
J Cryptogr Eng (2018) 8:201–210
https://doi.org/10.1007/s13389-017-0161-x

SPECIAL ISSUE ON MONTGOMERY ARITHMETIC

Montgomery inversion

Erkay Savaş1 · Çetin Kaya Koç2

Received: 4 September 2016 / Accepted: 22 March 2017 / Published online: 18 April 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Multiplicative inversion in finite fields is an essen-
tial operation in many cryptographic applications such as
elliptic curve and pairing-based cryptography. While the
classical extended Euclidean algorithm involves expensive
division operations, the binary extended Euclidean and
Kaliski’s algorithms use simple shift, addition and sub-
traction operations. The Montgomery inverse operation is
applied when the Montgomery multiplication operation is
used for fast arithmetic. As the inversion operation is applied
to sensitive data, a constant-time inversion algorithm is use-
ful against a class of side-channel attacks. In this paper, we
show different ways of computing the Montgomery inverse
of a given integer and compare their complexity in terms of
the number of additions/subtractions and shift operations.We
also propose a simple parallel algorithm to compute Mont-
gomery inverse, which can be useful inmulti-core processors
where data sharing among cores is relatively inexpensive.
Finally, we propose two efficient constant-timeMontgomery
inversion algorithms, which are useful as countermeasures
against side-channel attacks.

Keywords Multiplicative inverse · Extended Euclidean
algorithm · Montgomery inverse · Constant-time implemen-
tation · Parallelization

B Erkay Savaş
erkays@sabanciuniv.edu; erkay.savas@gmail.com

Çetin Kaya Koç
koc@cs.ucsb.edu

1 Sabancı University, Istanbul, Turkey

2 University of California Santa Barbara,
Santa Barbara, CA, USA

1 Introduction

Multiplication and inversion operations in rings and finite
fields are the most frequently used arithmetic operations in
many cryptographic algorithms such as RSA algorithm [1],
Diffie–Hellman key exchange algorithm [2], the US federal
Digital Signature Standard (DSS) [3], elliptic and hyper-
elliptic curve cryptography [4–6], and paring-based cryptog-
raphy [7]. The multiplication operation dominates the exe-
cution times of these algorithms, and thus, its performance
is of extreme importance. The Montgomery multiplication
algorithm introduced in a seminal work by Montgomery [8]
is usually considered to be the most efficient method in digi-
tal computers as it replaces prohibitively expensive division
operations by bit-level or word-level shifts.

The Montgomery multiplication algorithm requires its
operands in the Montgomery domain, i.e., a2n mod p and
b2n mod p, given a, b < p where p is an odd integer or
prime and n is generally taken as the bit size of the modulus
p. The algorithm takes a2n mod p and b2n mod p as inputs
and computes c2n mod p, where c = a · b mod p. In other
words, the algorithm ensures the result in the Montgomery
domain provided that the operands are given in the Mont-
gomery domain. Therefore, other arithmetic operations are
expected to satisfy the same condition when Montgomery
arithmetic is used to avoid forward and backward transfor-
mation from and to the Montgomery domain. For addition
and subtraction, the condition is satisfied immediately, as
a2n ± b2n ≡ (a± b)2n ≡ c2n mod p. The inversion, on the
other hand, requires more effort since the classical inversion
algorithm outputs a−12−n mod p given a2n mod p, instead
of a−12n mod p. The correct definition of the Montgomery
inversion would be a−12n mod p, as given in [9].

The roots of direct inversion algorithms in finite fields
can be traced to the Euclidean algorithm for the computa-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-017-0161-x&domain=pdf
http://orcid.org/0000-0002-4869-5556

202 J Cryptogr Eng (2018) 8:201–210

tion of greatest common divisor (GCD) reported by Euclid
in his Elements [10]. Stein’s algorithm [11] for computing
the GCD of two nonnegative integers replaces division oper-
ations by less complex comparison, subtraction and shift
operations. The extended version of Stein’s algorithm [12],
referred as the binary extended Euclidean algorithm (bEEA),
can be used to compute the inverse of integer a < p, where
GCD(a, p)=1.

Kaliski’smethod [13] further improves bEEAby reducing
the number of addition and subtraction operations. How-
ever, it computes a−12k mod p given a < p (alternatively,
a−12k−n mod p given a2n mod p), where k is the number of
iterations in the algorithm and follows a random distribution
in the interval [n, 2n]. Therefore, Kaliski’s method requires
a correction phase to obtain the correct result. In the litera-
ture, several other algorithms are proposed to accelerate the
computation of inversion operation in hardware or software
implementations [14–19].

The inversion operation is used in elliptic curve cryp-
tography to transform the projective coordinates to affine
coordinates after the point operations are calculated in pro-
jective coordinates [20]. It is also used in DSS algorithm
to compute the inverse of ephemeral key. Finally in ellip-
tic curve cryptography, when precomputation is applied for
scalar multiplication in the fixed-based point scenario, one
can use the affine formulae for precomputed points, which
requires the computation of inversion. In some cases, the
computations involve sensitive information and simple side-
channel attacks become feasible if the inversion computation
is not protected. A recent work [21] modifies Kaliski’s
method for inversion to obtain a constant-time algorithm as
a protection against a class of side-channel attacks.

Our contributions in this paper are as follows:

– Weshow that there are alternativemethods to compute the
Montgomery inverse of an integer modulo a prime inte-
ger including a method based on the classical extended
Euclidean algorithm.

– We propose a simple method to parallelize the inversion
algorithms,which can be useful formulti-core processors
if inter-core data sharing is possible with low overhead.

– We provide two constant-time algorithms for computing
Montgomery inversion efficiently.

