
Elliptic and Hyperelliptic Curves on
Embedded µP

THOMAS WOLLINGER, JAN PELZL, VOLKER WITTELSBERGER,
and CHRISTOF PAAR
University of Bochum
and
GÖKAY SALDAMLI and ÇETIN K. KOÇ
Oregon State University

It is widely recognized that data security will play a central role in future IT systems. Providing
public-key cryptographic primitives, which are the core tools for security, is often difficult on em-
bedded processor due to computational, memory, and power constraints. This contribution appears
to be the first thorough comparison of two public-key families, namely elliptic curve (ECC) and
hyperelliptic curve cryptosystems on a wide range of embedded processor types (ARM, ColdFire,
PowerPC). We investigated the influence of the processor type, resources, and architecture regard-
ing throughput. Further, we improved previously known HECC algorithms resulting in a more
efficient arithmetic.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Data communications, Security and protection; C.3 [Special-Purpose and Application-based
Systems (J.7)]: Microprocessor/Microcomputer Applications, Real-Time and Embedded Systems,
Signal Processing Systems; C.5.3 [Computer System Implementation]: Microcomputers; Mi-
croprocessors; E.3 [Data Encryption]: Public-key Cryptosystems; F.2.0 [Analysis of Algorithms
and Problem Complexity (B.6-7, F.1.3)]: General

General Terms: Algorithms, Design, Performance, Security

Additional Key Words and Phrases: Elliptic curves cryptosystem, hyperelliptic curve cryptosystem,
implementation

1. INTRODUCTION

It is widely recognized that data security will play a central role in the ma-
jority of future IT systems. Many of these future IT applications will be real-
ized as embedded systems. A lot of those applications rely heavily on security

Authors’ addresses: Thomas Wollinger, Jan Pelzl, Volker Wittelsberger and Christof Paar, Depart-
ment of Electrical Engineering and Information Sciences, Communication Security Group (COSY),
Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany; email: {wollinger,
pelzl,wittelsberger,cpaar}@crypto.ruhr-uni-bochum.de; Gökay Saldamli and Çetin K. Koç, ECE De-
partment, 220 Corvallis, Oregon 97331, USA; email: {saldamli,koc}@ece.orst.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1539-9087/04/0800-0509 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004, Pages 509–533.

510 • T. Wollinger et al.

mechanisms such as security for wireless phones, faxes, wireless computing,
pay-TV, and copy protection schemes for audio/video consumer products as well
as digital cinemas. Note that a large share of those embedded applications will
be wireless. Wireless applications can be easily eavesdropped, which makes
the communication channel especially vulnerable and the need for security
even more obvious. In addition, authentication technologies are desired in or-
der to prevent the threat of generating personal profiles when using the stated
application. This merging of communications and computation functionality
requires data processing in real time, and embedded systems have shown to
provide appropriate solutions for many applications (e.g., cellular phones).

All modern security protocols, such as IPSec [Kent and Atkinson 1998],
SSL [Freier et al. 1996], TLS [Dierks and Allen 1999] use symmetric-key algo-
rithms as well as public-key algorithms. Providing highly arithmetic-intensive
public-key cryptographic primitives in an embedded environment is often dif-
ficult due to the computational, memory, and power constraints. This contribu-
tion surveys the implementation of the two most promising public-key cryp-
tosystems for embedded applications, namely ECC and HECC. The elliptic
curve cryptosystem (ECC) was introduced in Koblitz [1987] and Miller [1986],
and is based on the difficulty of the Diffie–Hellman (DHP) problem in the group
of points of an elliptic curve over a finite field. The DH problem is closely related
to the well-studied discrete logarithm (DL) problem. Since their introduction,
ECC have been extensively studied not only by the research community but also
in industry. In particular, there are several standards involving EC, such as the
IEEE P1363 [IEEE 1999] standardization effort. Hyperelliptic curve cryptosys-
tems (HECC) were first suggested in 1988 by Koblitz [1988]. In contrast to ECC,
it has only been until recently that Koblitz’s idea to use HEC for cryptographic
applications, has been analyzed and implemented both in software [Krieger
1997; Sakai et al. 1998; Smart 1999; Sakai and Sakurai 2000; Matsuo et al.
2001; Miyamoto et al. 2002; Kuroki et al. 2002; Lange 2002a; Pelzl 2002] and in
more hardware-oriented platforms such as FPGAs [Wollinger 2001; Wollinger
and Paar 2002; Boston et al. 2002].

It is important to point out that ECCs and HECCs seem to be specially
promising for the use in embedded environments where memory and speed
is constrained. The suitability for constrained systems results from the short
operand sizes of ECC and HECC compared to other public-key schemes, for
example, RSA- [Rivest et al. 1978] or DL-based systems. It is widely accepted
that for most cryptographic applications based on EC or HEC the necessary
group order is of size at least ≈ 2160. Thus, for HECC over Fq we will need at
least g · log2 q ≈ 2160, where g is the genus of the curve. Therefore, we will need
a field order q ≈ 240 for genus 4, q ≈ 254 for genus 3, and q ≈ 280 for genus
2 HEC. Hence, one needs 40-bit to 80-bit long operands to compute the group
operations for these curves. In the case of ECC we have to work with operand
lengths of approximately 160 bits. Whereas in the case of RSA, the operands
will be approximately 1024 bits in order to achieve the same security. It is
widely believed that HECC is less efficient, because of the complex structure of
the group operations. Further, until now there was no detailed analysis of the
efficiency of these cryptosystems on embedded processors.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 511

Implementations of certain cryptosystems always are application depend.
Imagine a scenario, where a number of PDAs communicate with a server over
a secure channel. Each of the PDAs uses a different cryptographic primitive
(algorithm, curve, field polynomial, and so on). Therefore, the cryptographic
engine running on a server has to support a whole suite of cryptographic algo-
rithms, whereas each algorithm has to cope different input parameters. In con-
trast, the implementations on constrained platforms (like the PDA) normally
need only one cryptographic algorithm with a fixed set of input parameters.
Hence, implementations with fixed parameters are attractive for embedded
applications and those with flexible parameters for systems with fewer con-
straints such as servers.

We address the following questions in our contribution:

—How well do ECC and HECC perform on the most common embedded plat-
forms (ARM, ColdFire, and PowerPC)?

—How can we decrease the complexity of the genus-3 HECC group operations?
—How do our improvements on HECC influence the performance compared to

ECC?
—What is the influence of the available resources of the board on the perfor-

mance?
—How well does an implementation targeted for cryptosystems with fixed

parameters perform versus a system that is designed to handle different
parameters?

This appears to be the first thorough comparison of ECC and HECC
taking latest advances in HECC implementation techniques into account. We
improved previously known HECC algorithms resulting in more efficient arith-
metic operations. We were able to achieve a highly competitive throughput for
the cryptosystems implemented on a wide range of important embedded plat-
forms. The best timings for the scalar multiplication for HEC cryptosystems
could be achieved on the PowerPC running at 50 MHz, resulting in 117 and
84.9 ms for genus 2 and 3, respectively. The scalar multiplication for ECC could
be performed fastest on the same platform in 106.3 ms. Our highly optimized
formulae for HECC allow (contrary to common believe) the same throughput
than ECC and further, in some cases HECC outperformed ECC. We showed
that for the two algorithm types implemented, the instruction cache on the
PowerPC had a fundamental influence regarding the speed of one scalar mul-
tiplication. The time needed to perform one scalar multiplication can be de-
creased by more than a factor of 3 when using the instruction cache, and by
almost a factor of 8 when using instruction as well as data cache. In addition,
we could speed up the throughput of the HEC scalar multiplication by up to
50% by focusing on a fixed underlying field and curve, which is the most likely
scenario for implementations on embedded systems. Combining all of these re-
sults, we showed that both families of algorithms are well suited for embedded
applications.

The remainder of the paper is organized as follows. Section 2 summa-
rizes contributions dealing with previous implementations of HECC and ECC.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

512 • T. Wollinger et al.

Section 3 gives a brief overview of the mathematical background related to
both cryptosystems. Section 4 presents the software and hardware methodol-
ogy used for this publication and Section 5 introduces the arithmetic of ECC
and HECC. Finally, we end this contribution with a discussion of our results
and some conclusions.

