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Abstract

This paper proposes two new hardware architectures for performing multiplication in GF (p) and

GF (2n), which is the most time consuming operation in many cryptographic applications. The archi-

tectures provide very fast and efficient execution of multiplication in both GF (p) and GF (2n), and can

be mainly used in elliptic curve cryptography. Both architectures are scalable and therefore can handle

operands of any size. They can be configured to the available area and/or desired performance. The

algorithm implemented in the architectures is Montgomery multiplication algorithm which proved to be

very efficient in both fields. The first architecture utilizes a precomputation technique that reduces the

critical path delay at the expense of using extra logic which has a limited negative impact on the silicon

area for operand precisions of cryptographic interest. The second architecture computes multiplication

faster in GF (2n) than GF (p), which conforms with premise of GF (2n) for hardware realizations. Both

architectures provide new alternatives that offer faster computation of multiplication and useful features.

Index terms: Montgomery multiplication, unified and scalable architecture, dual-radix architrave,

public-key cryptography.
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1 Introduction

One of the motivations for fast and area efficient hardware solutions for multiplications in finite fields

GF (p) and GF (2n) comes from the fact that they are the most time-consuming operations in cryptographic

applications such as the decipherment operation of the RSA algorithm [1], the Diffie-Hellman key exchange

algorithm [2], the Government Digital Signature Standard [3] and also recently elliptic curve cryptography

[4, 5].

The Montgomery multiplication algorithm is originally proposed as an efficient method for doing modular

multiplication with an odd modulus [6]. When the modulus is a prime number, the Montgomery multiplica-

tion algorithm becomes a very efficient tool to perform multiplication in prime fields GF (p). The algorithm

replaces division operation with simple shifts, which are particularly suitable for implementation in hardware

as well as in software on general-purpose computers. Furthermore, since the Montgomery algorithm applies

the reduction operation (when it is necessary) to the partial result starting from the least significant digit,

which is opposite to the order of the classical modular multiplication algorithm, it eliminates the need to

await the completion of carry propagation before starting working with the next digit of the multiplier.

Therefore, the Montgomery multiplication algorithm generally allows to design a hardware unit with shorter

signal propagation time (higher maximum clock frequency) besides taking advantage of certain design op-

timizations such as systolic array [7, 8, 9] and pipeline organizations of multiple atomic processing units in

order to exploit the inherent parallelism in the algorithm [10]. Systolic array-based implementations such as

[9] achieve very high throughput rates when there are many successive multiplication operations.

In [11], it is also shown that Montgomery multiplication might be very efficient in GF (2n), when polyno-

mial basis is used and the irreducible field polynomial is chosen arbitrarily. Since the steps of the Montgomery

multiplication algorithm for both fields are almost identical, it is possible to design a unified architecture.

Feasibility and advantage of designing such a unified multiplier architecture for elliptic curve cryptography

have been extensively discussed in [10, 12, 13].

Various hardware implementations of the Montgomery multiplication algorithm for limited precision

operands were proposed in [14, 15, 16]. Implementations utilizing high-radix modular multipliers have also

been proposed in [15, 17, 18, 19]. Aspects of using high-radix representation have been discussed in [20].

There are certain trade-offs in speed and circuit complexity for high-radix architectures. Even though very

high-radix designs have certain complications in hardware, moderate radix values offer faster alternatives

to simple radix-2 multiplier designs. For instance, high-radix multipliers proposed in [21, 22] for binary

extension fields GF (2n) are attractive for both low-power and high-performance applications.

The original unified multiplier in [10] uses radix-2 design and offers an equal performance for both GF (p)

and GF (2n) of same precision. For this very reason, however, the original design is not optimized since it

does not take the advantage of using GF (2n), which is, in general, more efficient than GF (p) in hardware

implementations. Our first observation is that this situation can be remedied by putting to use the part of
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the circuitry which is underutilized in GF (2n) mode. This allows us to run the multiplier module in higher

radix values for GF (2n) than those for GF (p) at the expense of using some amount of extra gates without

significantly increasing the signal propagation time.