Intentionally, we provide neither hardware nor software
implementation results such as timing benchmarks on a
specific platform as we are not proposing a new and
fast algorithm for computing multiplicative inverse. Natu-
rally, we refrain from giving any assessment as to whether
inversion can be computed sufficiently fast to avoid using
projective coordinates in elliptic curve cryptography, which
eliminates almost all inversion operations at the expense
of increased number of multiplications and higher mem-

ory/storage requirement. This paper can be regarded as a
guide book or a short survey which can be useful for future
work on the subject. The literature provides a wide collec-
tion of works onmodular inversion targeting its various other
aspects that are not included in this work. Hardware imple-
mentations of various designs for performing fast, efficient
and scalable computation of inversion are reported in [22–
29]. A recent work in [30] uses the approach based on
Fermat’s little theorem to compute multiplicative inverse in
constrained computing platforms such as those used in wire-
less sensor nodes to save code space as the approach utilizes
onlymodular multiplication as a building block. On the other
hand, the work in [31] uses the extended Euclidean algo-
rithm in an embedded processor. In [32], the authors discuss
the ratio of inversion timing to multiplication timing which
is the key factor in choosing between the affine and projec-
tive coordinates in elliptic curve cryptography. As the ratio
is usually large as attested by state-of-the-art implementa-
tions such as GMP,1 using projective coordinates that trades
inversion for several extramultiplicationoperations is a better
strategyof implementing elliptic curve cryptography. Finally,
[21] proposes a constant-time inversion algorithmand reports
implementation results.

The organization of the paper is as follows: in Sect. 2,
we start with the classical Euclidean algorithm and show
howwe canmodify it to compute theMontgomery inversion.
Section 3 presents the definitions pertaining to Montgomery
arithmetic. In Sect. 4, we describe the binary GCD algo-
rithm in a slightly different way that is useful to follow the
explanations in subsequent sections. Section 5 explains the
method to compute the Montgomery inversion using bEEA
while Sect. 6 focuses on Kaliski’s inversion algorithm for the
same purpose. Section 7 compares binary EEA and Kaliski’s
method from efficiency point of view. We briefly explain the
parallelization idea that can be utilized with many inversion
algorithms in Sect. 8. Constant-time inversion algorithms
are provided in Sect. 9. Finally, we conclude our paper in
Sect. 10.

2 The classical Euclidean algorithm

The Euclidean algorithm provides a simple means for com-
puting the greatest common divisor, denoted GCD(u, v) of
two positive integers u and v without factoring them. The
extendedEuclidean algorithm (EEA) returns twounique inte-
gers s and r in addition to the greatest common divisor of u
and v. The EEA is depicted in Algorithm 1. After the EEA
successfully terminates, the following relation holds

ar + ps = GCD(a, p).

1 GNUMultiple Precision Arithmetic Library: http://www.gmplib.org.

123

http://www.gmplib.org

J Cryptogr Eng (2018) 8:201–210 203

Algorithm 1 Extended Euclidean Algorithm (EEA)
Input: a and p with a < p, where GCD(a, p)=1
Output: r = a−1 mod p
1: u ← p, v ← a
2: s2 ← 1, s1 ← 0
3: r2 ← 0, r1 ← 1
4: while v > 0 do
5: Q ← �u/v�
6: R ← u − Q · v
7: s ← s2 − Q · s1
8: r ← r2 − Q · r1
9: u ← v

10: v ← R
11: s2 ← s1
12: s1 ← s
13: r2 ← r1
14: r1 ← r
15: end while
16: r ← r2
17: s ← s2
18: return r

If a and p are relatively prime, GCD(a, p) would be equal
to 1, and thus, it immediately follows that

ar ≡ 1 (mod p).

Hence, the extended Euclidean algorithm computes themod-
ular inverse r = a−1 mod p. The classical EEA can be
modified to compute the Montgomery inverse of an inte-
ger by changing Step 3 of the algorithm as r1 ← 0 and
r1 ← 22n mod p. Given the input a < p, the modified algo-
rithm mEEA computes

r = mEEA(a2n mod p, p) = a−1 · 2−n · 22n mod p,

which is the Montgomery inverse of a2n mod p. The clas-
sical inverse algorithm, on the other hand, heavily relies on
division operation; although efficiently computed over inte-
gers with relatively small sizes and on computers with large
word, division is a prohibitively expensive operation. There-
fore, the algorithms in subsequent sections, which avoid
expensive division operation, are preferred in many circum-
stances.

3 Definitions

In this section, we provide definitions pertaining to Mont-
gomery arithmetic with focus on inversion operation. We
always assume p > 2 is a prime throughout the paper.

Definition 1 The positive integer R with GCD(p, R)=1 is
the Montgomery constant, and selected as a power of two for
efficient arithmetic in digital computers. A typical selection
is R = 2n mod p, where n = �log2 p�; namely, n is the
bit size of p. Without loss of generality, we always use this
selection in the rest of the paper.

Definition 2 Given an integer a mod p, a · R mod p is said
to be in the Montgomery domain.

Definition 3 Given two integers, a, b < p, the operation
a · b · R−1 mod p is the Montgomery multiplication of a
and b and denoted as MonMul(a, b, p). Given two integers
in the Montgomery domain, aR mod p and bR mod p, the
Montgomery multiplication yields

MonMul(a, b, p) = aR · bR · R−1 = abR = cR mod p,

where c = a · b mod p.

Definition 4 Given the positive integer in the Montgomery
domain, aR mod p, the positive integer r = a−1 · R mod p
is the Montgomery inverse of a.

Definition 5 Given the positive integer in the Montgomery
domain, a · R mod p, the integer r = a−1 mod p is the
backward Montgomery inverse of a.

