T3), and then solves a Sylvester’s
equation using the Bartels-Stewart algorithm in order to compute F2. In Figure 1, we give the
recursive matrix function evaluation algorithm as a Matlab routine, which accepts the matrix T
of size n (which is not required be a power of 2) and the function f(·), and computes the upper
triangular matrix F = f(T).

2

Figure 1: Recursive matrix function evaluation.

function f = tfun(t,fun);
[n,mm] = size(t);
if n < 2

f = feval(fun,t);
else

m = floor(n/2); u = 1:m; v = m+1:n;
f1 = tfun(t(u,u),fun);
f3 = tfun(t(v,v),fun);
f2 = sylvester(t(u,u),t(v,v),f1*t(u,v)-t(u,v)*f3);
f = [f1 f2;zeros(n-m,m) f3];

end

The subroutine sylvester in the above Matlab routine solves the Sylvester equation AX−XB = C
using the Bartels-Stewart algorithm, where A ∈ Ck×k and B ∈ Cm×m are upper triangular matrices
and C ∈ Ck×m is a full matrix. Let Ci and Xi be the ith rows of the matrices C and X, respectively.
The Bartels-Stewart algorithm first solves the lower triangular system

(akkIm − BT)XT
k = CT

k , (5)

and obtains Xk, i.e., the last row of X. The remaining rows of X are obtained by applying block
back-substitution as

(aiiIm − BT)XT
i =

CT

i −
k∑

j=i+1

aijX
T
j

 (6)

for i = k − 1, k − 2, . . . , 1. We give the Matlab routine in Figure 2.

Figure 2: The Bartels-Stewart algorithm for the Sylvester equation.

function x = sylvester(a,b,c);
[k,kk] = size(a);
[m,mm] = size(b);
b = -b’;
x = zeros(k,m);
x(k,:) = ((b+a(k,k)*eye(m))\(c(k,:))’)’;
for i=k-1:-1:1

t = zeros(m,1);
for j=i+1:k

t = t + a(i,j)*(x(j,:))’;
end
r = (c(i,:))’ - t;
x(i,:) = ((b+a(i,i)*eye(m))\r)’;

end

The new matrix function evaluation algorithm as given in Figure 1 is a recursive algorithm,
however, it can be ‘unrolled’ to obtain a non-recursive algorithm. Let n be a power of 2, i.e.,
n = 2d. The non-recursive algorithm first applies the function f to the main diagonal. It then goes
through d steps for i = 1, 2, . . . , d. Prior to the ith step the evaluation of n/2i−1 matrix blocks (of

3

dimension 2i−1×2i−1) in the main diagonal has been completed. During the ith step, the algorithm
uses these n/2i−1 matrix blocks in pairs, and solves n/2i Sylvester equations in order to obtain
n/2i matrix blocks (of dimension 2i × 2i) required for the next step. The non-recursive algorithm
is illustrated in Figure 3 for n = 8 and the square-root function.

Figure 3: Computation of the square-root of an 8 × 8 matrix.

 16 -15 -76 -6 4 28 -30 -20
 0 1 -50 16 -52 -39 17 -84
 0 0 81 -40 48 104 34 126
 0 0 0 1 32 18 -32 29
 0 0 0 0 49 112 -6 89
 0 0 0 0 0 81 60 -51
 0 0 0 0 0 0 1 -7
 0 0 0 0 0 0 0 36

 4 -3 -7 -8 5 1 5 -2
 0 1 -5 -2 -3 0 6 -3
 0 0 9 -4 4 4 3 7
 0 0 0 1 4 -1 -1 -1
 0 0 0 0 7 7 -6 8
 0 0 0 0 0 9 6 -3
 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 6

 4 -3 -7 -8 4 28 -30 -20
 0 1 -5 -2 -52 -39 17 -84
 0 0 9 -4 48 104 34 126
 0 0 0 1 32 18 -32 29
 0 0 0 0 7 7 -6 8
 0 0 0 0 0 9 6 -3
 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 6

 4 -3 -76 -6 4 28 -30 -20
 0 1 -50 16 -52 -39 17 -84
 0 0 9 -4 48 104 34 126
 0 0 0 1 32 18 -32 29
 0 0 0 0 7 7 -6 89
 0 0 0 0 0 9 60 -51
 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 6

 4 -15 -76 -6 4 28 -30 -20
 0 1 -50 16 -52 -39 17 -84
 0 0 9 -40 48 104 34 126
 0 0 0 1 32 18 -32 29
 0 0 0 0 7 112 -6 89
 0 0 0 0 0 9 60 -51
 0 0 0 0 0 0 1 -7
 0 0 0 0 0 0 0 6

We give the non-recursive algorithm in Figure 4 as a Matlab routine. This routine accepts the
upper triangular matrix T of any size and the function f(·), and computes the upper triangular
matrix F = f(T).

