
J Cryptogr Eng
DOI 10.1007/s13389-017-0175-4

REGULAR PAPER

Parallel bitsliced AES through PHAST: a single-source
high-performance library for multi-cores and GPUs

Biagio Peccerillo1 · Sandro Bartolini1 · Çetin Kaya Koç2

Received: 24 January 2017 / Accepted: 16 October 2017
© Springer-Verlag GmbH Germany 2017

Abstract PHAST library is a high-level heterogeneous
STL-like C++ library that can be targeted on multi-core
processors and Nvidia GPUs. It permits to exploit the
performance of modern parallel architectures without the
complexity of parallel programming. The library manages
the programming and critical fine tuning of the parallel
execution on both platforms without interfering with the
application code structure, while maintaining the possibil-
ity to use architecture-specific features and instructions.
In cryptography, performance and architectural efficiency
of software implementations is crucial. This is witnessed
by the extensive research in highly optimized and special-
ized versions of many protocols. In this paper, we assess
the performance overhead and productivity improvement
achievable through the PHAST library. We implement a
pseudo random number generator (PRNG) based on cache-
timing-attack resistant AES. We compare it with the fastest
implementations in both CPU and Nvidia GPU domains.
Achieved results show that the PHAST code is shorter and
simpler than the state-of-the-art implementations. Its source
length is 59.59% of the reference CUDA C implementa-
tion and 88.18% of the sequential C++ version for CPUs,
despite being the same for both targets. It is also far less com-
plex in terms of McCabe’s and Halstead’s metrics. Results

B Biagio Peccerillo
peccerillo@diism.unisi.it

Sandro Bartolini
bartolini@dii.unisi.it

Çetin Kaya Koç
koc@cs.ucsb.edu

1 Dipartimento di Ingegneria dell’Informazione e Scienze
Matematiche, Università degli Studi di Siena, Siena, Italy

2 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

show that these productivity improvements induce a limited
performance overhead of the library layer: less than 5% on
single-thread execution for CPUs and around 10% on Nvidia
GPUs. Furthermore, performance of thePHASTPRNGauto-
matically scales with the available cores in a nearly linear
fashion, allowing programmers to fully exploit multi-core
resources with the same source code.

Keywords AES PRNG · Heterogeneous programming ·
Multi-cores · GPUs

1 Introduction

Replication of components is nowadays the main driver
of hardware architectural improvements. Parallel devices
dominate the market and deliver ever-increasing raw com-
putational capabilities [14,31]. However, the theoretical
aggregate performance of such devices can be exploited
only through fairly complex parallel programming strate-
gies, which typically need to be fine-tuned on the specific
architecture to fully harness its potential.

The most common classes of parallel systems are multi-
core processors and GPUs, that can often be found in the
same system, making it a so-called heterogeneous system.
Since GPUs are no longer limited to graphics-related com-
putations, both multi-cores and GPUs can be programmed
to solve general purpose problems. This gives programmers
an additional degree of freedom (and complexity), allowing
them to take advantage of few complex units (multi-cores)
and/or many simple units (GPUs) in parallel, depending on
the application problem at hand (e.g., cryptography, physics,
computer vision).

However, there is not a single native approach that allows
programmers to write code compatible with both multi-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-017-0175-4&domain=pdf
http://orcid.org/0000-0002-4998-0092

J Cryptogr Eng

cores and GPUs, or simply with GPUs of different vendors.
Coding style, approach and optimization are very specific
of the target, almost never reusable on another one and
absolutely mandatory for performance. For instance, while
multi-cores can be programmed in terms of standard C++11
threads [15], the native language of Nvidia GPUs is CUDA
C [30], a subset of C++with proprietary extensions shipped
with its own compiler that requires programmers to express
their program in terms of kernels, blocks of threads, etc.
Heterogeneous, non-native solutions exist, but they usually
fail in the purpose of providing a simple, familiar interface
that permits the production of efficient code with limited
effort. It is the case, for instance, of OpenCL [18], which is
considered the de-facto standard of heterogeneous program-
ming solutions, but being quite low-level for performance
reasons, needs nontrivial specific expertise to be mastered.
So it cannot be considered a widely adoptable technology.
We define a technology as widely adoptable if its usabil-
ity features and abstractions make it effectively mastered by
experts of sequential programming in a specific application
domain (e.g., cryptography, image processing, finite element
simulation, finance), without requiring them to be experts of
parallel and heterogeneous programming.

In this paper we present Parallel Heterogeneous Archi-
tecture STL-like Template (PHAST) library, which is a
high-level C++ library which allows to write efficient and
concise code once, through high-abstraction mechanisms
and in a sequential fashion, letting the library manage the
targeting toward heterogeneous parallel platforms, i.e., cur-
rently multi-core CPUs and Nvidia GPUs. Furthermore,
architecture-specific parallelization and tuning parameters
can be adjusted in a way that is independent from application
code.

To assess the potential of PHAST library, we consider
the implementation of a cache-timing-attack resistant AES-
based pseudo random number generator [16,21] as it is
a challenging real-world application with many solutions
available in the literature, which are highly specialized for
specific architectures.

The major contribution of this paper can be summarized
as in the following:

– analysis of the efficiency and expressiveness of PHAST
code by comparing it against state-of-the-art implemen-
tations of AES-based PRNGs. Results show that the
general code is able to run within about 10% from
the highly optimized state-of-the-art versions on various
platforms;

– exemplification of the orthogonality in PHAST between
application code and parallelization/tuning parameters.
We show both performance scaling with the number of
cores in multi-cores, as well as the possibility to iden-

tify the optimal parameter set, and board resource usage
strategies, for different Nvidia boards;

– evaluation of the productivity improvement achievable
using the PHAST library through the measurement of
well-known code productivity metrics [9,23] in compari-
sonwith the considered state-of-the-art implementations.
The achieved improvements (e.g., 8 vs 11 and 68 cyclo-
matic complexity for multi-cores and Nvidia GPUs,
respectively) are significant in themselves but appear
evenmore interesting considering the small inducedover-
head and the single-source code.

The rest of the paper is organized as follows. In Sect. 2
we summarize the story and evolution of parallel architec-
tures to the present day. In Sect. 3 we present pseudo random
number generation based on AES and the implementations
that achieve best performance. In Sect. 4 we present PHAST
library and our implementation of an AES-based PRNG. In
Sect. 5 we compare the performance of our implementation
against the best implementations on multi-cores and Nvidia
GPUs and we also show code productivity metrics of all the
involved PRNGs. Eventually, in Sect. 6 we present the con-
clusions of this paper.

2 Current parallel architectures

From the Eighties until a decade ago the constant improve-
ment in uniprocessors was the main reason for performance
improvement in computing architectures. The main techno-
logical advancements that drove this process were diverse,
with frequency scaling, execution optimization, and cache
memories being the principal ones [37]. Two out of three
seemed to have come to an end around 2004:

– Frequency scaling was considered over when heat dissi-
pation, power consumption, and leakage power reached
a critical threshold [37];

– Execution optimization—i.e., doing more work per
cycle—had been deeply exploited and explored till nowa-
days from various perspectives even if improvements are
typically not as big as in the past [37]. Further advance-
ments in ILP through complex execution engines, in
particular, diminished their attractiveness mainly due to
power growing faster than performance [12].