Definition 6 Given thepositive integer in the regular domain,
a mod p, the integer r = a−1R mod p,which is in theMont-
gomery domain, is the forward Montgomery inverse of a.

4 The binary GCD algorithm

Stein’s algorithm [11] is an efficient method for comput-
ing the greatest common divisor of two positive integers; it
employs only comparison, subtraction and shift operations,
which are easy to implement in digital computers. Its most
important aspect is that expensive division operations in the
classical Euclidean GCD algorithm are replaced by divisions
by 2, which can be implemented as simple logical shift oper-
ations over the binary representation of the integers, hence
the name binary GCD.

A version of Stein’s algorithm that works when the num-
bers are odd is depicted in Algorithm 2. Steps 3, 4 and 10 of
the algorithm perform logical operations; therefore, Boolean
variables πi s take only binary values of TRUE and FALSE.
Note that the while loop starts with a logical operation,
which checks whether the Boolean variable π0 is TRUE
or FALSE. Note also that π̄i denotes the complement of
Boolean variable πi . The operations in Steps 6–9 are predi-
cated, which are executed only when the associated Boolean
variable (henceforth predicate) in the bracket is TRUE. One
important aspect of the notation is that all Boolean variables
in Steps 6–9 are checked; it is as if there is an if statement
preceding these steps as opposed to if–elseif–else
statements. Note that only one of π1–π4 is TRUE at a time;
thus, only one of Steps 6–9 is executed in each iteration of the
while loop. We adopt this notation for two basic reasons:
(i) propose a method to parallelize the inversion algorithms

123

204 J Cryptogr Eng (2018) 8:201–210

Algorithm 2 Binary GCD Algorithm (bGCD)
Input: a and p with a < p where p is odd
Output: u = GCD(a, p)
1: u ← p, v ← a
2: k ← 0
3: π0 ← (v > 0)
4: while π0 do
5: π1 ← (u is even)

π2 ← (π̄1 and (v is even)),
π3 ← (π̄1 and π̄2 and (u > v)),
π4 ← (π̄1 and π̄2 and π̄3),

6: [π1]: u ← u/2
7: [π2]: v ← v/2
8: [π3]: u ← (u − v)/2
9: [π4]: v ← (v − 2)/2
10: π0 ← (v > 0)
11: k ← k + 1
12: end while
13: return u

and (ii) explain versions of inversion algorithms that exe-
cutes in constant time which protects them against a class of
side-channel attacks.

From the complexity point of view, the expected number
of iterations is experimentally found as about 1.4n, where n
is the bit size of p. In addition, we can give upper and lower
bound for the number of iterations as n ≤ k ≤ 2n. For either
u or v gets smaller after each iteration, performing shift and
subtraction operations over these integers can become easier,
depending on the implementation platform, as the computa-
tion progresses. In particularwhenmulti-precision arithmetic
is used in the implementation, it is advantageous toworkwith
the exact lengths of u and v. We can assume that the average
sizes u and v are about n/2 during the computations.
Aswewill see in the following sections, both binary extended
Euclidean and Kaliski’s algorithms employ the while loop
in Algorithm 2, which determines the number of iterations
needed to compute multiplicative inverse of a given integer
modulo a prime number.

5 The Montgomery inversion with bEEA

In Algorithm 3, we provide a slightly modified version of the
original bEEA described in [12]. The algorithm works also
for odd modulus p when GCD(a, p)=1. While the original
algorithm directly computes a−1 mod p given a < p, the
new version computes a−1M mod p, where M is an addi-
tional input of the algorithm besides a and p, and is called the
adjuster. Also, in Step 1 of the algorithm, the initialization
of s is different (compare s ← M in Algorithm 3 and s ← 1
in the original algorithm).

Themodification in the initialization step does not result in
any problem as the operations applied to r and s mostly right
shifts, subtractions and occasionally additions with the mod-

Algorithm 3 Montgomery Inverse with Binary Extended
Euclidean Algorithm (MontInvbEEA) [12]
Input: a ∈ [1, p − 1], p is prime and M is adjuster
Output: r ∈ [1, p − 1] where r = a−1 · M (mod p)
1: u ← p, v ← a, r ← 0, and s ← M
2: k ← 0
3: π0 ← (v > 0)
4: while π0 do
5: π1 ← (u is even)

π2 ← (π̄1 and (v is even)),
π3 ← (π̄1 and π̄2 and (u > v)),
π4 ← (π̄1 and π̄2 and π̄3),

6: [π1]: u ← u/2
if r is even then r ← r/2 else r ← (r + p)/2

7: [π2]: v ← v/2
if s is even then s ← s/2 else s ← (s + p)/2

8: [π3]: u ← (u − v)/2, r ← r − s
if r is even then r ← r/2 else r ← (r + p)/2

9: [π4]: v ← (v − u)/2, s ← s − r
if s is even then s ← s/2 else s ← (s + p)/2

10: π0 ← (v > 0)
11: k ← k + 1
12: end while
13: while r < 0

r ← r + p
14: while r ≥ p

r ← r − p
15: return r

ulus. Therefore, the integers r and s do not grow faster in the
new algorithm than in the original algorithm. Consequently,
we can safely state that Algorithm 3 is not less efficient than
the original algorithm from the perspective of complexity.
However, this modification, which is useful for the computa-
tion ofMontgomery inversion, cannot be adopted inKaliski’s
method as can be seen in the next section.

Using Algorithm 3, we can compute three types of Mont-
gomery inversion algorithms. The Montgomery inversion of
a number in the Montgomery domain, a · R mod p is calcu-
lated as follows

MontInvbEEA(a · R mod p, p, R2 mod p)
= a−1 · R−1 · R2 = a−1 · R mod p .