In this paper, following the design principles introduced in [10], we present novel unified and scalable mul-

tiplier architectures utilizing two original design ideas. The first one is to employ an online precomputation

method that eliminates a computation that is performed several times in the previous architectures, hence

reducing complexity and the critical path delay in the architecture, at the expense of additional registers.

And the second one is a multiplier module working with radix-2k+1 for GF (2n) and radix-2k for GF (p). We

will discuss the effects and advantages of these techniques on the chip area, signal propagation time and the

clock cycle count to complete a multiplication operation.

The rest of the paper is organized as follows. Section 2 gives the definition of the three key concepts:

scalable and unified architecture, and dual-radix design. It also contains very short explanation about the

fundamentals of prime and binary extension fields and arithmetic operations in these fields. It is followed by

an introduction to Montgomery multiplication algorithm and its usage in finite field arithmetic. Section 3

introduces the first member of the dual-radix multiplier family, radix-(2,4) multiplier. Besides the design

details and the components of the radix-(2,4) multiplier, comparative complexity analysis and performance

evaluation are given in this section. The implementation results are summarized in Section 4. In Section 5,

new architecture is compared against previous architectures and the conclusion is given in Section 6.

2 Preliminaries

2.1 Definitions

Scalable Architecture : An arithmetic unit is called scalable if it can be reused or replicated in order to

generate long-precision results independently of the data path precision for which the unit was originally

designed. One can profitably refer to [23] for a thorough discussion about the advantage of scalable hardware.

Unified Architecture : An architecture is said to be unified when it is able to work with operands in

both prime and binary extension fields, GF (p) and GF (2n), using the same datapath.

In [10], it has been shown that a unified multiplier is feasible with only minor modifications to the scalable

multiplier for GF (p) in [23]1. In the unified multiplier [10], it has been demonstrated that the propagation

time is unaffected while the increase in chip area is insignificant.

Dual-Radix Architecture : A unified multiplier is said to be dual-radix if it operates with a larger

radix value for GF (2n) than the radix used for GF (p).

A dual-radix unified multiplier must be designed in such a way that the cost of this extra functionality

on chip area and the propagation time of the critical path must be of acceptable levels.
1Note that a GF (2n)-only multiplier can always be designed to outperform a unified design.
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2.2 Fundamentals of prime and binary extension fields

An elliptic curve can be constructed over different mathematical entities such as a ring or field. However, only

finite fields are used in cryptographic applications because of their suitability to implementation in digital

systems. Especially the prime field GF (p) and binary extension field GF (2n) become favorable since various

standard bodies such as National Institute of Standards and Technology (NIST) and American National

Standards Institute (ANSI) specifically recommends several elliptic curves over these finite fields.

The elements of the prime finite field GF (p) are the integers {0, 1, 2, ..., p− 1} where p is an odd prime.

The addition and multiplication operations in GF (p) are modular operations performed in two steps: (1)

regular integer addition or multiplication and (2) reduction by the prime modulus p if the result of the first

step is greater than or equal to the modulus.

The elements of the binary extension field GF (2n) can be represented as binary polynomials of degree

less than n if polynomial basis representation is used. Analogous to the odd prime used in GF (p), a binary

irreducible polynomial of degree n is used to construct GF (2n). The addition in GF (2n) is simply done

by modulo-2 addition of corresponding coefficients of two polynomials. Since it is basically a polynomial

addition there is no carry propagation and the degree of the resulting polynomial cannot exceed n. On the

other hand, multiplication in GF (2n) is more complicated and sometimes it is beneficial to use other type of

representation techniques than standard polynomial basis such as Gaussian normal basis [24]. In this paper,

we always use polynomial basis for GF (2n) because of its suitability to the unified architecture.

Polynomial basis representation of GF (2n) is determined by an irreducible binary polynomial p(x) of

degree n. Given p(x), all the binary polynomials of degree less than n, which has the form A(x) = an−1x
n−1+

. . . + a1x + a0, are elements of GF (2n). Multiplication in GF (2n), similar to multiplication in GF (p), is

performed in two steps: (1) polynomial multiplication followed by (2) a polynomial division of the result

from Step 1 by the irreducible polynomial p(x) 2.