At a certain moment in time, improvements in cache technol-
ogy were the only ones likely to go on [37], to capture bigger
and bigger working sets and thus hide main memory latency.
However, with Moore’s Law alive, processor manufacturers
had to find a way to employ the enormous, ever-increasing
number of transistors [6,37].

Also due to the emerging wire-delay issues [19], which
prevented big structures on chip to be kept synchronized,

123

J Cryptogr Eng

Fig. 1 Block diagram of the GP104 Nvidia GPU core. Green squares are CUDA cores organized into 20 Streaming Multiprocessors (SM). Each
SM combines 128 CUDA cores, 256KB register file, 96KB of sharedmemory, 48KB of L1/texture cache and eight texture units (color figure online)

the traditional processor design paradigm faded and the new
trend in performance scaling turned out to be the replica-
tion of independent cores on the same chip, thus investing
in parallel architectures [6]. This design technique gives the
possibility to harness the power of a growing number of tran-
sistors, also increasing the number of operations per unit time
without increasing power demand. Two real-world architec-
tures exemplifying this trend are multi-cores and Graphics
Processing Units (GPUs), which push this trend much fur-
ther than CPUs due to the finer grain at which replication of
computing structures is performed.

2.1 GPUs

GPUmarket is dominated byAMDandNvidia graphic cards.
For the purpose of this paper, we will focus on Nvidia cards.
The support ofAMDcards is planned as futureworks and it is
expected to take advantage from the architectural similarities
among the two.

Modern GPUs are based on an array of Graphics Process-
ing Clusters (GPCs), Streaming Multiprocessors (SMs) and

memory controllers [31], as it is exemplified in Fig. 1 for
GP104 series, which is adopted within GeForce GTX 1080
GPU. Every GPC has a Raster Engine and some SMs and can
be regarded as a self-contained GPU [28]. SMs are highly
parallel multi-core processing units, with tens to hundreds of
simple CUDA cores, thousands of registers, a unified shared
memory unit, a unified L1 cachememory, some texture units,
some Special Function Units (SFUs), some Load/Store units
and some warp schedulers that select fixed-size groups of
parallel threads (called “warps” in Nvidia terminology) and
issue instructions to CUDA cores1 [28,31]. CUDA cores are
relatively simple scalar processors with a pipelined ALU and
a pipelined FPU which support common 32-bit operations,
single- and double-precision floating point data [28]. Mem-
ory controllers are tied to someRaster Operation (ROP) units
and an L2 unified cache that services all load, store and tex-
ture requests [28]. They are connected to thememory die that
features a fast GDDR memory, GDDR5X in its most recent
incarnations [31].

1 The exact amount of these components depends on the generation
and the model of the graphic card.

123

J Cryptogr Eng

The execution model is a classical Single Program Mul-
tiple Data (SPMD), the most common style of parallel
programming [25]. SMs are responsible for executing blocks
of threads by scheduling warps to CUDA cores [31]. Warps
are the atomic units of execution, so that the individual
threads in a warp execute in a SIMD fashion [10,25]. Branch
divergences inside a warp are serialized and synchronized
when all paths are executed, with NOPs being forwarded to
inactive threads [10].

Nvidia GPUs’ programming language is CUDA C, a
C++ subset (no virtual functions, no function pointers, no
standard library, etc) with some extensions, mainly storage
and function annotations and a special syntax to offload
“kernel functions” on the GPU—which is treated as a co-
processor [30]. CUDA programs are divided in two separate
sections, depending on where their execution takes place:
host code and device code. In host code programmers allo-
cate memory, transfer data to/from the GPU and launch
kernel functions to be executed on the GPU. Device code
is mainly kernel functions (invoked from host code, exe-
cute on the device), device functions (invoked from kernel
or device functions, execute on the device) and global data
conveniently annotated. When launching a kernel, program-
mers must specify the size of the grid of execution in terms
of number of blocks, the size of each block, the amount of
dynamic shared memory to use and the particular stream of
execution [30]. Inside a kernel, threads manipulate global2

data, usually depending on their indexes, and can be synchro-
nized block-wise via an API call. A fast shared memory can
be used as a scratchpad to accelerate accesses or to commu-
nicate block-wise [30].

Apart from the aspects related to CUDA programming
model, there are other aspects programmers need to care
about to write optimum code from the performance view-
point. Block sizes must be carefully chosen, global memory
must be accessed in an aligned way [29], shared memory
has a relatively small size and must be wisely managed, and
accessed, so to avoid memory bank conflicts [29], the con-
venience of using constant or texture memory must be taken
in account [29]. Therefore, these many degrees of freedom
make writing highly effective CUDA code challenging.

2.2 Multi-core processors

Multi-cores are the natural evolution of uniprocessors. The
term can be referred to single-chip systems with multiple
cores—often called “multi-cores”—or tomultiple-chip com-
puters, each of which can be a multi-core [12]. The number
of cores can vary from two to dozens, and the communication
between them is essentially achieved via one ormore levels of
shared cache/memory [12]. Especially in high-end ones, each

2 Within the global memory of the video card.

core is usually an autonomous super-scalar processor with
a long pipeline, out-of-order execution, branch-prediction,
vector registers and units, and two levels of cache, with the
third level shared between the cores—it is, for instance, the
case of the Intel i7 series processors [14].

From a Flynn’s taxonomy point of view, multi-cores can
be thought as sharedmemoryMIMDmachines [25]. They are
capable of executing independent programs or independent
flows of execution of the same program at the same time.

In the days of vertical scaling, programs used to gain per-
formancewhen a newprocessor hit themarket just because of
the greater clock frequency. To achieve a similar effect nowa-
days, programmers need to take explicit advantage of the
increased number of parallel cores within the chip. Specifi-
cally, programsneed to bewritten andorganized intomultiple
concurrent flows of execution. The code must be structured
in a flexible number of threads of executions, so to guarantee
load balancing and maximum utilization of the underlying
hardware as it evolves (e.g., increasing the number of cores).
However, as a matter of fact, concurrent programs are hard
to write and very hard to debug [37].

C++ natively supports parallel programming since
C++11 [15]. Before the standardization of threads, locks,
mutexes, etc. programmers were forced to use non-standard,
often platform-dependent libraries and frameworks such as
PThreads [27], Win32 Threads [24], OpenMP [3], Boost.
Threads [35], Intel TBB [34]. Nevertheless, despite stan-
dardization guarantees code-portability, it does not make
concurrent programming any simpler. Moreover, C++11
does not provide any APIs to directly manage thread affin-
ity [15], an aspect that can have a significant impact on
performance as we will briefly show in Sect. 5.

2.3 Heterogeneous programming approaches

A system consisting in different kinds of computing devices
is said to be a heterogeneous system. It is the case, for
instance, of most today’s PCs equipped with a multi-core
processor and a GPU. A programmer willing to run an
application on both of these devices to achieve maximum
performance, would face the necessity to code it in a manner
that is compatible with both of them. As suggested in this
section, adopting standard approaches would mean writing
the application more than once. Doing so would violate the
Don’t Repeat Yourself (DRY) principle [13], would increase
the amount of code to maintain, would be error-prone and,
most importantly, time-consuming. To solve this problem in
a more productive way, a number of heterogeneous libraries
and frameworks have been proposed so far. A quick digest
of them follows.