As can be seen, the adjuster used in the computation is
M = R2 mod p. Similarly, we can compute the forward and
backwardMontgomery inverses of a mod p and a ·R mod p
using the formulae

MontInvbEEA(a mod p, p, R mod p)
= a−1 · R mod p,

MontInvbEEA(a · R mod p, p, R mod p)
= a−1 · R−1 · R mod p = a−1 mod p,

respectively. In both cases, M = R mod p.

123

J Cryptogr Eng (2018) 8:201–210 205

Algorithm 4 Kaliski’s Almost Inversion Algorithm [13]
Input: a ∈ [1, p − 1] and p is prime
Output: r ∈ [1, p − 1] where r = a−1 · 2k (mod p)
1: u ← p, v ← a, r ← 0, and s ← 1
2: k ← 0
3: π0 ← (v > 0)
4: while π0 do
5: π1 ← (u is even)

π2 ← (π̄1 and (v is even)),
π3 ← (π̄1 and π̄2 and (u > v)),
π4 ← (π̄1 and π̄2 and π̄3),

6: [π1]: u ← u/2, s ← 2s
7: [π2]: v ← v/2, r ← 2r
8: [π3]: u ← (u − v)/2, r ← r + s, s ← 2s
9: [π4]: v ← (v − u)/2, s ← r + s, r ← 2r
10: π0 ← (v > 0)
11: k ← k + 1
12: end while
13: if r ≥ p then r ← r − p
14: return p − r

6 Montgomery inversion with Kaliski’s method

Kaliski’s almost inversion algorithm [13], described in Algo-
rithm 4, computes a−12k (mod p) given a < p. The
algorithm works also for odd modulus p provided that
GCD(a, p) = 1. As can be observed, the operations on u
and v are identical to those in the binary GCD and inversion
algorithms (see Algorithms 2, 3) with the only difference
in the operations performed over r and s. Therefore, the
expected numbers of iterations are also identical in all three
algorithms.

Several analyses such as the one in [33] suggest that
Kaliski’s method is more efficient than the classical EEA
method based on Algorithm 1. Also as the operations over r
and s are much simpler than those in binary inversion algo-
rithm, the almost inverse algorithm (Kaliski’s method) is
generally regarded as more efficient. However, the almost
inversion algorithm returns a−12k mod p, where n ≤ k ≤
2n, we need a correction phase to obtain the Montgomery
inversion of the input. A method for the correction phase is
described in Algorithm 5, which computes the Montgomery
inversion (Steps 2–10) and backward and forward Mont-
gomery inversions (Steps 11–19).

Using Algorithms 4 and 5, we can compute all three
types of Montgomery inversion algorithms. Assuming R =
2n mod p and knowing 2n ≥ k ≥ n, the Montgomery inver-
sion of integer a in the Montgomery domain, a · 2n mod p
is calculated as follows

AlmInv(a2n mod p, p)
= a−1 · 2k−n mod p

CorPhase(a−12k−n mod p, p, k, n)

= (a−1 · 2k−n) · 22n−k mod p
= a−12n mod p .

Algorithm 5 Correction Phase of Almost Inversion Algo-
rithm
Input: r = a−1 · 2k (mod p), k, and n
Output: r ∈ [1, p − 1] where

r = a−1 · 22n (mod p) for Montgomery inversion and
r = a−1 · 2n (mod p) for Forward and Backward Montgomery
Inversions

1: j ← 0
2: if Montgomery Inversion then
3: π5 ← (j < 2n − k)
4: while π5 do
5: r ← 2r
6: π6 ← (r > p)
7: [π6]: r ← r − p
8: j ← j + 1
9: π5 ← (j < 2n − k)
10: end while
11: else
12: π5 ← (j < k − n)

13: while π5 do
14: π6 ← (r is odd)

15: [π6]: r ← r + p
16: r ← r/2
17: j ← j + 1
18: π5 ← (j < k − n)

19: end while
20: end if
21: return r

The forward Montgomery inversion algorithm is computed
as follows

AlmInv(a mod p, p)
= a−1 · 2k mod p

CorPhase(a−12k mod p, p, k, n)

= (a−1 · 2k)/2k−n mod p
= a−12n mod p.

Finally, the backward Montgomery inversion algorithm is
computed using exactly the same steps of Algorithm 5 as in
the case of the forward Montgomery inversion algorithm.

AlmInv(a2n mod p, p)
= a−1 · 2k−n mod p

CorPhase(a−12k−n mod p, p, k, n)

= (a−1 · 2k−n)/2k−n mod p
= a−1 mod p.

Although the correction steps can also be implemented using
several Montgomery multiplication operations as shown in
[9], we prefer Algorithm 5, which consists of only addition,
subtraction and shift operations (as in the cases of Algo-
rithms 3 and 4). The fact that the solution in [9] features
different types of operations,which canbemore efficient than
Algorithm 5 in certain platforms, renders a fair and generic
comparison with the bEEA-based Montgomery inversion
algorithm impossible.

123

206 J Cryptogr Eng (2018) 8:201–210

An alternative method to compute Montgomery inverse
using Kaliski’s method is to modify Step 1 of Algorithm 4
as follows:

u ← p, v ← a, r ← 0, s ← M,

where M is the adjuster similar to that in Algorithm 3.
Although this results in a functionally correct algorithm, it
will not be efficient. A close inspection on the operations on
r and s in Algorithm 4 reveals that they are growing in bit
size. Therefore, both r and s in the alternative solution will
reach to bit sizes of about 2n when the algorithm terminates
and performing arithmetic with double size integers is not
efficient.