Figure 4: The non-recursive matrix function evaluation.

function f = tfun(t,fun);
[n,mm] = size(t);
f = diag(feval(fun,diag(t)));
d = log(n)/log(2);

4

for i = 1 : d
s = 2^i;
for j = 0 : n/s -1

u = j*s+1 : j*s + s/2 ;
v = j*s + s/2 + 1 : (j+1)*s ;
f(u,v) = sylvester(t(u,u),t(v,v),f(u,u)*t(u,v)-t(u,v)*f(v,v));

end
if mod(n, s) ~= mod(n, 2*s) & i ~= d

u = n - s - mod(n,s) + 1 : n - mod(n, s);
v = n - mod(n, s) + 1 : n;
f(u,v) = sylvester(t(u,u),t(v,v),f(u,u)*t(u,v)-t(u,v)*f(v,v));

end
end

In the above routine, the function mod(a,b) returns the remainder of a divided by b, and can be
implemented in Matlab as

function m = mod(a,b)
m = a - floor(a/b)*b;

3 Computational Complexity

In this section we analyze the computational complexity of the new algorithm for computing an
arbitrary function of an n×n triangular matrix T . We will assume n = 2d for simplicity of analysis
although the algorithm is suitable for any n. As seen in the Matlab routine given in Figure 1, we
apply the matrix function evaluation algorithm to each of the half-sized blocks F1 = f(T1) and
F3 = f(T3), and then solve a Sylvester matrix equation in order to compute F2. Thus, the number
of arithmetic operations required to compute F = f(T) for an n × n matrix is given as

T (n) = 2T (n/2) + U(n/2) + S(n/2) ,

where S(k) is the number of arithmetic operations required for solving a Sylvester matrix equation
of size k, and U(k) is the number of arithmetic operations needed to compute the k × k matrix
C using C = F1T2 − T2F3, which is easily found to be U(k) = 2k3 + k2. When n = 1, the
algorithm performs a scalar function evaluation f(·), which we assume takes K arithmetic steps,
i.e., T (1) = K.

The Bartels-Stewart algorithm solves the Sylvester matrix equation by first obtaining Xk as
given by Equation (5). The algorithm then proceeds to solve the remaining Xi for i = k − 1, k −
2, . . . , 1 using Equation (6). As seen from the two nested loops in Figure 2, there are (k− i) scalar-
vector products, (k− i) vector sums, and a single scalar addition to the main diagonal of the matrix
BT . Finally, a lower triangular system of size k is solved. Thus, S(k) can be given as

S(k) = L(k) + k +
k−1∑
i=1

[2k(k − i) + k + L(k)] = k3 + kL(k) ,

where L(k) is the number of arithmetic operations required to solve a lower triangular system of
size k, which is easily found as L(k) = k2, and thus, S(k) = 2k3. Therefore, the divide-and-conquer

5

algorithm requires

T (n) = 2T (n/2) +
n3

2
+

n2

4
arithmetic operations with the initial condition T (1) = K. The solution of this recursion is found
as

T (n) = Kn +
2n3

3
+

n2

2
− 7n

6
. (7)

This analysis applies to both versions (recursive and non-recursive) of the new algorithm. Com-
paring this figure to that of Parlett’s algorithm given by (3), we conclude that the new algorithm
requires approximately the same number of arithmetic operations. Although we found the arith-
metic complexity of the two methods to be the same, we were surprised to observe that the new
algorithm has a much better performance than Parlett’s algorithm when implemented on a scientific
workstation. Table 1 gives the timing results of Parlett’s algorithm, the new recursive algorithm,
and its non-recursive version for computing the square-root of matrices of size ranging from 8 to
1024. We used the Matlab function funm.m, which implements Parlett’s algorithm, and the routines
given in Figures 1, 2, and 3. The Matlab (Version 4.1) routines were run on an HP Apollo Work-
station Model 735 with 256KB instruction and 256KB data caches, and 144 MB main memory.
The clock speed of the processor is 99 MHz.

Table 1: Timing and speedup values for the algorithms.