OpenCL [18] is a C99 CUDA-like approach to heteroge-
neous programming. It is considered the de-facto standard,
but its low-level nature makes its wide adoption difficult.

123

J Cryptogr Eng

Someother approaches prefer to delegate code paralleliza-
tion to the compiler to limit the amount of setup code, but they
also require the user to abandon his/her compiler of choice.
It is the case of C++AMP [7], an open extension to C++11
provided with a Microsoft implementation. It defines an
array_view object on which the programmer can invoke
a parallel_for_each algorithm. Another example is
PACXX [8], a unified programming model implemented as
a custom C++14 Clang-based compiler. Parallel compu-
tation can be expressed via std::async on vectors or
via function annotations. OpenACC [32] is an OpenMP-like
framework that requires the code to be annotated with spe-
cial pragmas, thus defining its own language and constructs to
be interleaved with application code. Other approaches pre-
fer to wrap a low-level solution with high-level constructs.
EasyCL [33] is a thin OpenCL wrapper that defines some
macros and classes to manage part of the setup code under-
the-hood. SYCL [17] is a C++14 layer on top of OpenCL
that supports kernel functions as lambdas. It is a high-level
library, but it still needs the programmer to express him/her-
self viaOpenCL terminology. SkePU [5] and SkelCL [36] are
C++ template libraries based on common algorithmic pat-
terns called skeletons. The former has been implemented on
top of CUDA, OpenCL, and OpenMP, while the latter on top
of OpenCL only. They both need the user to write application
code in terms of skeletons. ArrayFire [38] is an array-centric
high-level wrapper of CUDA or OpenCL. It defines an
array class and it permits to express computation via a
math-resembling syntax. Boost.Compute [22] is an STL-like
library built around OpenCL. It offers containers, algorithms
and iterators and it supports lambda functions as user-
defined kernels. Kokkos [4] is a high-level C++11 library
that wraps CUDA, Pthreads or OpenMP. It defines multi-
dimensional arrays accessible via views. Programmers can
express their computations by passing functors or lambdas
to parallel_for or parallel_reduce algorithms.

In this paper we propose PHAST, a high-level heteroge-
neous C++ library. It is implemented on top of CUDA,
Boost.Threads, or C++11 threads and can be targeted on
Nvidia GPUs or multi-cores. It is based on mono-, bi-
and three-dimensional containers that can be accessed via
different kinds of iterators. Computation is achieved by call-
ing many STL-resembling algorithms (e.g., for_each,
transform, sort, find, …) on ranges of iterators, also
supporting user-defined functors where needed.We also give
the possibility of calling in-functor algorithms on portions of
the iterated containers so to allow a finer grain of parallelism.
Parallelization parameters can be adjusted at need by calling
API functions in a way that is independent from application
code. Moreover, the use of PHAST library does not prevent
the use of architecture-specific constructs that could help per-
formance.

To prove the value of PHAST, in this paper we are
addressing a challenging AES-based PRNG. It is a complex
application that required the work of many researchers to be
optimized to the level we have at the present day in highly
tuned low-level implementations, as we will show in the next
section.

3 AES and its implementations

Pseudo random number generators (PRNGs) are algorithmic
ways to generate sequences of numbers that can be rea-
sonably considered random in specific application contexts.
As Donald Knuth observes, these sequences are important
in many kinds of applications, such as simulation, sam-
pling, numerical analysis, computer programming, decision
making, cryptography, aesthetics, and recreation [20]. The
Advanced Encryption Standard (AES) is a cryptographic
algorithm that has been standardized in 2001 [26]. It has
many properties such as speed, nonlinearity, and portability
that make it a good fit for a high-quality PRNG [11].

Many AES implementations have been proposed so far.
They are equivalent from a statistical point of view, but can
differ in quality by other means. A common requirement
of a good AES implementation is the immunity from side-
channel attacks. Since many implementations make use of
lookup-tables for performance reasons, this is not a common
feature. However, recent implementations proved immune to
cache-timing attacks by replacing lookup-tables and data-
dependent branches with equivalent operations in Galois
fields [16]. For instance, the so-called SubBytes step is an
inversion in GF(256) [16].

Rewriting the entire algorithm as a series of Galois field
operationsmeans implementingAES as a sequence of atomic
boolean instructions [2]. In this case, the most natural rep-
resentation of AES bytes would be as 8 boolean variables
each. Obviously, the performance losswouldmake thewhole
procedure impractical. A solution comes from a technique
known as bit-slicing [16,21]. It is achieved by rearranging the
bits of many AES blocks in groups, so that equivalent bits of
multiple bytes are packed in the same register. This way, the
single atomic boolean operations can be performed between
registers of a convenient size depending on the underlying
architecture. For instance, in [16]Käsper et al. describe a fast
AES implementation that takes advantage of 128-bit wide
XMM registers and SSE instructions. Bit-slicing is, in the
end, a technique to achieve bit-level parallelism and to pro-
cess more AES blocks at once.

Another source of parallelism in AES can come from its
modes of operation. Since it is a block cipher, it has many
modes of operation that regulate how multiple blocks are
encrypted. The most appropriate mode for pseudo random
number generation is CTR [11]. ECBmode is similar to CTR

123

J Cryptogr Eng

and it also can be used to implement a PRNG [21]. Both CTR
and ECB modes require AES blocks to be encrypted inde-
pendently, so both of them expose an intrinsic parallelism.
Programmers can take advantage of it, for instance by using
the multiple cores of a chip-multiprocessor or of a GPU.

3.1 State-of-the-art implementations

We refer to [16] and to [21] as state-of-the-art imple-
mentations of AES, respectively, multi-core-compatible and
GPU-compatible.

Käsper et al. [16] implement a cache-timing-attack resis-
tant bitslicedAES encryption in countermode for 64-bit Intel
processors. Their implementation is 25% faster than the best
of the previous ones, with 7.59 cycles per byte on an Intel
Core 2. Their implementations can be found on authors’web-
sites, written in assembly and QHASM.

Lim et al. [21] describe a deterministicAES-based PRNG
written in CUDAC. Their implementation is a cache-timing-
attack resistant bitsliced AES in ECB mode. It achieves 78.6
Gbps on a GeForce GTX 480, 31-62% faster than the fastest
previous implementation on similar devices. In their code, the
authors addressed many common problems like coalesced
accesses to main memory, shared memory conflict avoid-
ance, fine register allocation to avoid spilling and maximize
occupancy, and so on.

Both implementations are low-level, deeply optimized in
the respective domains, and achieve great performance. We
implemented a general software implementation of a PRNG
based on AES in ECB mode through PHAST, our high-level
heterogeneous library. The same source code will be used
for both Nvidia GPUs and multi-cores, and we will ana-
lyze the performance differences with the above mentioned
highly specialized versions. In the next section we present
our library and our PRNG implementation, then we show its
performance on different architectures. Eventually, we will
also compare programming effort metrics on the considered
implementations to highlight which programming approach
can be more effective from the productivity point of view.

4 PHAST library

PHAST library is a high-level heterogeneous C++ library.
Its inner layers are implemented in CUDA C, Boost.Threads
or C++11 threads and currently allows targeting on Nvidia
GPUs or multi-cores. These layers are not part of the
interface, so users can express their code in a platform-
independent way. In fact, PHAST programmers can code
their applications in terms of containers, iterators, and algo-
rithms in an STL-like fashion, thus using common sequential
techniques.