2. PREVIOUS WORK

Although ECC and HECC were proposed in late 1980s, HECC has so far failed
to flourish to the same extent as ECC. This is unfortunate, as HECC has the
potential for much smaller operand lengths. Indeed, the number of points on a
Jacobian of a curve of genus g over a finite field of q elements is roughly q g .
There is thus the hope of secure HECC with g > 1 having operands and arith-
metic related to fields considerably smaller than in the elliptic curve setting,
where g = 1. In this section, we present some results from previous state-of-
the-art implementations.

2.1 Implementation of ECC

Many research results in both software and hardware deal with realizations
of ECC. The high-level operations of ECC are mostly standard, which are de-
scribed in standard bodies like IEEE P1363 [IEEE 1999], ANSI X9.62 [ANSI
X9.62-1999 1999], and ANSI 9.63 [ANSI X9.63-199x 1998]. Moreover, one can
find commercially and also publicly available software implementations of
ECC.

Point addition can be performed by one field inversion, two multiplications,
and one squaring (see Chapter 3). In cases where inversion is much more
expensive than multiplication, EC point addition can be computed by using
projective or Jacobian coordinates. Comparisons of the various types of co-
ordinate systems can be found in Chudnovsky and Chudnovsky [1987] and
Cohen et al. [1998].

EC point multiplication poses the exponentiation problem in abelian groups.
Thus, any method for the general exponentiation problem can be applied to EC
multiplication. These include: the binary, m-ary, and sliding window methods,
methods based on signed digit representations [Morain and Olivos 1990], and
combinations of these ideas. These methods are summarized in Gordon [1998]
and Blake et al. [1999]. A comparison of implementation results can be reached
through Guajardo and Paar [1997] and López and Dahab [1999]. An implemen-
tation of a different approach introduced by Montgomery [1987] can be found in
López and Dahab [1999]. Fast ECC implementations are, for example, reported
in Schroeppel et al. [1995], López and Dahab [1999], King [2001].

Moreover, there are some special classes of ECs, which allow for efficient
implementations. For curves defined over small subfields, scalar multiplication
can be significantly accelerated by using a Frobenius expansion. The efficient
algorithms are presented in Solinas [1997].

For the most significant hardware implementations consider Agnew et al.
[1993], Rosner [1999], Gao et al. [1999], Orlando and Paar [2000], and Gura
et al. [2001].

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 513

Table I. Execution Times of Previous HEC Implementations in Software

tScalarmult.
Processor Genus Field ms

Krieger [1997] Pentium @ 100 MHz 2 F264 520
3 F242 1200
4 F231 1100

Sakai et al. [1998] Alpha @ 467 MHz 3 F259 83.3
3 F289 25700
3 F2113 37900
4 F241 96.6

Pentium-II @ 300 MHz 3 F259 11700
4 F241 10900

Sakai and Sakurai [2000] Alpha21164A @ 600 MHz 3 Fp(log2 p = 60) 98
3 F259 40
4 F241 43

Matsuo et al. [2001] PentiumIII @ 866 MHz 2 186 − bitOEF 1.98
Miyamoto et al. [2002] PentiumIII @ 866 MHz 2 186 − bit OEF 1.69
Kuroki et al. [2002] Alpha21264 @ 667 MHz 3 F261−1 0.932
Lange [2002a] Pentium-IV @ 1.5 GHz 2 F2160 18.875

2 F2180 25.215
2 Fp(log2 p = 160) 5.663
2 Fp(log2 p = 180) 8.162

2.2 Implementation of HECC

Since HECCs were proposed, there have been several software implementa-
tions on general-purpose machines [Krieger 1997; Sakai et al. 1998; Smart
1999; Sakai and Sakurai 2000; Matsuo et al. 2001; Miyamoto et al. 2002; Kuroki
et al. 2002; Lange 2002a; Pelzl 2002] and hardware [Wollinger 2001; Wollinger
and Paar 2002; Boston et al. 2002]. The results of previous HECC software
implementations are summarized in Table I.1 The first three contributions pre-
sented in the table implemented Cantor’s algorithm, whereas the other publi-
cations used explicit formulae. We are not aware of any publications of HECC
implementations on embedded processors.

3. MATHEMATICAL BACKGROUND

In this section, we briefly introduce the theory of ECC and HECC, restricting
attention to material that is relevant for this work. We will consider curves over
binary extension fields only.

More detail about ECC can be found in Koblitz [1987] and Miller [1986]
and in standards [IEEE 1999; ANSI X9.62-1999 1999; ANSI X9.63-199x 1998].
The modern classic reference for the theory of ECCs is Silverman [1986]. The
interested reader is referred to Menezes et al. [1996] and Koblitz [1988, 1989,
1998] for more background on HECC.

1Table I presents timings for curves of genus smaller than five.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

514 • T. Wollinger et al.

3.1 Elliptic Curve Cryptosystem

An elliptic curve E(F2m) over F2m is defined by parameters a, b ∈ F2m satisfying
b �= 0 and consists of the set of solutions, or points, P = (x, y) for x, y ∈ F2m to
the equation:

y2 + xy ≡ x3 + ax2 + b

and the point at infinity O. The set of points on F2m forms an abelian group
under the following addition rule.

Let (x1, y1) ∈ F2m and (x2, y2) ∈ F2m be two points such that x1 �= x2. Then
(x1, y1) + (x2, y2) = (x3, y3), where:

x3 ≡ λ2 + λ + x1 + x2 + a , y3 ≡ λ(x1 + x3) + x3 + y1, with λ ≡ y2 + y1

x2 + x1

3.2 Hyperelliptic Curve Cryptosystem

Let F be a finite field, and let F be the algebraic closure of F. A hyperelliptic
curve C of genus g ≥ 1 over F is the set of solutions (x, y) ∈ F×F to the equation

C : y2 + h(x) y = f (x)

The polynomial h(x) ∈ F[x] is of degree at most g and f (x) ∈ F[x] is a monic
polynomial of degree 2g + 1. For odd characteristic it suffices to let h(x) = 0
and to have f (x) squarefree. Such a curve is said to be nonsingular if there are
no pairs (x, y) ∈ F × F, which simultaneously satisfy the equation of the curve
C and the partial differential equations 2v + h(x) = 0 and h′(x)v − f ′(x) = 0.

If we want to define the Jacobian over F, denoted by JC(F), we say that a
divisor D = ∑

mi Pi is defined over F if Dσ = ∑
mi Pσ

i is equal to D for all
automorphisms σ of F over F [Menezes et al. 1996].

Each element of the Jacobian can be represented uniquely by a reduced
divisor [Fulton 1969; Cantor 1987]. This divisors can be represented as a pair
of polynomials u(x) and v(x) with deg v(x) < deg u(x) ≤ g , with u(x) dividing
y2 + h(x) y − f (x) and where the coefficients of u(x) and v(x) are elements of F

[Mumford 1984, p. 3.17]. In the remainder of this paper, a divisor D represented
by polynomials will be denoted by div(u, v). Algorithm 1 describes the group
addition of two divisors on JC(F).

Algorithm 1 Group Addition
Require: D1 = div(u1, v1), D2 = div(u2, v2)
Ensure: D = div(u, v) = D1 + D2

1: d = gcd(u1, u2, v1 + v2 + h) = s1u1 + s2u2 + s3(v1 + v2 + h)
2: u′

0 = u1u2/d 2

3: v′
0 = [s1u1v2 + s2u2v1 + s3(v1v2 + f)]d−1(modu′

0)
4: k = 1
5: repeat

6: u′
k = f −v′

k−1h−(v′
k−1)2

u′
k−1

7: v′
k = (−h − v′

k−1) mod u′
k

8: until deg u′
k ≤ g

9: Output (u = u′
k , v = v′

k)

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 515

Table II. Improvements of the Group Operations on Genus-2 HEC

Field Cost
Characteristic Addition Doubling

Nagao [2000] general 3I + 70M/S 3I + 76M/S
Nagao [2000] odd 1I + 55M/S 1I + 55M/S
Harley [2000] odd 2I + 27M/S 2I + 30M/S
Matsuo et al. [2001] odd 2I + 25M/S 2I + 27M/S
Miyamoto et al. [2002] odd I + 26M/S I + 27M/S
Takahashi [2002] odd I + 25M/S I + 29M/S
Lange [2002a] general I + 22M + 3S I + 22M + 5S

two I + 22M + 2S I + 20M + 4S
Lange [2002b] general 47M + 4S(40M + 3S)a 40M + 6S

two 46M + 2S 33M + 6S
Lange [2002c] odd 47M + 7S(36M + 5S)a 34M + 7S

even, h �= 0 46M + 4S(35M + 5S)a 35M + 6S
even, h = 0 44M + 6S(34M + 6S)a 29M + 6S

aMixed addition.