7 Comparing binary and Kaliski’s algorithms

In this section, we compare the Montgomery inversion algo-
rithms based on bEEA (Algorithm 3) and Kaliski’s method
(Algorithms 4+5) by counting the average number of itera-
tions, shifts, and additions/subtractions.We run the algorithm
10,000 times for randomly generated parameters for bit sizes
n =∈ {256, 384, 512} and list the results in Table 1. We sep-
arate the results for three bit sizes using the symbol “/.” As all
algorithms utilize the main loop of Algorithm 2, the average
number of iterations are the same. The number of iterations
in the correction phase of Kaliski’s method (see Algorithm 5)
is not included in these figures, while the additions and shifts
due to the correction phase are all taken into account in the
table (see the last three rows).

As can be observed from Table 1, the bEEA-based algo-
rithm executes more additions than the other algorithms
while its average number of shifts is always less than the
others. When the Montgomery inversion is computed the
total of number of shifts and additions in Algorithm 5 is
slightly less than the algorithm based on Kaliski’s method.
One can always argue that shifts are less complex opera-
tions than additions and therefore that the Kaliski’s method is
more efficient. However, due to extensive hardware support
for efficient addition and shift operations in many modern
microprocessors, from clock count perspective this argument
does not necessarily hold for multiple precision integers in
all microprocessors. As there are different microprocessor
architectures with different hardware support for arithmetic
operations, we do not provide implementation results for any
particular microprocessor. Notwithstanding, we can argue
that bEEA-based algorithm and the algorithm based on
Kaliski’s method for computing Montgomery inverse have
comparable performance.

On the other hand, for backward and forwardMontgomery
inverse computations, one can argue that Kaliski’s method is
more efficient (compare the total number of shifts and addi-

tions) provided that amulti-precision shift operation does not
take significantly more time than a multi-precision addition
on a given processor platform.

One issue with Algorithm 3 is that integers r and s can
take negative values, while they are always positive in Algo-
rithms 4+5. This basically means that we should use signed
integer representation for r and s, which can require one
additional computer word in software implementations. On
the other hand, as r can become larger than the modulus p
in Algorithms 4+5, we may have to use one computer word
in addition to number of words used to represent p. Con-
sequently, we can safely claim that r and s taking negative
values have no adverse performance implications.

8 Parallelization of inversion algorithms

All inversion algorithms presented here utilize the main loop
of Algorithm 2 which operates on u and v. The inversion
algorithms, on the other hand, additionally process the sec-
ondary variables of r and s, on which types of operations
differ depending on the inversion algorithm. One simple
parallelization idea is to perform the operations on u and
v and those on r and s in two separate computing cores
concurrently. The first core, processing u and v, computes
the predicates, π0–π4 in iteration i of the main loop, sends
them to second core and processes u and v for that itera-
tion. The second core, using the predicates, performs the
operations on r and s concurrently. Assuming that the pred-
icates reach the second core Δ seconds later at most, we can
theoretically say (with some simplified assumptions on the
idiosyncratic behavior of the computing platform otherwise)
that the second core completes its computations on r and s
(Δ − τuv + τrs) seconds after the first core, where τuv and
τrs are the execution times of all operations in one iteration
on u and v, and r and s, respectively. We further assume that
τuv < Δ < k · τuv .

The proposed parallelization method can result in a
speedup (upper-bounded by 2) only on multi-core proces-
sors where data sharing among cores results in comparatively
low overhead. Our experiments with processor architectures
where we conclude this overhead is high, yield no speedup.
We use a computer featuring six cores, with hyper-threading
support running 64-bit Ubuntu Linux 12.04 operating sys-
tem. Each core is an Intel Xeon CPU E1650 operating at
3.50GHz. We utilized C++ programming language with the
GMP library optimized for big number arithmetic. For par-
allel implementation we used the OpenMP API that allows
shared-memory multiprocessing programming. As the over-
head for sharing of the predicates between two cores is
presumably high, we report no speedup due to paralleliza-
tion for the primes of bit lengths of interest to contemporary
cryptographic usage. If the proposed parallelization method

123

J Cryptogr Eng (2018) 8:201–210 207

Table 1 Comparison of binary and Kaliski’s inverse algorithms for n ∈ {256, 384, 512}
Operation type Algorithm 3 for all

inversions
Algorithms 4+5 for
Montgomery inverse

Algorithms 4+5 for backward/
forward Montgomery inverse

Number of iterations 361/543/722 361/542/723 361/542/722

Ratio (k/n) 1.41/1.41/1.41 1.41/1.41/1.41 1.41/1.41/1.41

Number of additions 542/814/1085 438/656/875 415/623/829

Number of shifts 722/1086/1445 873/1310/1747 827/1243/1655

Number of (additions+shifts) 1264/1900/2529 1310/1967/2621 1243/1866/2485

turns to be useful in a multi-core processor, we speculate
that binary inversion algorithm performs slightly better than
Kaliski’s method as the latter requires a correction phase
which is not easily parallelizable.

Finally, we do not expect that the proposed parallelization
method leads to any acceleration in hardware implemen-
tations as they usually feature different functional units.
However, the method can simplify the control circuit and/or
the design.

9 The constant-time inversion algorithms

In this section, we propose two Montgomery inversion algo-
rithms that take constant execution time as a protection
against a class of side-channel attacks. They are basically
modifications of Algorithms 3 and 4+5. The following
assumptions are necessary (yet most probably not sufficient)
for constant execution time of the algorithms given in the sub-
sequent sections. Note that more assumptionsmay be needed
depending on the hardware platform and software tool chain
employed for implementation.

Assumption 1 All predicates, π0−π8 and π̄1, are evaluated
and checked once in every iteration of the main loop.