We provide three kinds of containers: mono-dimensional
vector, bi-dimensional matrix, and three-dimensional

cube. Each of them can be accessed via different kinds of
iterators. For instance, a cube container having dimensions
M × N × O can be iterated in the following ways:

– M × N × O scalar iterators—each one pointing to one
element;

– M × N vector iterators—each one pointing to an O-
dimensional vector;

– M matrix iterators—each one pointing to an N × O-
dimensional matrix;

– grid iterators—each one pointing to a sub-cube in a tiling
fashion.

Ranges of iterators can be used in the many parallel algo-
rithms PHAST library provides, e.g., replace, copy,
generate,find,…. Some algorithms accept user-defined
functors, in which programmers can personalize their com-
putation at need. Library macros permit the definition of
different kinds of functors, each kind being specialized on
a different slicing method of the container. So, for instance, a
vector-functor will work in an algorithm paired with ranges
of vector iterators, and will apply computation to each of the
vectors identified by the range of iterators in parallel. Inside
the body of a functor, users can take advantage of in-thread
versions of the aforementioned STL-resembling algorithms,
so keeping their code concise even in functors.

Different platforms lead to different parallelizations, regu-
lated by different platform-specific parameters. PHAST tries
to infer these parameters, but it does not prevent the users
from explicitly specifying them. So, various API calls can
be invoked by the programmers to allow fine tuning. These
API calls are independent from application code, can have
an impact on performance but do not interfere with the cor-
rectness of the program.

Users could be willing to specialize some portions of
their code according to the underlying device. PHAST does
not prevent them from doing so, and low-level architecture-
specific optimizations are still possible under the scope of
ifdefs or similar constructs.

In brief, the purpose of PHAST library is:

– to allow programmers to write parallel heterogeneous
code at a high-level of abstraction, not worrying about:

– the degree and nature of parallelism of the generated
and executed code (e.g., number of threads and their
relationship with the data they operate on);

– the architectural and language peculiarities of the tar-
get devices (Nvidia GPUs or multi-cores).

– to reach near-native performance on the target devices,
possibly with some application code-independent fine
parameter tuning;

123

J Cryptogr Eng

Fig. 2 A grid of eight elements is applied to vector data, so to iterate
over chunks of eight elements

– to not shield application code from low-level optimiza-
tions such as:

– potential architecture-specific algorithmic refinements
that can be found in the literature, e.g., code replication
on GPUs, branching on multi-cores;

– target-specific ad-hoc instructions, e.g.,__byte_perm
in CUDA code, _mm_shuffle_epi8 in SSE-com-
patible-architecture code.

4.1 Bitsliced implementation of AES using PHAST
library

In AES block-cypher, data encryption is achieved by apply-
ing four basic operations ten to fourteen times, depending
on the desired cryptographic strength required, on a data
block. Such operations are commonly known as SubBytes,
MixColumns, AddRoundKey, and ShiftRows [26]. We have
implemented a general AES code version using PHAST, in
whichwe have applied specific optimizations, inspired by the
highly tuned versions described in [16,21] for multi-cores
and GPUs, respectively.

AES core is a for_each algorithm that works in parallel
with chunks of eight variables at once as seen in the cited
papers. To achieve this, a grid of eight elements is applied to
the data-vector and then iterated as shown in Fig. 2 and in
the following excerpt.

// declare data−vector
phast::vector<uintN_t> data(n);
// define a grid of sub−vectors of size 8
phast::grid<phast::vector<uintN_t> > data_grid(data, 8);
// aes128_func is applied to each sub−vector in parallel
phast::for_each(data_grid.begin(), data_grid.end(), aes128_func);

aes128_func is an instance of the user-defined functor
aes128. We are considering here the 128-bit version of
AES, thereby comprising 10 rounds of the basic operations.
The functor is declared in a separate header file by using
PHAST macros as shown below.

// main functor
_FUNCTOR_HEAD(aes128)

// in−thread container − can be accessed in device code
phast::matrix_th<uintN_t> round_keys;

_VEC_BODY(data)
uintN_t x0, x1, x2, x3, x4, x5, x6, x7;
// data from phast::vector_th data are bitsliced and
// saved in x0...x7 variables

bitslice(data, x0, x1, x2, x3, x4, x5, x6, x7);

add_round_key(x0, x1, x2, x3, x4, x5, x6, x7, round_keys, 0);
// round 1−9
for(int round = 1; round <= 9; ++round)
{

sub_bytes(x0, x1, x2, x3, x4, x5, x6, x7);
shift_rows(x0, x1, x2, x3, x4, x5, x6, x7);
mix_columns(x0, x1, x2, x3, x4, x5, x6, x7);
add_round_key(x0, x1, x2, x3, x4, x5, x6, x7,

round_keys, round);
}
// round 10
sub_bytes(x0, x1, x2, x3, x4, x5, x6, x7);
shift_rows(x0, x1, x2, x3, x4, x5, x6, x7);
add_round_key(x0, x1, x2, x3, x4, x5, x6, x7, round_keys, 10);

// x0...x7 values are retrieved and stored back in
// phast::vector_th data
ibitslice(data, x0, x1, x2, x3, x4, x5, x6, x7);

_FUNCTOR_TAIL

In functor code the four AES phases are clearly visible. As an
example, we also show the implementation of the ShiftRows
phase.

_PHAST_FUNCTION void shift_row(uint2_t& data)
{

uint2_t tmp(data);
data.at(0) = (tmp.at(0) & 0x0000 f f f f u)

| ((tmp.at(0) >> 4) & 0x0 f f f 0000u)
| ((tmp.at(0) << 12) & 0x f0000000u);

data.at(1) = ((tmp.at(1) << 8) & 0x0000 f f00u)
| ((tmp.at(1) >> 8) & 0x000000 f fu)
| ((tmp.at(1) >> 12) & 0x000 f0000u)
| ((tmp.at(1) << 4) & 0x f f f 00000u);

}

_PHAST_FUNCTION void shift_row(uint4_t& data)
{

uint4_t tmp(data);
// data.at(0) = tmp.at(0);
data.at(1) = (tmp.at(1) >> 8) | (tmp.at(1) << 24);
data.at(2) = (tmp.at(2) >> 16) | (tmp.at(2) << 16);
data.at(3) = (tmp.at(3) >> 24) | (tmp.at(3) << 8);

}

_PHAST_FUNCTION void shift_rows(uintN_t& x0, uintN_t& x1,
uintN_t& x2, uintN_t& x3, uintN_t& x4,
uintN_t& x5, uintN_t& x6, uintN_t& x7)

{
shift_row(x0);
shift_row(x1);
shift_row(x2);
shift_row(x3);
shift_row(x4);
shift_row(x5);
shift_row(x6);
shift_row(x7);

}

Function overloading permits the definition of two
shift_row functions, the right one being called depending
on the resolution of the typedef uintN_t, which expands
differently on different platforms: uint2_t on Nvidia

123

J Cryptogr Eng

Table 1 Different operator expansions on different devices

Multi-cores Nvidia GPU

a + = b; a.data = _mm_add_epi32(a.data,
b.data);

a.data[0] + = b.data[0];

a.data[1] + = b.data[1];

a.data[2] + = b.data[2];

a.data[3] + = b.data[3];

GPUs, a vectorial type wrapping two unsigned integers, and
uint4_t on multi-cores, a vectorial type wrapping four
unsigned integers, as in the following.