Parlett Recursive Non-Recursive
Size Time (ms) Time (ms) Speedup Time (ms) Speedup

8 0.02 0.03 0.66 0.02 1.00
16 0.09 0.09 1.00 0.06 1.50
32 0.36 0.23 1.56 0.19 1.89
64 1.58 0.72 2.19 0.65 2.43

128 7.19 2.40 2.99 2.18 3.29
256 31.90 10.18 3.13 9.38 3.40
384 85.06 26.14 3.25 27.12 3.13
512 173.88 68.10 2.55 68.17 2.55
640 310.33 114.27 2.71 109.36 2.83
768 473.13 202.11 2.34 203.21 2.32
896 752.65 295.19 2.54 290.20 2.59

1024 1016.70 511.64 1.98 508.64 1.99

As can be seen from Table 1, the recursive and non-recursive versions of the new algorithm is up to
3 times faster than Parlett’s algorithm. The reason behind this ‘mysterious’ speedup is due to the
block structure of the new algorithm. Scientific workstations (and most computers) come with two
levels of memory: the cache and the main memory. The cache is the smaller and faster of these two,
and if an element is not found in the cache, a whole block of data containing this element is brought
from the main memory to the cache. If there is a large amount of data swapping between the cache
and the main memory, then the computer spends much of its time performing these operations,
and the performance is degraded. Thus, it is crucial that we use the data in the cache as much
as possible. Parlett’s algorithm computes the elements of the matrix F one superdiagonal element
at a time, and requires a large number of data swaps due to its data dependency requirements.

6

The recursive and non-recursive algorithms presented in this paper, on the other hand, are block
algorithms, and tend to use the data much longer before requiring a new data block. It was pointed
out by Golub and van Loan [3, Page 47] that

... computers having a cache tend to perform better on block algorithms.

In Appendix I, we give a simplified analysis of data swaps between the cache and the main memory
for Parlett’s algorithm and the new algorithm. This analysis shows that the divide-and-conquer
algorithm requires fewer data swaps than Parlett’s algorithm, and thus, is expected to run faster.
Furthermore, the non-recursive algorithm has better performance than the recursive algorithm,
since the overhead of recursive function calls are avoided.

4 Numerical Experiments

We have performed some numerical experiments comparing the results of the divide-and-conquer
algorithm to those of Parlett’s algorithm In the first experiment, we have computed the square-root,
cube-root, exponent, and logarithms of randomly generated upper-triangular 64 × 64 matrices T
with a selected eigenvalue separation min |tii − tjj | for 1 ≤ i, j ≤ 64. Let F̂ and F be the matrices
computed by the divide-and-conquer and Parlett’s algorithms, respectively. Table 2 shows the
relative error values computed by F̂ − F‖/‖F‖, where ‖ · ‖ denotes the 2-norm of a matrix.

Table 2: Error values for some matrix functions and eigenvalue separations.

min |tii − tjj |
10−3 10−4 10−5 10−6

square-root 4.27 · 10−10 4.16 · 10−9 1.02 · 10−8 2.00 · 10−7

cube-root 4.02 · 10−10 3.70 · 10−9 8.11 · 10−9 2.95 · 10−7

logarithm 8.99 · 10−10 6.42 · 10−9 6.68 · 10−8 1.15 · 10−7

exponent 4.47 · 10−15 2.14 · 10−14 9.43 · 10−14 9.90 · 10−14

Also in Table 3, we compare the new algorithm to Parlett’s algorithm for computation of square-
root and cube-root of upper triangular matrices. Here we calculate the relative error terms using
‖F̂ 2−T‖/‖T‖ and ‖F 2−T‖/‖T‖ for the square-root function, and ‖F̂ 3−T‖/‖T‖ and ‖F 3−T‖/‖T‖
for the cube-root function. Here F̂ and F are the matrices computed by the divide-and-conquer
and Parlett’s algorithms, respectively.

Table 3: Relative error for the square-root and cube-root functions.

min |tii − tjj |
10−3 10−4 10−5 10−6

square-root Parlett 1.70 · 10−8 1.64 · 10−7 1.54 · 10−6 1.14 · 10−5

New 7.08 · 10−8 7.82 · 10−7 4.56 · 10−6 1.14 · 10−5

cube-root Parlett 1.78 · 10−11 2.59 · 10−10 3.57 · 10−10 2.19 · 10−8

New 2.55 · 10−11 5.53 · 10−10 2.18 · 10−10 5.11 · 10−8

Examining the tables, we conclude that the new algorithm computes these matrix functions almost
as accurately as Parlett’s algorithm, perhaps slightly less. Parlett’s algorithm and the new algorithm
both produce poor results when the matrix T has close eigenvalues.

7

The numerical problems in the new algorithm are due to the solution of the Sylvester equation.
It is shown in [2] that the error in the computed solution of the Sylvester equation satisfies

‖F̂2 − F2‖f

‖F2‖f
≤ 4u(‖T1‖f + ‖T3‖f) ‖φ−1‖ , (8)

where u denotes the unit roundoff, ‖ · ‖f is the Frobenius matrix norm, and

‖φ−1‖ =

(
min
X �=0

‖T1X − XT3‖f

‖X‖f

)−1

.