2.3 Montgomery Multiplication Algorithm

In [6], Montgomery described a modular multiplication method which proved to be very efficient in both

hardware and software implementations. An obvious advantage of the method is the fact that it replaces

division operations with simple shift operations. The method adds multiples of the modulus rather than

subtracting it from the partial result. And opposite to the subtraction of modulus in the regular modular

multiplication which can be performed after all the digits of the multiplicand are processed, the addition

operation can start immediately after the least significant digit of the multiplicand is processed. Especially

the second feature accounts for the inherent concurrency in the algorithm. Refer to [6, 25, 26] For detailed

explanation of the algorithm.
2In general, these two steps are interleaved in implementation.
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Given two integers a and b, and a prime modulus p, the Montgomery multiplication algorithm computes

c̄ = MonMult(a, b) = a · b · R−1 (mod p) where R = 2n and a, b < p < R and p is an n-bit prime

number. The Montgomery multiplication does not directly compute c = a · b (mod p), therefore certain

transformation operations must be applied to the operands a and b before the multiplication and to the

intermediate result c̄ in order to obtain the final result c. These transformations are applied as in the

following example:

ā = MonMult(a,R2) = a · R2 · R−1 (mod p) = a ·R (mod p),

b̄ = MonMult(b, R2) = b · R2 · R−1 (mod p) = b ·R (mod p)

c = MonMult(c̄, 1) = c ·R ·R−1 (mod p) = c (mod p).

Provided that R2 (mod p) is precomputed and saved, we need only a single MonMult operation to carry

out each of these transformations. However, because of these transformation operations, performing a single

modular multiplication using MonMult might not be advantageous even though there is an attempt to

make it efficient for a few modular multiplications by eliminating the need for these transformations [27]. Its

advantage, on the other hand, becomes obvious in applications requiring multiplication-intensive calculations

such as modular exponentiation and elliptic curve point operations.

The Montgomery multiplication algorithm with radix-2k for GF (p) can be given as in the following:

Algorithm A

Input: a, b ∈ [1, p− 1], p, and m

Output: c ∈ [1, p− 1]

Step 1: c := 0

Step 2: for i = 0 to m− 1

Step 3: q := (c0 + ai · b0) · (p′0) (mod 2k)

Step 4: c := (c + ai · b + q · p)/2k

where p′0 = 2k − p−1
0 (mod 2k). In the algorithm, the multiplier a is written with base (radix-2k) and

digits ai so that a =
∑m−1

i=0 ai · 2k·i, where m is the number of digits in a and m = �n/k�. In Step 4, the

multiplicand b, the modulus p, and the partial result c enter the computations as full-precision integers.

However, in our implementation we will treat b, p, and c as multi-word integers in order to design a scalable

multiplier and in each clock cycle one word of these values will be processed. One may also consider this

representation as writing the multiplicand, the modulus and the partial result with digits b(j), p(j), and c(j)

of w bits, so that b =
∑e−1

j=0 b
(j) · 2w·j, p =

∑e−1
j=0 p

(j) · 2w·j, and c =
∑e−1

j=0 c
(j) · 2w·j where e = �n/w�. Note

that the base-2w used to represent b, p, and c in Step 4 is different from the radix-2k used to represent the

multiplier a in Step 3. Note also that q, c0, b0, and p′0 are all k-bit integers.
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In order to avoid a possible confusion due to the usage of two different bases, we elect to refer the digits

of b, p and c as words when implementing Step 4, and use the term digit exclusively for the multiplier a, and

for b0, p′0, and c0 in Step 3 when they are in the same equation with the digits of a. Digits can be easily

distinguished by the subscript notation (e.g. ai or b0) from superscript notation of word (e.g. b(j)). We will

also use the notation xi,j to denote the jth bit in the ith digit of x.

In addition, the radix of the multiplier architecture is determined by the base used to represent the

multiplier a.