#ifdef _PHAST_USING_CUDA
typedef uint2_t uintN_t;
#else
typedef uint4_t uintN_t;
#endif

Introducing a typedef that expands differently on differ-
ent architectures was not a necessary choice in terms of
code correctness, since both uint4_t and uint2_t are
fully supported on multi-core processors and Nvidia GPUs.
All the application code could be implemented in terms of
any of them without hampering heterogeneity, but perfor-
mance would have suffered by this choice. In fact, looking
at the code of the two state-of-the-art implementations,
different kind of variables are used: 128-bit integer SSE vec-
tor (i.e., __m128i) in Käsper et al. implementation, that
naturally maps on uint4_t, and vec2 in Lim et al. imple-
mentation, a class wrapping a CUDA uint2 vectorial type
with constructors and operator overloads that naturally maps
on uint2_t. These types defined in PHAST library closely
recall CUDA vectorial types, but are richer than them for two
reasons:

– PHAST types are mapped on SSE types if available, gen-
eral purpose registers otherwise;

– PHAST types are shipped with arithmetic operator over-
loads and constructors.

So, for instance, a uint4_t variablewraps an __m128i on
SSE-capable architectures. In Table 1 an example of differ-
ent operator expansions according to the underlying device
is given.

ShiftRows is a straightforward function that didn’t require
much effort to be implemented. AddRoundKey is also quite
simple, requiring only eight XORoperations between the bit-
sliced variables and the round keys. These operations were
expressed using classical C++ syntax, taking advantage of
the operation overloading on PHAST vectorial types. Mix-
Columns bitsliced implementation can also be expressed via
common XOR operations as can be seen in appendix A
in [16]. SubBytes, being the only phase that is not linear
in GF(256), is maybe the most studied AES phase and many

implementations can be found in the literature [1,2,16,21]. In
particular, we implemented a SubBytes based on Boyar et al.
work, clearly described in [1], and one based on Lim et al.
work, thanks to the source code the authors made available
for our work. Both of these implementations, as well as the
other AES phases, are platform-agnostic and can be run on
GPUs andmulti-cores. For the performance and productivity
analysis, we adopted the second one.

ShiftRows phase is a fitting example of the possibility
to optimize PHAST code by using low-level architecture-
specific constructs. In fact, this operation can take advan-
tage of low-level instructions on SSSE3-compatible pro-
cessors (_mm_shuffle_epi8) and on CUDA devices
(__byte_perm). In the following, ISA versions is used to
denote the implementations that take advantageof architecture-
specific optimizations, while non-ISA versions or plain
versions are used to denote the others.

In the following code excerpt, both shift_row func-
tions (one for each managed vectorial type) have been
optimized to take advantage of architecture-specific instruc-
tion sets. For each of them, the optimizations have been put
under the scope of the if branch of an ifdef clause that
checks what architecture is being used. Conversely, the non-
architecture-specific version has been maintained under the
scope of the else branch. This way, both these functions are
still multi-platform in their nature and can be executed on
multi-cores and Nvidia GPUs, but they also give the possi-
bility to execute optimized code when executed on a specific
architecture.

_PHAST_FUNCTION void shift_row(uint2_t& data)
{
#if defined(_PHAST_USING_CUDA)

data.at(0) = __byte_perm(data.at(0), data.at(0) >> 4, 0x7610u)
| ((data.at(0) << 12) & 0x f0000000u);

data.at(1) = __byte_perm(data.at(1), data.at(1) >> 4, 0x6701u)
| ((data.at(1) << 4) & 0x00f00000u);

#else
uint2_t tmp(data);
data.at(0) = (tmp.at(0) & 0x0000 f f f f u)

| ((tmp.at(0) >> 4) & 0x0 f f f 0000u)
| ((tmp.at(0) << 12) & 0x f0000000u);

data.at(1) = ((tmp.at(1) << 8) & 0x0000 f f00u)
| ((tmp.at(1) >> 8) & 0x000000 f fu)
| ((tmp.at(1) >> 12) & 0x000 f0000u)
| ((tmp.at(1) << 4) & 0x f f f 00000u);

#endif
}

_PHAST_FUNCTION void shift_row(uint4_t& data)
{
#if defined(_PHAST_USING_MULTI_CORE) && defined

(_PHAST_SSSE3)
static const uint4_t mask(0x03020100u, 0x04070605u,

0x09080b0au, 0x0e0d0c0 fu);
data = _mm_shuffle_epi8(data.data, mask.data);

#else
uint4_t tmp(data);
// data.at(0) = tmp.at(0);

123

J Cryptogr Eng

data.at(1) = (tmp.at(1) >> 8) | (tmp.at(1) << 24);
data.at(2) = (tmp.at(2) >> 16) | (tmp.at(2) << 16);
data.at(3) = (tmp.at(3) >> 24) | (tmp.at(3) << 8);

#endif
}

This section showed how PHAST library can improve pro-
grammers’ productivity in writing high-level cross-platform
parallel code. It analyzed the case of an AES-based PRNG
showing how users can focus on application code once and
obtain an implementation that can run on Nvidia GPUs and
multi-cores. The next section shows a performance compar-
ison between PHAST implementations and state-of-the-art
implementations discussed in Sect. 3.1.

5 Results

Since PHAST code can run onmulti-cores andNvidia GPUs,
we tested our implementation on both classes of devices.

5.1 Multi-cores

The multi-core-based machines employed for the experi-
ments are summarized in Table 2.

Our PHAST implementation,which can run on bothCPUs
and Nvidia GPUs, is inspired by Käsper et al. [16] for Mix-
Column step, which is described in the appendix of their
paper [16]. While for SubBytes we implemented the pseu-
docode described in [1] because it is one of the fastest and
general. Käsper et al. is probably the fastest but it is not
general as it explicitly requires SSSE3 ISA support.

Table 2 Multi-core-based machines used for benchmarking

meeseeks maxi

CPU Intel Core
i7-4790K

Intel Xeon
E5-2650 v2

CPU type quad-core
hyper-threaded

dual octa-core
hyper-threaded

CPU frequency 4.00 GHz 2.60 GHz

RAM 16.0 GB 64.0 GB

OS 14.04.1-Ubuntu
3.16.0 x86_64

Debian 3.16.7
x86_64

elwood golia

CPU AMD Phenom II
X6 1100T

Intel Core
i7-6800K

CPU type hexa-core hexa-core
hyper-threaded

CPU frequency 3.30 GHz 3.60 GHz

RAM 16.0 GB 128.0 GB

OS Debian 3.2.65
x86_64

Debian 3.16.0
x86_64

Table 3 Performance comparison (Gbps) between mono-thread AES
PRNGs on CPUs

no-lib
plain

PHAST
plain

no-lib
ISA

PHAST ISA Käsper–Schwabe

meeseeks 1.85 1.82 3.30 3.26 5.09

maxi 1.37 1.31 2.42 2.33 3.99

elwood 0.56 0.59 – – –

golia 1.53 1.46 2.65 2.56 4.18

Käsper–Schwabe results employ a different algorithm for SubBytes
AES step

For multi-cores, as an overall reference, we report also the
highly tuned and architecture-specific, bitslicedAES encryp-
tion in counter mode described in [16] (Käsper–Schwabe
in the following) as it constitutes a landmark in terms of
absolute performance for CPUs, despite not being usable on
different architectures (e.g., multi-cores without the required
x86 SSE ISA support, and GPUs). Its source code avail-
able at the authors’ site is a thin C function wrapper that
invokes assembly code. It is a thread-safe function, but the
whole benchmark is a sequential implementation and no
work-partition or thread management is given. For this rea-
son, Table 3 shows a performance comparison on different
multi-cores with PHAST implementations launched with
thread-number parameter set to 1.