3.3 Fast Group Operation for HEC

The formulae given for the group operation of HEC can be written explicitly, re-
sulting in more efficient arithmetic. The explicit formulae was first presented
in Gaudry and Harley [2000], in which the authors noticed that, according
to the properties of the input divisors, the group operations can be unrolled
into all possible cases. This technique is combined with the use of the Karat-
suba multiplication algorithm Karatsuba and Ofman [1963] and the Chinese
remainder theorem to further reduce the overall complexity of the group oper-
ations. The computational complexity of the formulae for genus-2 curves and
the corresponding references are given in Table II. For the remainder of this
contribution, we will denote a field multiplication by M, a field inversion by I,
and a field squaring by S. In some references, the authors did not distinguish
between multiplications and squarings, denoted as M/S.

Table III summarizes the achievements regarding genus-3 curves. We were
able to optimize the formulae for genus-3 HEC and further generalize the re-
sults presented in Kuroki et al. [2002] to arbitrary characteristic. Tables IV
and V present the explicit formulae for a group addition and a group doubling,
respectively.

The improvements are based on the following techniques:

(1) Montgomery’s trick of simultaneous inversions [Cohen 1993, Algorithm
10.3.4]

(2) Reordering of normalization step [Takahashi 2002]
(3) Karatsuba multiplication
(4) Calculation of the resultant r of u1 and u2 for the group addition as well as

of u1 and h + 2v1 using Bezout’s matrix
(5) Choice of HEC with certain properties

The idea of Montgomery to use simultaneous inversions saves one inversion
compared to the presented formulae in Harley [2000]. This trick is applied

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

516 • T. Wollinger et al.

Table III. Improvements of the Group Operations on Genus-3 HEC

Field Cost
Characteristic Addition Doubling

[Nagao 2000] general 4I + 200M/S 4I + 207M/S
[Nagao 2000] odd 2I + 154M/S 2I + 146M/S
[Kuroki et al. 2002] odd I + 81M/S I + 74M/S
see Appendix general I + 70M + 6S I + 61M + 10S

two I + 65M + 6S I + 53M + 10S
two, h(x) = 1 I + 65M + 6S I + 22M + 7S

Table IV. Explicit Formulae for Addition on a Genus-3 HEC

Input Weight three reduced divisors D1 = (u1, v1) and D2 = (u2, v2)
h = x3 + h2x2 + h1x + h0, where hi ∈ F2;
f = x7 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0;

Output A weight three reduced divisor D3 = (u3, v3) = D1 + D2

Step Procedure Cost
1 Resultant r of u1 and u2 (Bezout) 12M + 2SQ
2 Almost inverse inv = r/u1 mod u2 4M
3 s′ = rs ≡ (v2 − v1)inv mod u2 (Karatsuba) 11M
4 s = (s′/r) and make s monic I + 6M + 2S
5 z = su1 6M
6 u′ = [s(z + w4(h + 2v1)) − w5((f − v1h − v2

1)/u1)]/u2 15M
7 v′ = −(w3z + h + v1) mod u′ 8M
8 u′, i.e. u3 = (f − v′h − v′2)/u′ 5M + 2SQ
9 v3 = −(v′ + h) mod u3 3M

Total in fields of arbitrary characteristic I + 70M + 6S
in fields of characteristic 2 I + 65M + 6S

Table V. Explicit Formulae for Doubling on a Genus-3 HEC

Input A weight three reduced divisors D1 = (u1, v1)
h = x3 + h2x2 + h1x + h0, where hi ∈ F2;
f = x7 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0;

Output A weight three reduced divisor
D2 = (u2, v2) = [2]D1

Step Procedure Cost
1 Resultant r of u1 and h + 2v1 (Bezout) 6M + 2S −
2 Almost inverse inv = r/(h + 2v1) mod u1 4M −
3 z = ((f − hv1 − v2

1)/u1) mod u1 7M + 2S 3M + 2S
4 s′ = zinv mod u1 (Karatsuba) 11M −
5 s = (s′/r) and make s monic I + 6M + 2S I + 2M + 1S
6 G = su1 6M 6M
7 u′ = u−2

1 [(G + w4v1)2 + w4hG + w5(hv1 − f)] 5M + 2S 2S
8 v′ = −(Gw3 + h + v1) mod u′ 8M 7M
9 u′, i.e. u2 = (f − v′h − v′2)/u′ 5M + 2S 1M + 2S

10 v2 = −(v′ + h) mod u2 3M 3M
Total in fields of arbitrary characteristic I + 61M + 10S

in fields of characteristic 2 I + 53M + 10S
in fields of characteristic 2 and with h(x) = 1 I + 22M + 7S

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 517

in Step 4 in Table IV and in Step 5 in Table V. The second technique al-
lows us to calculate the required monic polynomial u with less field oper-
ations (first introduced in Takahashi [2002]). Applying Karatsuba’s method
saves additional field multiplications in Step 3 in Table IV and in Step 4 in
Table V. The calculation of the resultant using Bezout’s matrix in the case of
genus-3 HEC can be performed very efficiently compared to former publications
[e.g., Kuroki et al. 2002] (Step 1 in Table IV and Table V). Notice, that there is
no benefit for genus-2 HEC when using Bezout’s matrix in the corresponding
steps. Finally, we found out that the ideal types of genus-3 curves seem to be of
the form y2 + y = f (x) over fields of characteristic two (Table V). To our knowl-
edge these genus-3 curves have no security limitations [Gaudry 2000; Scholten
and Zhu 2002]. More detailed information about the optimization techniques
used can be found in Pelzl et al. [2003].

3.4 Security of the Cryptosystems

The security of ECC and HECC relies on the DHP: given a prime p, a generator
α of Z�

p, and elements αa mod p and αb mod p, find αab mod p [Menezes et al.
1997]. The DHP in the group of an EC or in the Jacobian of HEC is not explicitly
considered here.

The Pollard rho method and its variants [Gallant et al. 1998; Pollard 1978;
Wiedemann 1986] are the most important examples of algorithms for solving
the DLP for ECC and HECC with complexity O(

√
n) in groups of order n. In

Gaudry [2000], it is shown that index-calculus algorithms in the Jacobian of
HEC of genus greater than 4 have a lower complexity than the Pollard rho
method. However, for some special cases of curves, ECC can be attacked with
complexity lower than O(

√
n) [Menezes et al. 1993]. This attack was generalized

for arbitrary genus in Frey and Rück [1994], and Rück [1999]. In Gaudry et al.
[2000], an attack compromising EC over the underlying finite field F2m , where
m is composite, is presented.

The cryptosystems used are defined over finite fields of order between 2162

and 2191. According to the work of Lenstra and Verheul [2000], 160-bit and
191-bit ECC system may be considered of equivalent security to 1825-bit and
3214-bit RSA systems, respectively. Further, adequate security for commercial
use can be achieved with 160-bit ECC until the year 2019 and with 191-bit
ECC until the year 2040 [Lenstra and Verheul 2000]. This notion of commercial
security is based on the hypothesis that a 56-bit block cipher offered adequate
security in 1982 for commercial applications.

4. METHODOLOGY

The overall performance of EC and HEC cryptosystems depends not only on
the specific algorithms but also on the underlying implementation and the
processor type used. In particular, we analyzed how different ECCs and HECCs
perform with respect to certain settings of both the software routines and the
hardware components.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

518 • T. Wollinger et al.

Table VI. Hardware Platforms Used

Board & Clock Rate Memory/Cache
Processor [MHz] [kByte] Tools

ARM Evaluator-7T 50 512 flash EPROM ARM Developer
KS32C50100 512 SRAM Suite 1.2

8 cache
ColdFire SBC5307 Arnewsh 90 4 SRAM SingleStep Deb. 7.6.2

MFC5307 8 cache Diab Data Comp. 4.3f.
PowerPC TQsystem 50 8 data cache SingleStep Deb. 7.6.2

MPC823E 16 instruction cache Diab Data Comp. 4.3f.