The Montgomery multiplication algorithm for GF (2n) is given below:

Algorithm B

Input: a(x), b(x), p(x), and m

Output: c(x)

Step 1: c(x) := 0

Step 2: for i = 0 to m− 1

Step 3: q(x) := (c0(x) + ai(x) · b0(x)) · p′0(x) (mod xk)

Step 4: c(x) := (c(x) + ai(x) · c(x) + q(x) · p(x))/xk

where p′0(x) = p−1
0 (x) (mod xk). As one easily observes the two algorithms are almost identical except that

the addition operation in GF (p) becomes a bitwise modulo-2 addition in GF (2n). Although the operands

are integers in the former algorithm and binary polynomials in the latter, the representations of both are

identical in digital systems. In Algorithm A, there must be an extra reduction step at the end to reduce

the result into the desired range if it is greater than the modulus. On the other hand, this step is not

essential part of the algorithm and there are simple conditions that can be added to the algorithm in order

to eliminate it [28, 29], hence we intentionally exclude it from the algorithm definitions.

One can also observe that the computations performed in Step 3 are of different nature in two algorithms

and depending on the magnitude of the radix used, the part of the circuit in charge of implementing them

might become very complicated. However, we demonstrate in the subsequent sections that these computa-

tions can be performed in a unified circuitry for small radices.

From this point on, we will only use the notation introduced in Algorithm A for both GF (p) and GF (2n)

and leave polynomial notation completely out of our representation of field elements in GF (2n). Operations

will be deduced from the mode (GF (p) or GF (2n)) in which the module is operated. The elements of both

fields are represented identically in the digital systems.

2.4 Precomputation in Montgomery Multiplication Algorithm

The unified multiplier architecture introduced in the next section utilizes a precomputation technique in

order to decrease the critical path delay of the original unified multiplier in [10]. Note that Step 4 of the
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Algorithm A computes

c := (c0 + ai · b + q · p)/2k

where division by 2k is simply a right shift by k bits and q is calculated in the previous step. Depending on

the radix value chosen for the multiplier, the k-bit digit q can be determined by the least significant digits

(LSD) of b, p and c, and the current digit of a. Similarly, the multiple of b that participates in the addition

is determined solely by ai. As a result, the LSDs of the operands, ai, b0, and c0 will determine which one of

the values in {0, b, p, b+ p, 2p, 2b, 2b+ 2p, . . .} is added to the partial result c. If one precomputes and stores

the value of b + p, the calculations in Step 4 can be significantly simplified.

There are three implications of the precomputation technique. First, the fact that an adder must be

available to perform the precomputation potentially leads to an increase in the chip area. However, we show

that such an adder is already an integral part of our design and the precomputation will be done without

any extra overhead in this sense. Second, the precomputed value must be stored. This will imply an increase

in the register space. And finally, there must be a so-called selection logic to select which multiples of b and

p must participate in the addition in Step 4. The selection logic will be naturally on the critical path and

can potentially result in both an increase in the chip area and critical path delay. On the other hand, the

precomputation technique also simplifies the design since Step 4 can be performed with only one addition,

once the selection logic generates its output. We will provide implementation results to expose the effects of

the precomputation technique in the multiplier design.

3 Radix-(2,4) Multiplier Architecture

In this section, we present a unified and scalable multiplier architecture which operates in radix-2 in GF (p)

mode and in radix-4 in GF (2n) mode. It is called radix-(2,4), and it is, in fact, the first member of the

dual-radix multiplier family whose other members may be radix-(4,8) and radix(8,16). We only included

radix-(2,4) multiplier for the sake of simplicity and for another member of the family, radix-(4,8) multiplier,

the architecture and selection logic are given in Appendix B.

The radix-(2,4) (or dual-radix) multiplier utilizes the precomputation technique presented in the previous

section.

3.1 Processing Unit

In this section, we explain the design details of the processing unit (PU) which is basically responsible for

performing Step 3 and Step 4 of Algorithm A:

Step 3: q := (c0 + ai · b0) · (p′0) (mod 2k)

Step 4: c := (c + ai · b + q · p)/2k
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Figure 1: Processing unit of dual-radix architecture with radix-2 for GF (p) and radix-4 for GF (2n)