Then, PHAST code has been implemented in two slightly
different versions: one that takes advantage of low-level
architecture-specific SSE instructions (ISA version) and one
that does not (plain version), to witness the library capability
to reach the machine-specific features when needed.

Furthermore, we implemented the reference code using
the exact same versions of all the algorithms employed in the
PHAST implementation, but without the support of PHAST
library. Againwith twominor variations adopting SSE exten-
sions (no-lib ISA) or not (no-lib plain). This way it is possible
to assess the exact overhead induced by the abstractions and
heterogeneous parallelization facilities provided by PHAST
library.

We underline that, since elwood is not an SSSE3-
compatible processor, the only version that can run on it is
the plain PHAST version. In fact, it does not use architecture-
specific instructions and it is guaranteed to be portable across
various multi-cores.

Table 3 shows that in single-thread conditions on the same
code, the maximum library overhead amounts to 4.79% on
golia and that can be regarded as a measure of the perfor-
mance impact of PHAST library on single-core applications.
Both ISA-enhanced and plain versions highlight a similar
limited overhead across different CPUs. The Table highlights
also a quite big difference in performance between Käsper–
Schwabe and PHAST,withKäsper–Schwabe 1.7 times faster
than PHAST ISA in the worst case. This performance differ-

123

J Cryptogr Eng

Fig. 3 AES performance on multi-cores using PHAST library in cor-
respondence of different numbers of threads. a Plain versions. b ISA
versions

ence is mainly due to the SubBytes algorithm which in case
of Käsper–Schwabe is extremely tuned in assembly for full
exploitation of the specific SSSE3 ISA support available in
some CPUs.

Furthermore, one of the main advantages of the proposed
PHAST library is the ability to automatically exploit the
aggregate computational power of multi-cores using more
than a single thread. This approach requires that the under-
lying hardware has multiple processing units (e.g., cores in
CPUs) and that all of them have enough work to do for hid-
ing the costs of thread allocation and management. PHAST
library can determine such hardware parallelism automati-
cally or the user can explicitly call an API function to force
the desired number of runtime threads. Figure 3 shows the
performance variation when varying the number of threads
used. Each of the multi-cores used achieves an almost linear
performance scaling up to the number of available physical
cores, with a further smaller gain in processors having hyper-
threading technology (all but elwood machine with AMD
Phenom II processor). From the methodological viewpoint,
the amount of data each threadworks with has been kept con-
stant so to avoid ’noise’ due to caching effects in the cores.

The intrinsic support of parallel execution with limited
overhead, allows PHAST implementation to automatically
reach far better performance than the Käsper–Schwabe
single-thread version and, most of all, allows to trivially har-

Fig. 4 The impact of affinity management on multi-core performance

Table 4 Nvidia GPUs used for benchmarking

gtx970 gtx1080

GPU GeForce GTX 970 GeForce GTX 1080

Compute Capability 5.2 6.1

Global Memory 4095 MB 8113 MB

GPU frequency 1.25 GHz 1.85 GHz

Memory frequency 3505 MHz 5005 MHz

Number of CUDA cores 1664 2560

Host meeseeks golia

ness the increasing overall computational power available in
successive generations of processors.

As previously cited, PHAST library also manages thread
affinity. It is another user-adjustable parameter, but default
behavior is usually the best choice. It is set to spread the
available threads across the physical packages, then across
the physical cores and uses hyper-threading only as a last
resource. This way thread locality is minimized and the max-
imum amount of cache space and functional units is assigned
to every thread. The impact on performance of affinity can
be seen in Fig. 4, where the green curve has been obtained
with affinity management shut down. It can be seen that for
AES, despite affinity management impact on performance
is negligible when few threads are used, it becomes critical
when all the logical cores are occupied.

5.2 GPUs

The GPUs used are summarized in Table 4. In the GPU
case, PHAST provides many user-adjustable parameters that
reflect the degrees of freedom CUDA model defines. All of
these parameters can be varied without altering the structure
of the source code. The considered parameters are:

– Major Blocksize: used to set the leading dimension of
CUDA blocks of threads;

123

J Cryptogr Eng

Fig. 5 AES performance on GeForce GPU GTX970 in correspon-
dence of different combinations of Major Blocksize, Shared Pre-Load
and Scheduling Strategy. aGTX970 plain version. bGTX970 ISA ver-
sion

– Minor Blocksize: used to achieve a finer grain of paral-
lelism in the case of in-functor algorithm invocation;

– Scheduling Strategy: can be set to achieve the maxi-
mum occupancy of blocks that loop over the workload
(SATURATE) or to allocate as many blocks are needed
and to delegate their scheduling to hardware scheduler
(QUEUE);

– Shared Pre-Load: can be set to pre-load data in shared
memory (PRE-LOAD), otherwise they are stored in and
loaded from shared memory at in-functor algorithms
boundaries (NO PRE-LOAD).

Apart from Minor Blocksize, set to 1 since there is no in-
functor parallelism to be exploited in this case, the optimum
choice of the other parameters is not trivial and some fine
tuning is needed. Figures 5 and 6 show the performance
achieved in correspondence of different parameters. The
best Major Blocksize values have been experimentally iden-
tified as 128 and 256, so no other values are showed in
figures for brevity. It can be seen that the best configura-
tions are the same across the two considered GPUs, but not
the same across plain—ISA versions. It is also important
to notice that all the available parameters can have a sig-

Fig. 6 AES performance on GeForce GPU GTX1080 in correspon-
dence of different combinations of Major Blocksize, Shared Pre-Load
and Scheduling Strategy. a GTX1080 plain version. b GTX1080 ISA
version

Table 5 Performance comparison between AES PRNGs on Nvidia
GPUs

Lim–Petzold–
Koç (Gbps)

PHAST plain (Gbps) PHAST ISA (Gbps)

gtx970 247.31 188.57 222.72

gtx1080 570.72 452.36 521.45

nificant impact on performance, so they must be carefully
managed. The reference implementation on Nvidia GPUs is
the bitsliced AES PRNG in ECB mode described in [21]
(Lim–Petzold–Koç in the following). The SubBytes phase
described there is a better fit for GPUs with respect to the
one contained in [1], giving a maximum performance gain
of 2%. Lim–Petzold–Koç has some degrees of freedom too:
blocksize and number of blocks. The optimum parameters
in its case are: blocksize set to 512 on both GPUs and
number of blocks set to 512 on gtx970 and to 8192 on
gtx1080.