4.1 The Software

We implemented different variants of ECCs and HECCs. For EC, projective co-
ordinates according to the standard IEEE P1363 [IEEE 1999] with standard-
ized curves over different extension fields F2n were implemented. For HEC,
we applied the currently fastest explicit formulae for the group operations on
curves of genus two and three over fields of characteristic two (Tables II and
III). Genus-2 curves are implemented for h(x) �= 1 because other curves are
considered insecure [Galbraith 2001]. For genus-3 curves, our implementation
includes arbitrary curves with different properties.

We further examine the performance gain of special field reduction routines
in contrast to standard reduction routines. For the remainder of this contribu-
tion, we refer to special reduction when using a fixed field extension polynomial.
Whereas the term standard reduction is used for a generically implemented re-
duction routine and the extension polynomial is not known in advance. For
a server with different cryptographic applications, standard routines have to
be implemented whereas implementations on constrained platforms need only
specialized settings.

The characteristic of the underlying fields is two and the cardinality of the
groups is between 2160 and 2195. All operations are implemented for 32-bit mi-
croprocessors using the C programming language. Due to portability, the im-
plementation was not optimized for a specific platform.3 Compiler settings for
optimal speed were used depending on the tools available.

4.2 The Hardware

In this contribution, different hardware architectures for embedded systems,
namely ARM7, ColdFire, and PowerPC were chosen as testing platforms for the
extensive analysis of ECC and HECC. Further, the influence of the data cache
and the instruction cache was analyzed on the PowerPC.

The platforms and features are introduced in Table VI. More detailed infor-
mation about each processor can be found in Appendix D.

3Significant speed gains can be achieved by implementing the core routines in assembly using
processor specific operations.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 519

5. ARITHMETIC

In the following subsection, the implemented finite field algorithms and the
group operations of ECC and HECC are investigated in detail.

5.1 Finite Field Algorithms

The speed of the underlying implementation of the field arithmetic is crucial
for the overall performance of the whole cryptosystem. Restricting oneself to
a certain field with a fixed field extension polynomial offers the possibility to
benefit from special field reduction routines. In our work, we investigated the
performance gain of such special routines versus standard routines and the
resulting benefit to the overall performance. A brief summary of the algorithms
used for the field arithmetic is given below.

Field addition, multiplication, squaring, inversion, and reduction are the
basis for the group operations on ECs and HECs. Adding elements in F2n is
simply accomplished by a bit-wise XOR of the components. A field multiplication
of m1 words times m2 words is split up into several multiplications with a
smaller number of words. The algorithm is a modified version of Karatsuba
and Ofman [1963]. For fields in even characteristic, squaring can be done very
fast by table lookups. The modified extended Euclidean algorithm (EEA) is
applied for inversion in F2n [Hankerson et al. 2000]. Further, we were able to
speed up this algorithm with a small modification concerning the calculation
of the degree difference.

To represent elements of the extension field F2n = Z2/p(x), we need to choose
an irreducible polynomial. In von zur Gathen and Nöcker [2000], the authors
conjecture that the minimal number of terms σq(n) in irreducible polynomials
of degree n in GF(q), where q is a prime power, is for all n ≥ 1, σ2(n) ≤ 5 and
σq(n) ≤ 4 for q ≥ 3. This conjecture has been verified for q = 2 and n ≤ 10,000
[Blake et al. 1993; Golomb 1967; von zur Gathen and Nöcker 2000; Zierler 1970;
Zierler and Brillhart 1968, 1969] and for q = 3 and n ≤ 539 [von zur Gathen
2001]. Hence, we found extension polynomials that are either trinomials of
the form p(x) = xn + xk + 1 or pentanomials of the form p(x) = xn + xk1 + xk2 +
xk3 + 1.

The implemented general reduction function considers tri- and pentanomials
and is able to treat arbitrary values ki. The reduction itself is done word-wise
according to Hankerson et al. [2000, Algorithm 6]. In order to achieve a higher
speed-up, we additionally implemented a special reduction function for each
underlying field, where the ki are fixed.

5.2 Group Arithmetic on Elliptic Curves

The implementation of the high-level EC group operations uses projective co-
ordinates according to the standard IEEE P1363 [IEEE 1999]. The operations
performed are as follows:

—point addition—in general this algorithm requires 5 field squarings, 15 gen-
eral field multiplications

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

520 • T. Wollinger et al.

—point doubling—this algorithm requires 5 field squarings, 5 general field
multiplications,

—scalar multiplication—we implement the addition-subtraction method as
outlined in IEEE P1363[IEEE 1999]

5.3 Group Arithmetic on Hyperelliptic Curves

For the group operations on HECs of genus 2 and 3 the explicit formulae were
implemented (for more detail see Tables II and III). We considered the case
where the coefficients of h(x) are elements of F2. For genus-3 curves with h(x) = 1
were investigated. For the main operation of the cryptosystem, the repeated
addition of a divisor, we used the sliding window exponentiation algorithm
[Menezes et al. 1997, Section 14.6.1].

6. RESULTS

This section summarizes and analyzes our implementation results. The em-
phasis lies on the performance of the different platforms, the comparison of the
targeted cryptosystems with different implementation options, as well as on
the influence of the hardware settings.

ECC and HECC are implemented using general reduction routines. In ad-
dition, we implemented HECC with special (fixed) reduction polynomials to be
able to analyze the performance gain. In the case of genus-3 curves, we were
able to find a more efficient group operation, when using the h(x) = 1. Un-
fortunately, this speed up is not possible with curves of odd genus, because of
security reasons (for more information see Section 3.4).

6.1 ECC and HECC on Different Platforms

We implemented ECC and HECC on different embedded platforms with high
practical relevance, namely ARM, ColdFire, and PowerPC (Figure 1). In addi-
tion to these embedded platforms we timed the code also on a general-purpose
machine (a Pentium IV). All timings of the scalar multiplication concerning
group orders around 2160, 2170, 2180, and 2190 can be found in Table VII. For the
boards at hand we could achieve the best timings for the HECC implementa-
tion on the PowerPC. One scalar multiplication for HECC took 117 and 84.9 ms
for genus-2 and genus-3 curves, respectively. The scalar multiplication for ECC
can be performed fastest on the PowerPC at 50 MHz resulting in 106.3 ms.

However, solely considering the clock frequency of the processors is of very
limited value. Due to the different hardware architectures of the platforms and
the varying board features the actual timings can be quite different, though
the processor clockrate is equal (see Section 6.4).

6.2 Standard versus Special Implementation

There are two major ways of implementing a cryptographic algorithm. One way
is to allow all possible input parameters, for example, arbitrary curves and irre-
ducible polynomials. This form is referred to as standard implementation and
is used in server applications or cryptographic libraries. Further, it is sufficient

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 521

Fig. 1. Implementation of ECC and HECC on different platforms (group order: ≈ 2160).

Table VII. Timings of the Scalar Multiplication of ECC and HECC on Different
Platforms (in ms)

HECC
Group
Order ECC g = 2 g = 3 g = 3, h(x) = 1
≈ 2160 ARM @ 50 MHz 469.96 446.46 515.46 316.6

ColdFire @ 90 MHz 152.1 155.6 219.4 123.6
PowerPC @ 50 MHz 106.3 117 141.4 84.9
Pentium @ 1.8 GHz 2.6 3.61 4.15 2.58

≈ 2170 ARM @ 50 MHz 397.12 461.36 523.12 321.12
ColdFire @ 90 MHz 132.8 161.5 225.1 126.9
PowerPC @ 50 MHz 94.5 121.2 145.4 87
Pentium 1.8 GHz 2.43 3.8 4.84 2.7

≈ 2180 ARM @ 50 MHz 515.95 516.5 577.5 356.99
ColdFire @ 90 MHz 171.7 183.4 246.7 146.2
PowerPC @ 50 MHz 121.8 138.1 160.1 96.8
Pentium @ 1.8 GHz 2.8 4.3 5.77 2.92

≈ 2190 ARM @ 50 MHz 436.01 542.68 581.24 360.24
ColdFire @ 90 MHz 157.8 187.6 258.5 147
PowerPC @ 50 MHz 112.4 141.7 167.8 101.8
Pentium @ 1.8 GHz 2.78 4.47 5.49 3.01

to target specific implementations of algorithms when constrained in memory
and processor power (e.g., allowing only standardized curves or even a fixed
curve). The more specific the implementation the higher the efficiency. In this
subsection, we focus on the impact of using the specific versus the standard
implementation.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

522 • T. Wollinger et al.