Since the multiplier uses radix-2 for GF (p), the least-significant bits (LSB) of the operand digits, ai,

b0, and c0 will determine which one of the values in {0, b, p, b + p} is added to the partial result c. In

the case of GF (2n), multiplication is performed in radix-4. Therefore, the LSDs (least significant digits)

of b, p, and c and of the current digit of a are in order to determine q. The LSB of p is always 1, then

only p0,1, the second least significant bit of the modulus, is included in the computations. Consequently,

ai,1, ai,0, b0,1, b0,0, c0,1, c0,0 and p0,1 determine one of the following values to be added to the partial result:

{0, b, p, b+p, x·b, x·p, x·(b+p)} (Recall that ai,j is the jth least significant bit of ith digit of a). Multiplication

by x results in shifting one bit to the left, hence it is identical to multiplication by 2. Throughout the paper

division by xk and 2k are identical operations and the latter is used to denote the right shift operation by k

bits.

In Figure 1, the architecture of the processing unit (PU) used in the dual-radix multiplier is illustrated.

The local control logic in Figure 1 contains the selection logic which generates the signals, m00, m01, m10,

and m11, to determine which multiples of b and p will be in the calculations. For example, m00m01m10m11 =

(1011) indicates that Step 4 will be c := (c + 3b + 2p)/2k. We will give the implementation details of the

selection logic in subsequent sections. cc0 and cs0 in Figure 1 are the least significant digits of carry and

sum part of the partial result c.

The dual-radix architecture consists of one or more processing units (PU), identical to the one shown in

Figure 1, organized in a pipeline. Each PU takes a digit (k-bits) from the multiplier a, the size of which

depends on the radix and the mode (finite field), and operates on the words of b, b+ p, c and p successively
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Figure 2: Execution graph of Montgomery multiplication algorithm [23]

starting from the least significant word. Starting from the second cycle it generates one word of partial

result each cycle which is communicated to the next PU. After e + 1 clock cycles, where e is the number

of words in the modulus (i.e. e = �n/w�), a PU finishes its portion of work and becomes free for further

computation. When the last PU in the pipeline starts generating the partial results, the control circuitry

checks if the first PU is available. If the first PU is still working on an earlier computation, the results from

the last PU should be stored in a buffer until the first PU becomes available again. One can refer to [10] for

more information about the length of the buffer to store the partial results when there is no available PU in

the pipeline. In Figure 2 the execution graph of the Montgomery multiplication algorithm is illustrated. An

example of pipeline organization with two PUs is shown in Figure 3.

A redundant representation (Carry-Save) is used for the partial result in the architecture. Thus, for the

partial result we can write c = cc + cs, where cc and cs stand for the carry and sum part of the partial

result. The partial result c is kept in redundant form during the computations and it must be converted to

non-redundant form when the multiplication is completed. In addition, one must note that the length of the

register for partial result in Figure 3 is twice wider than the other registers.
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Given that carry-save notation is used for the partial result and that each iteration is executed on word-

by-word basis, the Algorithm A can be expressed as follows:

Algorithm A (modified)

Input: a, b ∈ [1, p− 1], p, and m

Output: c ∈ [1, p− 1]

Step 1: c := 0

Step 2: for i = 0 to m− 1

Step 3: q := (c0 + ai · b0) · (p′0) (mod 2k)

Step 4: for j = 0 to e− 1

Step 5: c(j) := (cc(j) + cs(j) + ai · b(j) + q · p(j))/2k

While a redundant format enables us to employ Carry-Save adders, which are typically less costly in terms

of area and delay than carry propagate adders, it necessitates an extra addition operation to transform the

final result into nonredundant format at the end of the calculations. The transformation operation is simply

performed by a carry propagate adder (e.g. carry look-ahead adder) which is also capable of doing modulo-2

addition operation in GF (2n)-mode. Implementation details of such an adder for performing addition both

in GF (p) and GF (2n) can be found in [30], where it has been shown that the critical path delay of the adder

is lower than that of a PU in [10] and its area does not exceed 39% of that of a PU for the same word length.

Considering that several PUs in a multiplier are used for cryptographic applications (e.g. five PUs at least
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for 160-bit multiplications) the overhead of the adder in the area becomes insignificant when it is compared

to the whole multiplier.