Assumption 2 When integers (u, v, r , and s) are repre-
sented as multiple precision numbers, the precision is the
same for all integers.

Example 1 When p is a 256-bit integer, we represent r = 5
as r = 00005 on a 64-bit processor, where each digit is a
64-bit number. Note that we use five 64-bit words to repre-
sent 256-bit integers to capture carry out bits resulting from
arithmetic operations.

Assumption 3 Arithmetic and logic operations (addition,
subtraction, shift and comparison) are always executed on
the full precision of integers in case they are represented as
multiple precision numbers.

Example 2 Suppose p is a 256-bit integer and a 64-bit pro-
cessor and we want to perform the addition of r + s, where

r, s < 264. Then we perform the following word-wise addi-
tion operations in this order

(C0, S0) ← r + s

(C1, S1) ← C0 + 0

(C2, S2) ← 0 + 0

(C3, S3) ← 0 + 0,

(C4, S4) ← 0 + 0, (1)

where Ci and Si correspond to the carry and sum parts of the
addition operation result.

Assumption 4 No register-level optimization is applied on
assignment operations, such as c ← a op b. The operands, a
and b, are read from the memory, operation is executed, and
the result, c is written back the memory. Also, the address of
operands are also read from the memory.

These assumptions can only be satisfied through exten-
sive support of assembly-level programming as software
tool chains such as compilers tend to perform various
optimizations that violate these assumptions.A secure imple-
mentation in assembly language is challenging, but feasible
and sometimes preferred as assembly-level support in cryp-
tographic implementations is a common practice either for
speed or for security. Note that the assumptions necessi-
tate dummy operations to be performed (e.g., Example 2),
which can make the implementations of the constant-time
algorithms vulnerable to fault attacks.

9.1 Constant-time inversion based on bEEA

Algorithm 6 is a version of Montgomery inversion algo-
rithm based on bEEA (Algorithm 3), which executes in
constant time independent of its inputs for a given input
size (n = �log2 p�). More precisely, Algorithm 6 always
iterates 2n times and every iteration features two subtrac-
tions, one addition and two shift operations. Note that the
if–then–else statements in Steps 10-12 are dummy
operations as both if and else branches perform exactly
the same operations on the variable s. These steps correct the
final result r whenever r > p or r < 0, but perform dummy

123

208 J Cryptogr Eng (2018) 8:201–210

Algorithm 6 Constant-Time Binary Extended Euclidean
Algorithm
Input: a ∈ [1, p − 1], p is prime, and M is adjustor
Output: r ∈ [1, p − 1] where r = a−1 · M (mod p)
1: u ← p, v ← a, r ← 0, and s ← M
2: k ← 0
3: π0 ← (k < 2n), π1 ← (v > 0), π̄1 ← (v = 0)
4: while π0 do
5: π2 ← (u is even), π3 ← (π̄2 and (v is even)),

π4 ← (π̄2 and π̄3 and (u > v)), π5 ← (π̄2 and π̄3 and π̄4),
π6 ← (r < 0), π7 ← π̄6 and (r > p), π8 ← π̄6 and π̄7

6: [π1 and π2]: Δuv ← u − v, Δrs ← r − s, Σ ← r + p, u ← u/2
if r is even then r ← r/2 else r ← Σ/2

7: [π1 and π3]: Δuv ← u − v, Δrs ← r − s, Σ ← s + p, v ← v/2
if s is even then s ← s/2 else s ← Σ/2

8: [π1 and π4]: Δuv ← u − v, Δrs ← r − s, Σ ← Δrs + p,
u ← Δuv/2,

if Δrs is even then r ← Δrs/2, else r ← Σ/2
9: [π1 and π5]: Δuv ← v − u, Δrs ← s − r , Σ ← Δrs + p,

v ← Δuv/2
if Δrs is even then s ← Δrs/2 else s ← Σ/2

10: [π̄1 andπ6]:Δuv ← u−v,Δrs ← s−r , r ← r+ p, u ← Δuv/2
if s is even then s ← s/2 else s ← s/2

11: [π̄1 and π7]:Δuv ← u−v, r ← r − p,Σ ← r + s, u ← Δuv/2
if s is even then s ← s/2 else s ← s/2

12: [π̄1 and π8]: Δuv ← u− v, r ← r − s, Σ ← r + s, u ← Δuv/2
if s is even then s ← s/2 else s ← s/2

13: k ← k + 1
14: π0 ← (k < 2n), π1 ← (v > 0), π̄1 ← (v = 0)
15: end while
16: return r

operations otherwise. Therefore, theBoolean expression “if
s is even”must always be evaluated and protected against any
compiler optimization.

9.2 Constant-time inversion using Kaliski’s method

Algorithm 7 always finishes after exactly 2n + 1 iterations;
only one addition, one subtraction, two shift operations and
one assignment operation are executed in each iteration.
Assuming an assignment operation is alwaysmuch less com-
plicated than a subtraction operation, we can claim than
Algorithm 7 is more efficient than Algorithm 6. A similar
algorithm for constant-time execution is proposed in [21],
which has two disadvantages compared to Algorithm 7: (i)
in every iteration, the algorithm in [21] executes one addition,
one subtraction, six shifts and several predicated assignment
operations, and (ii) Algorithm 7 has an integrated correction
phase while the algorithm in [21] needs an extra operation
for it.