Table VIII. Influence of Special and Standard Field
Reduction (all Timings in µs, Platform: ARM @ 50 MHz)

General /
General Red. Special Red. Special

Field mult squ mult squ mult squ
254 50 28 32 10 1.56 2.8
255 50 28 32 10 1.56 2.8
259 65 42 33 11 1.97 3.82
260 59 27 32 10 1.75 2.7
261 65 42 33 11 1.97 3.82
263 50 28 32 9 1.56 3.11
281 84 35 62 13 1.35 2.69
283 103 54 62 13 1.66 4.15
288 104 56 62 13 1.68 4.31
291 104 56 62 13 1.68 4.31
295 84 35 62 12 1.35 2.92

6.2.1 Performance of Underlying Field Arithmetic. We implemented the
frequently used finite field functions, namely modular multiplication and mod-
ular squaring in two different ways. At first we used a standard implementation
with a reduction function capable of handling arbitrary irreducible polynomi-
als. Second, we fixed the polynomial and therefore had to program separate
reduction routines for each of the finite fields used, and we refer to this option
as special. Table VIII shows the timings for multiplication and squaring with
different underlying fields using standard and special reduction routines on the
ARM microprocessor.

Analyzing the throughput of the functions the special modular multiplication
routine is up to two times faster compared to the standard implementation. In
the case of squaring, the gain is even higher and an increase in performance by
a factor of 4 can be achieved. The difference in the performance gain relies on
the reduction routine, playing a crucial role in the squaring routine.

Figure 2 depicts the timings of the modular arithmetic for different fields.
The evaluation of this figure yields to the following conclusions:

(1) The performance rises unusually between the fields F263 and F281 . The in-
crease results from the fact that the implementation is targeted for 32-bit
processors. The field elements in F263 can be represented with two words,
whereas in the case of F281 three words have to be provided.

(2) In the specific implementation no input parameters are used because they
are chosen in advance, resulting in a nearly monotonic slope for a con-
stant number of words. The standard implementation depends heavily on
the chosen irreducible polynomial, which can be seen from the nonmono-
tonic slope of the graphs. In our implementation, we used trinomials and
pentanomials. The latter case applied when there were no irreducible tri-
nomials available. For example in the case of the underlying field F255 , we
used a trinomial and for the field F259 , a pentanomial was used. The larger
overhead for a standard routine using a pentanomial instead of a trinomial
leads to a decrease in speed for multiplication and squaring.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 523

Fig. 2. Comparison of standard versus special implementation of the field arithmetic (platform:
ARM @ 50 MHz).

Table IX. Influence of Different Reduction Routines on HECC Scalar Multiplication
(all Timings in ms, Platform: ARM @ 50 MHz)

Standard Reduction Special Reduction Standard / Special
Group g = 2 g = 3 g = 2 g = 3 g = 2 g = 3
Order h(x) = 1 h(x) = 1 h(x) = 1
≈ 2160 565.97 449.62 749.36 446.46 316.6 515.46 1.27 1.42 1.45
≈ 2170 682.86 454.81 758.72 461.36 321.12 523.12 1.48 1.42 1.45
≈ 2180 766.64 504.75 837.71 516.5 356.99 577.5 1.48 1.41 1.45
≈ 2190 681.36 513.66 852.15 542.68 360.24 581.24 1.26 1.43 1.47

6.2.2 Influence on the Scalar Multiplication. Table IX shows how the dif-
ferent implementations of the underlying library influence the performance of
the HECC. For genus-2 curves, the ratio of the standard implementation to
that of the special implementation is in the range of 1.27–1.48. In the case of
genus-3 curves, scalar multiplication can be accelerated by almost 50%. The per-
formance gain is not as huge as for the plain field operations (see Section 6.2.1)
because of additional overhead and other underlying functions (e.g., inversion)
that are not optimized.

6.3 Comparing the Performance of the Different Cryptosystems

Figure 3 shows the performance of different cryptosystems implemented
with standard and special reduction routines on the ARM microprocessor.
Note that analyzing the performance only for one specific platform is not

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

524 • T. Wollinger et al.

Fig. 3. Performance comparison of different ECC and HECC implementations (platform: ARM @
50 MHz)

sufficient to draw conclusions about the general performance of the differ-
ent cryptosystems. Figures for the other embedded platforms can be found in
Appendix A.

From the figures follow that the computation time for a group operation is
dependent on a variety of factors that are interrelated, for example, the com-
plexity of the group operation depends on the curve parameters and so on. This
fact is obvious if we consider the different implemented genus-3 curves. When
using genus-3 curves with h(x) = 1, a highly efficient group operation can be
achieved compared to arbitrary h(x). Further, interdependence of the run-time
and the hardware architecture is noticeable. Consider for example the relative
performance between genus-2 HEC using special reduction and genus-3 HEC
using general reduction: On the ARM (Figure 3) and the ColdFire (Figure 4),
these genus-3 implementations are the worst followed by the genus-2 curves.
Analyzing the performance of the same curves on the PowerPC (Figure 5), the
genus-2 curve has the worst timings. Hence, the performance is heavily related
to properties of the underlying platform.

In the case of genus-3 HECC with h(x) = 1 using special reduction routines,
the ARM takes the shortest time to compute the scalar multiplication. The
graphs of the standard implementation show that the cryptographic systems
for genus-1 and genus-3 with h(x) = 1 have approximately the same perfor-
mance. In the cases of a group order of 2160 and 2180, HECC can even outper-
form ECC. Regarding performance, these two implementations are followed by
genus-2 and genus-3 HECC with arbitrary h(x). In conclusion, it can be seen

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 525

Fig. 4. Performance comparison of different ECC and HECC implementations (platform: ColdFire
@ 90 MHz).

Fig. 5. Performance comparison of different ECC and HECC implementations (platform: PowerPC
@ 50 MHz).

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

526 • T. Wollinger et al.

Table X. Influence of Different Cache Options on ECC and HECC Performance (all Timings
in ms, Platform: PowerPC @ 50 MHz, see Table XI for Ratios)

Cache, serialized No Cache
Group
Order Data + Instruction Instruction Data Serialized Not Serialized

ECC 2163 106.4 271.9 626.2 828.1 1249
2167 94.5 241 553.5 732.4 1062.8
2179 122 311.4 713.7 944.6 1371.4
2191 112.5 286.3 659 871.7 1264.7

HECC, g = 2 2162 117 272.8 695.8 886.1 1293
2166 121.2 280.7 722.2 916.6 1339
2176 130.5 300.9 776.2 984.9 1438
2182 138.1 317.9 821.8 1042 1521
2190 141.7 328.8 841.7 1071 1562

Table XI. Ratios of the ECC and HECC Scalar Multiplication Using Different Cache Settings
(Platform: Power PC @ 50 MHz, see Table X for the Timings)

No Serialized /
Group No Cache / No Cache / No Cache / Serialized
Order Data + Instruction Instruction Data (No Cache)

ECC 2163 7.78 3.05 1.32 1.51
2167 7.75 3.04 1.32 1.45
2179 7.74 3.03 1.32 1.45
2191 7.75 3.04 1.32 1.45

HECC, g = 2 2162 7.57 3.25 1.27 1.46
2166 7,56 3.27 1.27 1.46
2176 7.55 3.27 1.27 1.46
2182 7.55 3.28 1.27 1.46
2190 7.56 3.26 1.27 1.46

that using certain curves can have significant performance pay-offs in terms of
performance.

Interestingly, genus-3 HECC have the worst timing in standard implemen-
tation and therefore do not look promising. On the other hand, when restricting
ourselves to curves with h(x) = 1 and special field operations, the best perfor-
mance is achieved.