It can be shown that

min
X �=0

‖T1X − XT3‖f

‖X‖f
≤ min |λ − µ| ,

where λ ∈ σ(T1) and µ ∈ σ(T3). Thus, the error in the computed solution of the Sylvester equation
F̂2 grows as the eigenvalues of T come close.

5 Conclusions

We have given a divide-and-conquer algorithm for computing functions of upper triangular matri-
ces. The algorithm requires approximately the same number of arithmetic operations as Parlett’s
algorithm, however, runs up to 3 times faster on computers having a cache due to its block structure.
The numerical properties of the algorithm seem to be similar to those of Parlett’s algorithm.

Finally we note that the divide-and-conquer algorithm can be parallelized to compute an arbi-
trary function of an n × n triangular matrix in O(log3 n) time using O(n6) processors [4].

References

[1] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C. Communi-
cations of the ACM, 15(9):820–826, 1972.

[2] G. H. Golub, S. Nash, and C. F. van Loan. A Hessenger-Schur method for the problem AX +
XB = C. IEEE Transactions on Automatic Control, 24(6):909–913, December 1979.

[3] G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD: The Johns Hopkins
University Press, 3rd edition, 1996.

[4] Ç. K. Koç and B. Bakkaloǧlu. A parallel algorithm for functions of triangular matrices. Com-
puting, 57(1):85–92, 1996.

[5] B. N. Parlett. A recurrence among the elements of functions of triangular matrices. Linear
Algebra and its Applications, 14:117–121, 1976.

8

Appendix I

Our analysis is similar to that of Golub and van Loan [3]. We partition the matrices T and F
into blocks of rows such that each block contains m rows. We assume that the cache can hold
approximately 2m + 1 rows, thus, only 1 block of T and 1 block of F is present in the cache at
a given time. If an element of T or F is not found in the cache, then a whole block (m rows) is
loaded from the main memory. This operation is called a swap. In the following analysis we count
the total number of swaps required by Parlett’s and the divide-and-conquer algorithms.

Parlett’s algorithm first computes the main diagonal entries of F , and proceeds by computing
the superdiagonals one at a time for L = 1, 2, . . . , n − 1. An element on the Lth superdiagonal
requires its horizontal and vertical neighbors [5]. In order to obtain the vertical neighbors, the
algorithm requires approximately L/m swap operations. Since there are (n − L) elements on the
Lth superdiagonal, the total number of swaps is calculated as

n−1∑
L=1

(n − L)
L

m
=

n3 − n

6m
≈ n3

6m
. (9)

On the other hand, the divide-and-conquer algorithm goes through d = log2(n) steps for i =
1, 2, . . . , d. During the ith step the algorithm performs 2 × (n/2i) = 2d−i+1 matrix products and
n/2i = 2d−i calls to the subroutine sylvester with matrices of size 2i−1 × 2i−1. Let τ1(k) and
τ2(k) be the number of swap operations required by the matrix product and Sylvester routines,
respectively. Then, the number of swap operations required by the non-recursive matrix function
evaluation algorithm is found as

d∑
i=1

[2d−i+1τ1(2i−1) + 2d−iτ2(2i−1)] .

It is shown in [3] that τ1(k) = 2k/m + k2/m2. In order to calculate τ2(k), we take a closer look
at the Matlab subroutine sylvester given in Figure 2. First, a scalar is added to the diagonal
elements of a k×k matrix. A single swap is required to obtain the scalar element a(k, k), and k/m
swaps are required to add it to the diagonal of the matrix b. We use a single swap operation to
obtain a row of c. while k/m swaps are required to solve the lower triangular system. Therefore,
the solution of the first system requires 2k/m + 2 swap operations. Then, k − 1 such systems
is solved. The j loop needs k − i rows of x (k − i)/m swap operations. There is a single swap
operation to obtain a(i, j) for all j. Similarly, there is a single swap operation to obtain the ith row
of c. Finally, 2k/m + 2 swap operations are required to obtain the solution of the lower triangular
system. Thus, the total number of swap operations is found as

τ2(k) = 2 +
2k

m
+

k−1∑
i=1

(
k − i

m
+ 4 +

2k

m

)
=

5k2 − k

2m
+ 4(k − 1) + 2 .

The total number of swap operations required by the non-recursive matrix function evaluation is
then calculated as

5m + 4
4m2

n2 − 8m2 + 5m + 4
4m2

n +
8m2 + 7m

4m2
n log(n) + 2 ≈ 5n2

4m
. (10)

Comparing (9) to (10), we conclude that the divide-and-conquer algorithm requires fewer swap
operations than Parlett’s algorithm.

9