Another method for computing the inverse in constant
time is to use Fermat’s little theorem. For prime p, we
have a p−1 ≡ 1 mod p and a p−1 = a p−2a ≡ 1 mod p;
then, we obtain a p−2 ≡ a−1 mod p. Consequently, we
can compute the Montgomery inverse of a2n mod p, r ≡
a−12−n22n ≡ a−12n mod p. Basically, one inversion oper-

Algorithm 7 Constant-Time Algorithm Based on Kaliski’s
Method
Input: a ∈ [1, p − 1] and p is prime
Output: r ∈ [1, p − 1] where r = a−1 · M (mod p)
1: u ← p, v ← a, r ← 0, and s ← 1
2: k ← 0
3: π0 ← (k < 2n), π1 ← (v > 0), π̄1 ← (v = 0)
4: while π0 do
5: π2 ← (u is even), π3 ← (π̄2 and (v is even)),

π4 ← (π̄2 and π̄3 and (u > v)), π5 ← (π̄2 and π̄3 and π̄4),
π6 ← (r > p), π7 ← π̄6

6: [π1 and π2]:Δ ← r − s,Σ ← Δ+ s, s ← 2s, u ← u/2, r ← Σ

7: [π1 and π3]:Δ ← s−r ,Σ ← Δ+r , r ← 2r , v ← v/2, s ← Σ

8: [π1 and π4]: Δ ← u − v, Σrs ← r + s, s ← 2s, u ← Δ/2,
r ← Σ

9: [π1 and π5]:Δ ← v−u,Σ ← r+s, r ← 2r , v ← Δ/2, s ← Σ

10: [π̄1 and π6]: Δ ← r − p, Σ ← s + p, r ← 2Δ, Σ ← Σ/2,
s ← Σ

11: [π̄1 and π7]: Δ ← r − p, Σ ← s + p, r ← 2r , Σ ← Σ/2,
s ← Σ

12: k ← k + 1
13: π0 ← (k < 2n), π1 ← (v > 0), π̄1 ← (v = 0)
14: end while
15: if r > 0 then
16: Δ ← r − p, Σ ← s + p, r ← 2Δ, r ← r/2, s ← p
17: else
18: Δ ← r − p, Σ ← s + p, r ← 2r , r ← r/2, s ← p
19: end if
20: return p − r

ation takes approximately same time as one exponentiation
operation. An exponentiation operation with a modulus of
general form takes about 1.5 modular multiplications, on
average. As modular multiplication is of quadratic complex-
ity, we can claim that the proposed constant-time algorithm
performs better than the method based on Fermat’s theorem
for sufficiently large numbers.

Also, blinding, which is a common technique in many
cryptographic applications as protection against side-channel
attacks, can also be applied in inverse computation. In blind-
ing, a random integer is used to blind the (sensitive/secret)
inputs so that the computation is randomized, therefore
not dependent on sensitive/secret values. The technique can
be used as a generic countermeasure against side-channel
attacks; for instance, it is used in the context of the computa-
tion of quadratic residues in a recent work [34]. In inversion,
the blinding requires a random number generator and two
extra multiplication operations. Suppose we want to com-
pute the inverse of a < p with respect to modulus p. Before
the inversion operation, we perform the modular multipli-
cation α = a · ρ mod p, where the blinding factor ρ is
selected uniformly random in the interval [1, p − 1]. The
inversion algorithm, which takes the randomized input α,
returns α−1 = a−1 · ρ−1 mod p. A second modular multi-
plication α−1 · ρ mod p = a−1 mod p, yields the correct
result. It is not straightforward to compare the blinding tech-
nique, which is effective and simple to implement, with

123

J Cryptogr Eng (2018) 8:201–210 209

constant-time inversion algorithms. If performing modular
multiplication operations takes a relatively small fraction of
modular inversion time on a given platform, then the blinding
is probably a superior approach.

10 Conclusions

We explored alternative algorithms for computing Mont-
gomery inverse of an integer modulo a prime number. We
showed that a Montgomery inversion algorithm based on
binary extended Euclidean algorithm has comparable com-
plexity to the method based on Kaliski’s almost inverse
algorithm. We proposed a parallelization method that can
be applied to all inversion algorithms intended for soft-
ware implementations on multi-core processors featuring
low inter-process data sharing overhead. Finally, we intro-
duced two efficient, constant-time algorithms for computing
Montgomery inverse. The computational complexity of the
proposed constant-time algorithms compares favorably with
a method in the literature.

Acknowledgements We thank the anonymous reviewers for their com-
ments and recommendations.

References

1. Rivest, R.L., Shamir, A., Adleman, A.: A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM
21, 120–126 (1976)

2. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE
Trans. Inf. Theory 22, 644–654 (1976)

3. National Institute for Standards and Technology. FIPS PUB 186-4
Digital Signature Standard (DSS). doi:10.6028/NIST.FIPS.186-4
(2013)

4. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177),
203–209 (1987)

5. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams,
H.C. (ed.) Crypto 1985. Lecture Notes in Computer Science, vol.
218, pp. 417–426. Springer, Heidelberg (1986)

6. Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer
Academic Publishers, Boston (1993)

7. Sakai, R., Ohgishi, K., Kasahara,M.: Cryptosystems based on pair-
ing. In: The 2000 Symposium on Cryptography and Information
Security, Okinawa, Japan, pp. 135–148 (2000)

8. Montgomery, P .L.: Modular multiplication without trial division.
Math. Comput. 44(170), 519–521 (1985)

9. Savaş, E.,Koç,Ç.K.:TheMontgomerymodular inverse—revisited.
IEEE Trans. Comput. 49(7), 763–766 (2000)

10. Euclid Thirteen Books of Euclids Elements, vol. 2, Books 3–9, 2nd
edn, Translated by T. L. Heath. Dover Publications (1956)