Contrary to common belief we were able to show: (1) genus-3 HEC with
h(x) = 1 can outperform ECC and (2) these genus-3 curves are faster than
genus-2 curves. Thus, besides ECC, HECC is perfectly suited for embedded
security applications.

6.4 Influence of Cache

The performance of a cryptographic system depends a lot on the processor and
on the available resources of the board. In this subsection, we analyze the
influence of different cache settings.

Table X shows the influence of the cache targeting ECC and genus-2 HECC
implementations on the PowerPC. Normalizing these timings with respect to
the obtained execution times with disabled cache leads to the ratios stated in
Appendix C, Table XI. It is noticeable that there is almost no difference in the
impact of the cache setting for ECC and HECC.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 527

The data cache is advantageous when intensive memory access is necessary.
The utilization of the instruction cache dominates in projects consisting of small
functions, which get called frequently. In our case, the latter applies: the code
size is relatively small and the functions called most frequently consist of only
few commands. This is confirmed by the timings on the PowerPC. It can be seen
that the performance increases by a factor of 1.3 when using only data cache
and by a factor of 3.3 when only using instruction cache. The computation
of a scalar multiplication is about a factor of 7.7 faster if using instruction
and data cache. Since we are using a cache 16 k byte cache, the most relevant
subroutines are permanently cached. In addition, the serialized mode compared
to the nonserialized mode can speed up the design by almost 50%.

Hence, we advise using at least an instruction cache, or better, both kinds of
cache when running ECC or HECC.

6.5 Koblitz Curves

Koblitz, or subfield, curves are a very special type of algebraic curves [Koblitz
1991]. They are well studied in the ECC case (including standardization). On
the other hand, relatively little work has been done for subfield curves for
HECC, with the exception of Günter et al. [2000]. Thus, we decided to only im-
plement subfield curves for the ECC case. Comparing HECC and ECC subfield
curves is certainly an interesting undertaking, but it is not obvious whether
such a comparison would be meaningful as the cryptographic security consid-
erations in both cases might be different. We implemented the Frobenius map
using Koblitz curves targeting the group order ≈ 2160. On the ARM (@50 MHz)
it took 75.29 ms, on the ColdFire (@90 MHz) 33.9 ms, and on the PowerPC (@
50 MHz) 23.3 ms.

7. CONCLUSION

The work at hand presents the first implementation of HECC on embedded
systems and provides a thorough comparison of ECC and HECC on a variety
of relevant embedded hardware architectures. In addition, optimized explicit
formulae for the group operation of genus-3 HECC are introduced. The best
performance for a HECC scalar multiplication took 84.9 ms on the PowerPC.
Our implementations demonstrate that HECC is perfectly suited for use in
constrained environments. Contrary to common belief, HECC can reach the
same throughput as ECC.

Further, we investigated the influence of using specific arithmetic versus
standard arithmetic and the dependence of hardware settings on the perfor-
mance. We found a clear quantitative improvement of 50% by specializing the
reduction routine for HECC. Independent of the cryptosystem, the presence of
cache can speed up the performance by almost a factor of eight for the processor
used in our comparison.

This contribution clearly shows that HECC (as equal alternative to ECC)
can be the cryptosystem of choice for future embedded security applications.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

528 • T. Wollinger et al.

APPENDIX

A. PERFORMANCE OF ECC AND HECC ON DIFFERENT
HARDWARE ARCHITECTURES

For each of the embedded platforms ColdFire and PowerPC the distribution
of the performance considering ECC and HECC for different underlying fields
are shown in Figures 4 and 5, respectively. For the figure targeting the ARM
platform (see Section 6.3 Figure 3).

B. EXPLICIT FORMULAE FOR GENUS THREE HECC

The explicit formulae for the group operations on HEC of genus three and
arbitrary characteristic as well as the most efficient formulae for doubling on
a special HEC for characteristic two is presented in Tables IV and V.

C. CACHE INFLUENCE

In Table IV, the ratios analyzing the influence of the cache for two different
implementations on the PowerPC are given. The timings of the scalar multipli-
cation using different cache settings can be found in Section 6.4 (Table X).

D. HARDWARE PLATFORMS

This section introduces the hardware platforms used in our contribution.
ARM: ARM (Advanced RISC Machine) processors are typically used for em-

bedded applications such as small network devices, controllers, and mobile
phones. Especially for secure systems like Online Banking, Pay-TV, Network
Security and so on. A SecurCore variant of the ARM7 processor was developed,
which has instruction independent power peaks to avoid side-channel attacks.

On the ARM microprocessor [ARM 2000], instruction decoding is performed
with static (i.e., hard-wired) logic for a faster result. The ARM7TDMI is based
on von Neuman architecture and is licensed by ARM Ltd. All instructions have
a fixed uniform length to simplify the decoding procedure. Since direct manip-
ulation of data in the memory is not possible, a load/store architecture handles
data processing through registers. The simple address mode allows to deter-
mine all load/store addresses from the register contents and the instruction
parameters. For low power consumption the ARM7 possesses the Thumb In-
struction Set, which is restricted to 16-bit and allows compact code, and thus,
is feasible for small hand-held devices such as PDAs.

The ARM7TDMI consists of a program control unit, an address generator,
an integer data path, and a general-purpose register bank. The data path con-
tains a 32-bit integer ALU, a multiply-add unit, and a barrel shifter. The 32-
bit ALU performs simple integer arithmetic operations such as add and sub-
tract. The core features a multicycle 32 × 32 to 64-bit multiplier. It has a to-
tal of 37 registers: 31 general-purpose 32-bit registers, and 6 status registers.
Speed-critical control signals are pipelined so that system control functions can
be implemented in standard low-power logic. The ARM7TDMI does not sup-
port floating-point arithmetic in hardware and does not have any DSP-specific
features.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 529

ColdFire: The ColdFire microprocessor is the successor of the 68000 series.
Besides the use as low cost controller (laser printers), the ColdFire is used
in general-purpose industry applications such as network elements (routers,
bridges).

In version 3, the processor consists of two independent, decoupled pipeline
structures [Motorola 2000a]. The instruction fetch pipeline is a six-stage
pipeline for prefetching instructions and contains logic for branch prediction.
To maximize the performance, the 4 k byte on-chip SRAM provides one-cycle
access for the ColdFire core. This SRAM can store processor stack and critical
code or data segments to maximize performance. The processor core possesses
a hardware integer divide unit and supports a 16 × 16 and 32 × 32 bit multi-
plication. The ColdFire features 16 32-bit general-purpose registers.

PowerPC: Typical applications for embedded PowerPCs include power-
ful general-purpose microcontroller, data acquisition systems, applications in
robotics, and automotive and consumer electronics.

The standard PowerPC architecture has a fully static design that consists
of three functional blocks: the integer block, hardware multiplier/divider, and
load/store block [Motorola 2000b]. The core supports integer operations on a
32-bit internal data path and 32-bit arithmetic hardware. Its interface to the
internal and external busses is 32 bits. The PowerPC integer block supports
32 × 32-bit fixed-point general-purpose registers and can execute one integer
instruction per clock cycle. The core is integrated with the memory management
units, an instruction cache, and a data cache. The 8 k byte data cache allows
single-cycle accesses. The two way 16 k byte instruction cache is set-associative.

The PowerPC offers the possibility to disable the data cache as well as the
instruction cache separately. For this reason, we investigate four different op-
tions for the cache: cache enabled, data cache only, instruction cache only, and
cache disabled. The timings under these options provide information about the
performance depending on the cache. For programs with intensive memory ac-
cess, the data cache may play a more significant role than the instruction cache
whereas for projects consisting of small functions which get called several times,
the instruction cache might be more important.

The PowerPC allows disabling of the pipelining mode. If the core is in non-
serialized mode, no pipelining is applied. Hence, the next processor command
is executed only after the previous has been processed completely. In serialized
mode, full pipelining is enabled.

REFERENCES

AGNEW, G. B., MULLIN, R. C., AND VANSTONE, S. A. 1993. An implementation of elliptic curve cryp-
tosystems over F2155 . IEEE J. Select. Areas Commun. 11, 5 (June), 804–813.