Table 5 shows the achieved performance on gtx970 and
gtx1080 in correspondence of the respective optimum con-
figurations. As can be seen, the performance loss of PHAST
with respect to Lim–Petzold–Koç amounts to 11.04% on
gtx970 and 9.45% on gtx1080. Considering that PHAST

123

J Cryptogr Eng

Table 6 Source code metrics calculated on different AES PRNG
implementations: source lines of code (SLOC), Halstead’s mental dis-
criminations (H MEN D) and McCabe’s total cyclomatic complexity
(TOT CY)

SLOC H MEN D TOT CY Supported
target

PHAST plain 475 5.990× 106 8 CPU, GPU

PHAST ISA 500 6.984× 106 8 CPU, GPU

no-library plain 542 9.668× 106 11 CPU

no-library ISA 567 1.068× 107 11 CPU

Käsper–Schwabe 226 3.412× 105 11 CPU

assembly 8200 CPU

Lim–Petzold–Koç 839 1.281× 107 68 GPU

code is common to both CPUs and GPUs, that it automati-
cally accommodates different CPUs and GPUs, and that it is
expressed at a higher abstraction level, such overhead does
not appear to be a limiting factor in PHAST adoption.

5.3 Code metrics

Table 6 shows some metrics calculated on the source files of
the different AES versions considered in this paper. SLOC
is the number of source lines of code, H MEN D is the num-
ber of Halstead’s mental discriminations [9] and TOT CY
is the McCabe’s total cyclomatic complexity [23]. Käsper–
Schwabe has been split in two since no metrics can be
calculated on assembly source files apart from SLOC. In
the case of PHAST and no-library, both plain and ISA ver-
sions are analyzed, in order to show how much complexity
increases when low-level optimizations are added. In this
case, the addition of low-level optimizations acts similarly
on PHAST and no-library versions, since it increases SLOC
of 25 and H MEN D of 9.940× 105 in PHAST implementa-
tion and it increases SLOCof 25 andHMENDof 1.012×106

in no-library implementation.
Considering the programs where all the metrics can be

calculated, both PHAST versions score the best, even better
than any no-library version, which are sequential CPU-only
programs. It must be also considered that both PHAST ver-
sions are compatible with multi-core processors and Nvidia
GPUs, while they are being compared against platform-
specific implementations. EachPHASTprogramcanbe seen,
after all, as being two programs in one.

It is important to notice that these metrics are calculated
on programs written by experts, and so the resulting differ-
ences can be considered intrinsic of the languages, APIs and
libraries used. In fact, assembly is well-known for its low-
level nature that inevitably leads to verbose code, and the
8200 lines of code inKäsper–Schwabe implementation are an
effect of it. Analogous evaluations can be done on the many

complex lines of code in Lim–Petzold–Koç implementation:
CUDA has many details and many possible low-level opti-
mizations to take care of, and all of them must be addressed
to achieve cutting-edge performance. By these means, the
use of PHAST library can improve programmers’ produc-
tivity by allowing them to write smaller, simpler and more
expressive code.

6 Conclusions

In this paper we have presented PHAST, a high-level het-
erogeneous C++ library that allows users to write efficient
parallel code compatible with multi-core processors and
Nvidia GPUs. It permits to separate application code from
parameter tuning and it does not hamper the possibility to
use low-level architecture-specific optimizations.

Abitsliced cache-timing-attack resistantAES-basedPRNG
has been implemented with PHAST library and it was
compared to state-of-the-art architectural specific solutions.
PHAST code resulted quite smaller and simpler than fine-
tuned hand-crafted CUDA or CPU versions, since it provides
high-level constructs and manages parallelization details
with limited programming effort. For instance PHAST
source length is 59.59% of the reference CUDA C imple-
mentation and 88.18% of the sequential C++ version for
CPUs.

PHAST performance resulted comparable to native ver-
sions of the same algorithm on both architectural classes.
Specifically, it delivers only a 5% overhead in case of single-
threaded CPU version and about 10% for different Nvidia
GPU boards. Moreover, PHASTCPU version is able to auto-
matically scale almost linearly with the number of available
cores.

Overall these results indicate that PHAST programmers
can concentrate on sequential-like application code and
obtain a concise parallel program that can run efficiently on
both multi-core processors and Nvidia GPUs.

Acknowledgements Wewould like to thank Rone Kwei Lim for shar-
ing with us the source code of his CUDA AES-based PRNG, which
constituted a valuable reference for the experimental work described in
this paper.

References

1. Boyar, J., Peralta, R.: A New Combinational Logic Minimization
TechniquewithApplications toCryptology, pp. 178–189. Springer,
Berlin (2010). https://doi.org/10.1007/978-3-642-13193-6_16

2. Canright, D.: A very compact S-box for AES. In: Proceedings
of the 7th International Conference on Cryptographic Hardware
and Embedded Systems, CHES ’05, pp. 441–455. Springer, Berlin
(2005). https://doi.org/10.1007/11545262_32

3. Dagum, L., Menon, R.: OpenMP: an industry-standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–
55 (1998). https://doi.org/10.1109/99.660313

123

https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/11545262_32
https://doi.org/10.1109/99.660313

J Cryptogr Eng

4. Edwards, H.C., Trott, C.R.: Kokkos: enabling performance porta-
bility across manycore architectures. In: 2013 Extreme Scaling
Workshop (xsw 2013), pp. 18–24 (2013). https://doi.org/10.1109/
XSW.2013.7

5. Enmyren, J., Kessler, C.W.: SkePU: a multi-backend skeleton pro-
gramming library for multi-GPU systems. In: Proceedings of the
Fourth International Workshop on High-Level Parallel Program-
ming and Applications, HLPP ’10, pp. 5–14. ACM, New York
(2010). https://doi.org/10.1145/1863482.1863487

6. Gepner, P., Kowalik, M.F.: Multi-core processors: new way to
achieve high system performance. In: International Symposium
on Parallel Computing in Electrical Engineering (PARELEC’06),
pp. 9–13 (2006). https://doi.org/10.1109/PARELEC.2006.54

7. Gregory, K., Miller, A.: C++ AMP: Accelerated Massive Paral-
lelism with Microsoft Visual C++. O’Reilly, Sebastopol (2012)

8. Haidl, M., Gorlatch, S.: PACXX: towards a unified programming
model for programming accelerators using C++14. In: Proceedings
of the 2014 LLVM Compiler Infrastructure in HPC, LLVM-HPC
’14, pp. 1–11. IEEE Press, Piscataway (2014). https://doi.org/10.
1109/LLVM-HPC.2014.9

9. Halstead,M.H.: Elements of Software Science (Operating and Pro-
grammingSystemsSeries). Elsevier Science Inc.,NewYork (1977)

10. Han, T.D., Abdelrahman, T.S.: Reducing branch divergence in
GPU programs. In: Proceedings of the Fourth Workshop on Gen-
eral Purpose Processing on Graphics Processing Units, GPGPU-4,
pp. 3:1–3:8. ACM, New York (2011). https://doi.org/10.1145/
1964179.1964184

11. Hellekalek, P., Wegenkittl, S.: Empirical evidence concerning
AES. ACMTrans. Model. Comput. Simul. 13(4), 322–333 (2003).
https://doi.org/10.1145/945511.945515

12. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quan-
titative Approach, 5th edn. Morgan Kaufmann Publishers Inc., San
Francisco (2011)

13. Hunt, A., Thomas, D.: The Pragmatic Programmer. Addison-
Wesley, Boston (2000)

14. Intel: Intel 64 and IA-32 Architectures Software Developer’s
Manual—Volume 1: Basic Architecture. http://download.intel.
com/design/processor/manuals/253665.pdf (2011). Accessed 17
Sept 2016

15. ISO: ISO/IEC 14882:2011—Information technology—
Programming languages—C++. Standard, International
Organization for Standardization, Geneva (2011)

16. Käsper, E., Schwabe, P.: Faster and timing-attack resistant
AES-GCM. In: Proceedings of the 11th International Work-
shop on Cryptographic Hardware and Embedded Systems, CHES
’09, pp. 1–17. Springer, Berlin (2009). https://doi.org/10.1007/
978-3-642-04138-9_1

17. Khronos OpenCL Working Group: SYCL Provisional Specifi-
cation, version 2.2. https://www.khronos.org/registry/sycl/specs/
sycl-2.2.pdf (2016). Accessed 17 Sept 2016

18. Khronos OpenCL Working Group: The OpenCL Specification,
version 2.2. https://www.khronos.org/registry/cl/specs/opencl-2.
2.pdf (2016). Accessed 17 Sept 2016

19. Kim, C., Burger, D., Keckler, S.W.: Nonuniform cache architec-
tures for wire-delay dominated on-chip caches. IEEEMicro 23(6),
99–107 (2003). https://doi.org/10.1109/MM.2003.1261393

20. Knuth, D.E.: The Art of Computer Programming. Seminumerical
Algorithms, vol. 2, 3rd edn. Addison-Wesley Longman Publishing
Co., Inc., Boston (1997)

21. Lim, R.K., Petzold, L.R., Koç, Ç.K.: Bitsliced high-performance
AES-ECB on GPUs. In: Ryan, A.P.Y., Naccache, D., Quisquater,
J.J. (eds.) TheNewCodebreakers: EssaysDedicated toDavidKahn
on theOccasion ofHis 85thBirthday, pp. 125–133. Springer, Berlin
(2016). https://doi.org/10.1007/978-3-662-49301-4_8

22. Lutz, K.: Boost.Compute. http://www.boost.org/doc/libs/1_61_0/
libs/compute/doc/html/index.html (2016). Accessed 17 Sept 2016

23. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng.
2(4), 308–320 (1976). https://doi.org/10.1109/TSE.1976.233837

24. Microsoft: Multithreading with C and Win32. https://msdn.
microsoft.com/en-us/library/y6h8hye8.aspx. Accessed 17 Sept
2016

25. Miller, R., Stout, Q.F.: Algorithmic techniques for networks of
processors. In: Atallah, M.J. (ed.) Algorithms and Theory of Com-
putation Handbook, 2nd edn., Chap. 46, pp. 46:1–46:18. CRC
Press, Boca Raton (1999)

26. National Institute of Standards and Technology (NIST): FIPS PUB
197: Announcing the ADVANCED ENCRYPTION STANDARD
(AES). National Institute for Standards and Technology, Gaithers-
burg (2001)

27. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming—A
POSIX Standard for Better Multiprocessing. O’Reilly, Sebastopol
(1996)

28. NVIDIA: NVIDIA GF100 Whitepaper. http://www.nvidia.com/
object/IO_89569.html (2010). Accessed 17 Sept 2016

29. NVIDIA: CUDA C Best Practices Guide. http://docs.nvidia.com/
cuda/pdf/CUDA_C_Best_Practices_Guide.pdf (2015). Accessed
17 Sept 2016

30. NVIDIA: CUDA C Programming Guide. http://docs.nvidia.com/
cuda/pdf/CUDA_C_Programming_Guide.pdf (2015). Accessed
17 Sept 2016

31. NVIDIA: NVIDIA GeForce GTX 1080 Whitepaper. http://
international.download.nvidia.com/geforce-com/international/
pdfs/geforce_gtx_1080_whitepaper_final.pdf (2016). Accessed
17 Sept 2016

32. OpenACC: OpenACC Programming and Best Practices
Guide. http://www.openacc.org/sites/default/files/OpenACC_
Programming_Guide_0.pdf (2015). Accessed 17 Sept 2016

33. Perkins, H.: EasyCL—easy to run kernels using OpenCL. https://
github.com/hughperkins/EasyCL (2016). Accessed 17 Sept 2016

34. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media Inc, Sebastopol
(2007)

35. Schäling, B.: The Boost C++ Libraries, 2nd edn. XML Press,
Laguna Hills (2014)

36. Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL—a portable skeleton
library for high-level GPU programming. In: Proceedings of the
2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, IPDPSW ’11, pp. 1176–
1182. IEEEComputer Society,Washington (2011). https://doi.org/
10.1109/IPDPS.2011.269

37. Sutter, H.: The free lunch is over: a fundamental turn toward con-
currency in software. Dr. Dobb’s J. 30(3), 202–210 (2005)

38. Yalamanchili, P., Arshad, U., Mohammed, Z., Garigipati, P.,
Entschev, P., Kloppenborg, B., Malcolm, J., Melonakos, J.:
ArrayFire—a high performance software library for parallel
computing with an easy-to-use API. https://github.com/arrayfire/
arrayfire (2015)

123

https://doi.org/10.1109/XSW.2013.7
https://doi.org/10.1109/XSW.2013.7
https://doi.org/10.1145/1863482.1863487
https://doi.org/10.1109/PARELEC.2006.54
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/945511.945515
http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1
https://www.khronos.org/registry/sycl/specs/sycl-2.2.pdf
https://www.khronos.org/registry/sycl/specs/sycl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://doi.org/10.1109/MM.2003.1261393
https://doi.org/10.1007/978-3-662-49301-4_8
http://www.boost.org/doc/libs/1_61_0/libs/compute/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/compute/doc/html/index.html
https://doi.org/10.1109/TSE.1976.233837
https://msdn.microsoft.com/en-us/library/y6h8hye8.aspx
https://msdn.microsoft.com/en-us/library/y6h8hye8.aspx
http://www.nvidia.com/object/IO_89569.html
http://www.nvidia.com/object/IO_89569.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/geforce_gtx_1080_whitepaper_final.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/geforce_gtx_1080_whitepaper_final.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/geforce_gtx_1080_whitepaper_final.pdf
http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf
http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf
https://github.com/hughperkins/EasyCL
https://github.com/hughperkins/EasyCL
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1109/IPDPS.2011.269
https://github.com/arrayfire/arrayfire
https://github.com/arrayfire/arrayfire

	Parallel bitsliced AES through PHAST: a single-source high-performance library for multi-cores and GPUs
	Abstract
	1 Introduction
	2 Current parallel architectures
	2.1 GPUs
	2.2 Multi-core processors
	2.3 Heterogeneous programming approaches

	3 AES and its implementations
	3.1 State-of-the-art implementations

	4 PHAST library
	4.1 Bitsliced implementation of AES using PHAST library

	5 Results
	5.1 Multi-cores
	5.2 GPUs
	5.3 Code metrics

	6 Conclusions
	Acknowledgements
	References