11. Stein, J.: Computational problems associated with Racah algebra.
J. Comput. Phys. 1, 397–405 (1967)

12. Knuth, D.E.: The Art of Computer Programming, vol. 2, 2nd edn.
Addison-Wesley, Reading (1981)

13. Kaliski Jr., B.S.: The Montgomery inverse and its applications.
IEEE Trans. Comput. 44(8), 1064–1065 (1995)

14. Kobayashi, T., Morita, H.: Fast modular inversion algorithm to
match any operand unit. IEICE Trans. Fundam. E82–A(5), 733–
740 (1999)

15. Savaş, E., Koç, Ç.K.: Architecture for unified field inversion with
applications in elliptic curve cryptography. In: Proceedings of the
9th IEEE International Conference on Electronics, Circuits and
Systems—ICECS2002, vol. 3, pp. 1155–1158.Dubrovnik, Croatia
(2002)

16. Lórenz,R.:Newalgorithm for classicalmodular inverse. In:Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and
Embedded Systems, LNCS, pp. 57–70. Springer, Berlin (2002)

17. Tenca, A.F., Tawalbeh, L.A.: An algorithm for unified modular
division in GF(p) and GF(2n) suitable for cryptographic hardware.
IEE Electron. Lett. 40(5), 304–306 (2004)

18. Gutub, A.A.-A., Tenca, A.F., Savaş, E., Koç, Ç.K.: Scalable and
unified hardware to compute Montgomery inverse in GF(p) and
GF(2n). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) Crypto-
graphic Hardware and Embedded Systems, LNCS, pp. 485–500.
Springer, Berlin (2002)

19. Savaş, E., Naseer, M., Gutub, A.A.-A., Koç, Ç.K.: Efficient unified
Montgomery inversion with multibit shifting. IEE Process. Com-
put. Digit. Tech. 152(4), 489–498 (2005)

20. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponenti-
ation using mixed coordinates. In: ASIACRYPT 1998, pp. 51–65

21. Bos, J.W.: Constant timemodular inversion. J. Cryptogr. Eng. 4(4),
275–281 (2014)

22. Gutub, A.A.-A., Tenca, A.F., Koçs, Ç.K.: Scalable VLSI architec-
ture forGF(p)Montgomerymodular inverse computation. In: IEEE
Computer Society Annual Symposium on VLSI, ISVLSI’02, pp.
46–51. Pittsburgh, Pennsylvania, USA, April 25–26 (2002)

23. Gutub, A.A.-A., Tenca, A.F.: Efficient scalable hardware archi-
tecture for Montgomery inverse computation in GF(p). In: IEEE
Workshop on Signal Processing Systems (SIPS’03), pp. 93–98.
Seoul, Korea, August 27–29 (2003)

24. Gutub, A.A.-A., Tenca, A.F.: Efficient scalable VLSI architecture
for Montgomery inversion in GF(p). Integr. VLSI J. 37(2), 103–
120 (2004)

25. Gutub, A.A.-A., Savaş, E., Kalganova, T.: Scalable VLSI design
for fast GF(p)Montgomery inverse computation. In: IEEE Interna-
tional Conference on Computer and Communication Engineering
(ICCCE ’06). Kuala Lumpur, Malaysia (2006)

26. Gutub, A.A.-A.: High speed hardware architecture to compute
galois fields GF(p)montgomery inversionwith scalability features.
IET Comput. Digit. Tech. 1(4), 389–396 (2007)

27. Zi-bin, D., Fan,Q., Xiao-hui, Y.: Scalable hardware architecture for
montgomery inversion computation in dual-field. In: 2009 WASE
International Conference on Information Engineering, pp. 206–
209. Taiyuan, Chanxi (2009)

28. Chen, C., Qin, Z.: Efficient algorithm and systolic architecture for
modular division. Int. J. Electron. 98(6), 813–823 (2011)

29. Murat, E.,Kardaş, S., Savaş, E.: Scalable and efficient FPGA imple-
mentation of Montgomery inversion. In: Proceedings of the 2011
Workshop on Lightweight Security and Privacy: Devices, Proto-
cols, and Applications, LIGHTSEC’11, pp. 61–68 (2011)

30. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: energy-scalable
elliptic curve cryptography for wireless sensor networks. In: ACNS
2014, pp. 361–379

31. Ishii, M., Detrey, J., Gaudry, P., Inomata, A., Fujikawa, K.: Fast
Modular arithmetic on the Kalray MPPA-256 processor for an
energy-efficient implementation of ECM. IACR Cryptol. ePrint
Arch. 2016, 365 (2016)

32. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A.,
Rodríguez-Henríquez, F.: Implementing Pairings at the 192-Bit
Security Level, pp. 177–195. Pairing (2012)

33. De Win, E., Mister, S., Preneel, B., Wiener, M.: On the perfor-
mance of signature schemes based on elliptic curves. In: Buhler,

123

http://dx.doi.org/10.6028/NIST.FIPS.186-4

210 J Cryptogr Eng (2018) 8:201–210

J.P. (ed) Algorithmic Number Theory: Third International Sympo-
sium,ANTS-III, pp. 252–266. Portland,Oregon,USA, June 21–25,
Springer, Berlin (1998)

34. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–
Naehrig curves. In: LATINCRYPT 2012, pp. 1–17

123

	Montgomery inversion
	Abstract
	1 Introduction
	2 The classical Euclidean algorithm
	3 Definitions
	4 The binary GCD algorithm
	5 The Montgomery inversion with bEEA
	6 Montgomery inversion with Kaliski's method
	7 Comparing binary and Kaliski's algorithms
	8 Parallelization of inversion algorithms
	9 The constant-time inversion algorithms
	9.1 Constant-time inversion based on bEEA
	9.2 Constant-time inversion using Kaliski's method

	10 Conclusions
	Acknowledgements
	References