ANSI X9.62-1999. 1999. The Elliptic Curve Digital Signature Algorithm. Tech. rep., ANSI.
ANSI X9.63-199X. 1998. Elliptic Curve Key Agreement and Key Transport Protocols. Draft,

ANSI. Working document.
ARM. 2000. ARM Evaluator-7T Board User Guide. Available at http://www.arm.com/support/.
BLAKE, GAO, AND LAMBERT. 1993. Constructive problems for irreducible polynomials over finite

fields. In Information Theory and Applications. Springer-Verlag, Berlin, 1–23.
BLAKE, I., SEROUSSI, G., AND SMART, N. 1999. Elliptic Curves in Cryptography. London Mathemat-

ical Society Lecture Notes Series, vol. 265. Cambridge University Press, Cambridge, UK.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

530 • T. Wollinger et al.

BOSTON, N., CLANCY, T., LIOW, Y., AND WEBSTER, J. 2002. Genus two hyperelliptic curve coprocessor.
In Cryptographic Hardware and Embedded Systems—CHES 2002, J. c. K. K. B. S. Kaliski and
C. Paar, eds. Lecture Notes in Computer Science, vol. 2523. Springer-Verlag, Berlin, 529–539.

CANTOR, D. 1987. Computing in Jacobian of a hyperelliptic curve. Math. Comput. 48, 177, 95–101.
CHUDNOVSKY, D. AND CHUDNOVSKY, G. 1987. Sequences of numbers generated by addition in formal

groups and new primality and factorization tests. Adv. Appl. Math 7, 385–434.
COHEN, H. 1993. A Course in Computational Algebraic Number Theory. Graduate Texts in Math-

ematics, vol. 138. Springer-Verlag, Berlin, Germany (Third corrected printing 1996).
COHEN, H., MIYAJI, A., AND ONO, T. 1998. Efficient elliptic curve exponentiation using mixed coor-

dinates. In Advances in Cryptology—ASIACRYPT’98, K. Ohta and D. Pei, eds. Lecture Notes in
Computer Science, vol. 1514. Springer-Verlag, Berlin, 51–65.

DIERKS, T. AND ALLEN, C. 1999. RFC 2246: The TLS Protocol Version 1.0. Corporation for Na-
tional Research Initiatives, Internet Engineering Task Force, Network Working Group, Reston,
Virginia, USA.

FREIER, A. O., KARLTON, P., AND KOCHER, P. C. 1996. The SSL Protocol Version 3.0. Transport Layer
Security Working Group Internet-draft.

FREY, G. AND RÜCK, H.-G. 1994. A remark concerning m-divisibility and the discrete logarithm in
the divisor class group of curves. Math. Comput. 62, 206 (Apr.), 865–874.

FULTON, W. 1969. Algebraic Curves—An Introduction to Algebraic Geometry. W. A. Benjamin,
Inc., Reading, M.

GALBRAITH, S. 2001. Supersingular curves in cryptography. In Lecture Notes in Computer Science,
vol. 2248. 495–517.

GALLANT, R., LAMBERT, R., AND VANSTONE, S. 1998. Improving the parallelized Pollard
lambda search on binary anomalous curves. Available at http://www.certicom.com/chal/
download/paper.ps.

GAO, L., SHRIVASTAVA, S., AND SOBELMAN, G. 1999. Elliptic curve scalar multiplier design us-
ing FPGAs. In Workshop on Cryptographic Hardware and Embedded Systems—CHES 19999,
Ç. Koç and C. Paar, eds. Lecture Notes in Computer Science, vol. 1717. Springer-Verlag,
Berlin.

GAUDRY, P. 2000. An algorithm for solving the discrete log problem on hyperelliptic curves. In
Advances in Cryptology—EUROCRYPT 2000, B. Preneel, ed. Lecture Notes in Computer Science,
vol. 1807. Springer-Verlag, Berlin, Germany, 19–34.

GAUDRY, P. AND HARLEY, R. 2000. Counting points on hyperelliptic curves over finite fields. In
ANTS IV, W. Bosma, ed. Lecture Notes in Computer Science, vol. 1838. Springer Verlag, Berlin,
297–312.

GAUDRY, P., HESS, F., AND SMART, N. P. 2000. Constructive and Destructive Facets of Weil De-
scent on Elliptic Curves. Tech. Rep. HPL 2000-10, HP Labs. Available at http://www.hpl.hp.com/
techreports/2000/HPL-2000-10.html.

GÜNTER, C., LANGE, T., AND STEIN, A. 2000. Speeding up the arithmetic on koblitz curves of genus
two. In Seventh Annual Workshop on Selected Areas in Cryptography—SAC 2000. Lecture Notes
in Computer Science, vol. 2012. Springer-Verlag, Berlin, Germany, 106–117.

GOLOMB, S. 1967. Shift Register Sequences. Holden-Day, San Francisco, California, USA.
GORDON, D. M. 1998. A survey of fast exponentiation methods. J. Algorithms 27, 129–146.
GUAJARDO, J. AND PAAR, C. 1997. Efficient algorithms for elliptic curve cryptosystems. In Ad-

vances in Cryptology—CRYPTO ’97, B. Kaliski, ed. Lecture Notes in Computer Science, vol.
1294. Springer-Verlag, Berlin, Germany, 342–356.

GURA, N., CHANG, S., EBERLE, H., SUMIT, G., GUPTA, V., FINCHELSTEIN, D., GOUPY, E., AND STEBILA,
D. 2001. An end-to-end systems approach to elliptic curve cryptography. In Cryptographic
Hardware and Embedded Systems—CHES 2001. Lecture Notes in Computer Science, vol. 1965.
Springer-Verlag, Berlin, 351–366.

HANKERSON, D., HERNANDEZ, J. L., AND MENEZES, A. 2000. Software implementation of elliptic curve
cryptography over binary fields. In Second International Workshop on Cryptographic Hardware
and Embedded Systems—CHES 2000, Ç. Koç and C. Paar, eds. Lecture Notes in Computer
Science, vol. Springer-Verlag, Berlin.

HARLEY, R. 2000. Fast Arithmetic on Genus Two Curves. Available at http://cristal.inria.fr/
harley/hyper/. adding.txt and doubling.c.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 531

IEEE 1999. IEEE P1363 Standard Specifications for Public Key Cryptography. IEEE. Last Prelim-
inary Draft.

KARATSUBA, A. AND OFMAN, Y. 1963. Multiplication of multidigit numbers on automata. Sov. Phys.
Dokl. (English translation) 7, 7, 595–596.

KENT, S. AND ATKINSON, R. 1998. RFC 2401: Security Architecture for the Internet Protocol.
Corporation for National Research Initiatives, Internet Engineering Task Force, Network Work-
ing Group, Reston, Virginia, USA.

KING, B. 2001. An improved implementation of elliptic curves over GF(2) when using projective
point arithmetic. In Eighth Annual Workshop on Selected Areas in Cryptography—SAC 2001,
S. Vaudenay and A. M. Youssef, eds. Lecture Notes in Computer Science, vol. 2259. Springer-
Verlag, Berlin, Germany, 134–150.

KOBLITZ, N. 1987. Elliptic curve cryptosystems. Math. Comput. 48, 203–209.
KOBLITZ, N. 1988. A family of jacobians suitable for discrete log cryptosystems. In Advances in

Cryptology—Crypto ’88, S. Goldwasser, ed. Lecture Notes in Computer Science, vol. 403. Springer-
Verlag, Berlin, 94–99.

KOBLITZ, N. 1989. Hyperelliptic cryptosystems. J. Cryptol. 1, 3, 129–150.
KOBLITZ, N. 1991. Cm—curves with good cryptographic properties. In Advances in Cryptology—

CRYPTO ’91, J. Feigenbaum, ed. Lecture Notes in Computer Science, vol. 576. Springer-Verlag,
Berlin, Germany, 279–287.

KOBLITZ, N. 1998. Algebraic Aspects of Cryptography, 2nd ed. Springer-Verlag, Berlin, Germany.
KRIEGER, U. 1997. signature.c. M.S. thesis, Mathematik und Informatik, Universität Essen,

Fachbereich 6, Essen, Germany.
KUROKI, J., GONDA, M., MATSUO, K., CHAO, J., AND TSUJII, S. 2002. Fast genus three hyperellip-

tic curve cryptosystems. In The 2002 Symposium on Cryptography and Information Security,
Japan—SCIS 2002.

LANGE, T. 2002a. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via
Explicit Formulae. Cryptology ePrint Archive, Report 2002/121. http://eprint.iacr.org/.

LANGE, T. 2002b. Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves. Cryptology ePrint
Archive, Report 2002/147. http:eprint.iacr.org.

LANGE, T. 2002c. Weighted Coordinates on Genus 2 Hyperelliptic Curves. Cryptology ePrint
Archive, Report 2002/153. http:eprint.iacr.org.

LENSTRA, A. AND VERHEUL, E. 2000. Selecting cryptographic key sizes. In Third Interna-
tional Workshop on Practice and Theory in Public Key Cryptography—PKC 2000, H. Imai
and Y. Zheng, eds. Lecture Notes in Computer Science, vol. 1751. Springer-Verlag,
Berlin.

LÓPEZ, J. AND DAHAB, R. 1999. Fast multiplication on elliptic curves over GF(2n). In Cryptographic
Hardware and Embedded Systems—CHES 1999, J. Ç. K. Koç and C. Paar, eds. Lecture Notes
in Computer Science, vol. 1717. Springer-Verlag, 316–327.

MATSUO, K., CHAO, J., AND TSUJII, S. 2001. Fast Genus Two Hyperelliptic Curve Cryptosystems.
In ISEC2001-31. IEICE.

MENEZES, A., OKAMOTO, T., AND VANSTONE, S. 1993. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Trans. Inf. Theory 39, 5 (Sep.), 1639–1646.

MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A. 1997. Handbook of Applied Cryptography.
CRC Press, Boca Raton, Florida, USA.

MENEZES, A. J., WU, Y. H., AND ZUCCHERATO, R. J. 1996. An Elementary Introduction to Hyperel-
liptic Curves. Personal correspondence.

MILLER, V. 1986. Uses of elliptic curves in cryptography. In Advances in Cryptology—CRYPTO
’85, H. C. Williams, ed. Lecture Notes in Computer Science, vol. 218. Springer-Verlag, Berlin,
Germany, 417–426.

MIYAMOTO, Y., DOI, H., MATSUO, K., CHAO, J., AND TSUJI, S. 2002. A fast addition algorithm of genus
two hyperelliptic curve. In The 2002 Symposium on Cryptography and Information Security—
SCIS 2002. IEICE, Japan, 497–50. (in Japanese).

MONTGOMERY, P. 1987. Speeding the Pollard and Elliptic Curve methods of factorization. Math.
Comp. 48, 243–264.

MORAIN, F. AND OLIVOS, J. 1990. Speeding up the computations on an elliptic curve using addition-
subtraction chains. Theor. Inf. Applic. 24, 6, 531–543.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

532 • T. Wollinger et al.

MOTOROLA. 2000a. MFC5307 User’s Manual. http://e-www.motorola.com/collateral/MCF5307-
BUM.pdf.

MOTOROLA. 2000b. MPC823 User’s Manual. http://e-www.motorola.com/brdata/PDFDB/docs/
MPC823UM.pdf.

MUMFORD, D. 1984. Tata lectures on theta II. In Progress in Mathematics, vol. 43. Birkhäuser.
NAGAO, K. 2000. Improving group law algorithms for Jacobians of hyperelliptic curves. In ANTS

IV, W. Bosma, ed. Lecture Notes in Computer Science, vol. 1838. Springer Verlag, Berlin, 439–
448.

ORLANDO, G. AND PAAR, C. 2000. A high-performance reconfigurable elliptic curve processor for
GF(2m). In Cryptographic Hardware and Embedded Systems—CHES 2000, Ç. K. Koç and C. Paar,
eds. Lecture Notes in Computer Science, vol. 1965. Springer-Verlag.

PELZL, J. 2002. Hyperelliptic Cryptosystems on Embedded Microprocessor. M.S. thesis, Depart-
ment of Electrical Engineering and Information Sciences, Ruhr-Universitaet Bochum, Bochum,
Germany.

PELZL, J., WOLLINGER, T., AND PAAR, C. 2003. Low cost security: Explicit formulae for genus-4
hyperelliptic curves. In Tenth Annual Workshop on Selected Areas in Cryptography—SAC 2003.
Springer-Verlag, Berlin, Germany.

POLLARD, J. M. 1978. Monte Carlo methods for index computation mod p. Math. Comput. 32, 143
(July), 918–924.

RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. 1978. A method for obtaining digital signatures and
public-key cryptosystems. Communi. ACM 21, 2 (Feb.), 120–126.

ROSNER, M. 1999. Elliptic Curve Cryptosystems on Reconfigurable Hardware. M.S. thesis, ECE
Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

RÜCK, H.-G. 1999. On the discrete logarithm in the divisor class group of curves. Math. Com-
put. 68, 226, 805–806.

SAKAI, Y. AND SAKURAI, K. 2000. On the practical performance of hyperelliptic curve cryptosystems
in software implementation. In IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, vol. E83-A NO.4. 692–703. IEICE Trans.

SAKAI, Y., SAKURAI, K., AND ISHIZUKA, H. 1998. Secure hyperelliptic cryptosystems and their per-
formance. In Public Key Cryptography. Lecture Notes in Computer Science, vol. 1431. Springer-
Verlag, Berlin, 164–181.

SCHOLTEN, J. AND ZHU, J. 2002. Hyperelliptic curves in characteristic 2. Int. Math. Res. Notices 17,
905–917.

SCHROEPPEL, R., ORMAN, H., O’MALLEY, S., AND SPATSCHECK, O. 1995. Fast key exchange with elliptic
curve systems. In Advances in Cryptology—CRYPTO ’95, D. Coppersmith, ed. 963. Springer-
Verlag, Berlin, Germany, 43–56.

SILVERMAN, J. H. 1986. The Arithmetic of Elliptic Curves. Springer-Verlag, New York.
SMART, N. 1999. On the performance of hyperelliptic cryptosystems. In Advances in Cryptology—

EUROCRYPT ’99, J. Stern, ed. Lecture Notes in Computer Science, vol. 1592. Springer-Verlag,
165–175.

SOLINAS, J. 1997. An improved algorithm for arithmetic on a family of elliptic curves. In Advances
in Cryptology—CRYPTO ’97, B. Kaliski, ed. 1294. Springer-Verlag, Berlin, Germany, 357–371.

TAKAHASHI, M. 2002. Improving Harley algorithms for jacobians of genus 2 hyperelliptic curves.
In SCIS. IEICE, Japan. (in Japanese).

V1ON ZUR GATHEN, J. 2001. Irreducible trinomials over finite fields. In Proceedings of the 2001
International Symposium on Symbolic and Algebraic Computation—ISSAC2001, B. Mourrain,
ed. ACM Press, 332–336.

VON ZUR GATHEN, J. AND NÖCKER, M. 2000. Exponentiation in finite fields: theory and practice.
In Applied Algebra, Agebraic Algorithms and Error Correcting Codes—AAECC-12, T. Mora and
H. Mattson, eds. Lecture Notes in Computer Science, vol. 1255. Springer-Verlag, Berlin, 88–113.

WIEDEMANN, D. H. 1986. Solving sparse linear equations over finite fields. IEEE Trans. Inf. The-
ory IT-32, 1 (Jan), 54–62.

WOLLINGER, T. 2001. Computer Architectures for Cryptosystems Based on Hyperelliptic Curves.
M.S. thesis, ECE Department, Worcester Polytechnic Institute, Worcester, Massachusetts,
USA.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Elliptic and Hyperelliptic Curves on Embedded µP • 533

WOLLINGER, T. AND PAAR, C. 2002. Hardware architectures proposed for cryptosystems based on
hyperelliptic curves. In Proceedings of the 9th IEEE International Conference on Electronics,
Circuits and Systems—ICECS 2002, vol. III. 1159–1163.

ZIERLER, N. 1970. On xn + x + 1 over GF(2). Inf. Control 16, 67–69.
ZIERLER, N. AND BRILLHART, J. 1968. On primitive trinomials (mod2). Inf. Control 13, 541–554.
ZIERLER, N. AND BRILLHART, J. 1969. On primitive trinomials (mod2): II. Inf. and Control 14, 566–

569.

Received March 2003; revised September 2003; accepted October 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