The multiplier, after certain number of clocks elapsed, generates one word of the result in each clock cycle

starting from the least significant word. The adder, which operates on the words of the result, immediately

starts adding the available word of the result in the next clock cycle after the word is produced at the output

of the multiplier. When the same clock speed and word length are used for both multiplier and adder, the

conversion and multiplication operations are overlapped, thus the total cost of this addition operation in

terms of time is only an extra cycle at the end. One can profitably refer to [30, pages 38–41] for a better

understanding of the overlapping technique and characteristics of the adder.

In case the word length of the adder is less than that of multiplier due to a possible mismatch in the

critical path delays of the multiplier and adder, a shorter word adder may have to be used. In this case,

the cost of the conversion operation will be more than one extra cycle and it can be formulated depending

on the difference between the word sizes of the adder and multiplier. In the worst case when there is no

overlapping, the total cost of conversion is tconv = �n/wadder� where n is the bitsize of the modulus and

wadder is the length of the adder. Comparing the total number of clock cycles to compute one multiplication,

which is about 2n, the cost of the conversion becomes insignificant for relatively long adders (e.g. w ≥ 8).

The existence of an adder is also useful for performing the precomputation of b + p, which is used

during multiplication. As in the addition operation that transforms the result into non-redundant form, the

precomputation costs only an extra clock cycle before the multiplication operation starts. The extra cost for

the precomputation in terms of area comes from the extra register to store b + p and one extra inter-stage

w-bit register for the partial result words generated by PUs. However, since the precomputation technique

eliminates the second layer of carry-save adders in [10], this increase is partially compensated. The actual

effect of the precomputation technique on area and critical path delay is discussed in Section 4.

3.2 (3, 2) Adder Array

An n-bit (3, 2) adder array shown in Figure 1 consists of two parts: single-bit dual-field adders (DFA) and

shift-and-alignment layer as demonstrated in Figure 4. When used in GF (p)-mode, the DFA simply becomes

a Carry-Save adder.

In Figure 5, typical implementation of a DFA cell is illustrated. A DFA cell is basically a full-adder capable

of doing addition with or without carry. It has an input called FSEL that enables this functionality. When

FSEL = 1, it performs bitwise addition with carry which enables the multiplier to do arithmetic in GF (p).

When FSEL = 0, on the other hand, the carry output is forced to 0 regardless of the input values. An

important aspect of designing a DFA cell is to avoid increasing the critical path of the circuit with respect to

full-adder, which can have an adverse effect on the clock speed and it is against our design premise. The area

and signal propagation aspects of a DFA cell are almost identical to those of a typical full-adder which would
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be used in a GF (p)-only multiplier. Therefore, this additional functionality is obtained almost without any

cost.

The shift and alignment layer performs different operations depending on the field. When in GF (p), a

single-bit shift to the right must be performed on all the words coming from the dual-field adder. Let us

call these words S(j) = (S(j)
w−1, ..., S

(j)
1 , S

(j)
0 ) and C(j) = (C(j)

w−1, ..., C
(j)
1 , C

(j)
0 ) (sum and carry vectors that

represent word j). The adder output vector C(j) is already shifted one position to the right with respect to

the sum vector S(j). Therefore, the word cs(j) = C(j) could in principle be sent to the next module in the

same clock cycle, however, cs(j) = (S(j+1)
0 , S

(j)
w−1, ..., S

(j)
1 ) and for this reason all the bits of C(j) and the bits

w−1 to 1 of S(j) must be delayed to be combined with the least significant bit of word S(j+1). The situation

is quite similar for GF (2n), but in this case: (i) the C output of the adder is always zero and (ii) a 2-bit

right shift is required. Thus, in this case, cc(j) is not important, and csj = (S(j+1)
1 , S

(j+1)
0 , S

(j)
w−1, ..., S

(j)
2 ).

This conditional mapping of the csj output bits, which depends on the field being used, is implemented by

the two multiplexers and registers shown in Figure 6.

3.3 Selection Circuitry

As stated previously, the selection logic for radix-(2,4) multiplier, which is shown in Figure 7, determines

which of the inputs of MUX-0 and MUX-1 in Figure 1 are to be added in (3, 2) adder array, which in turn

13



ai,0
m00

ai,1 m10

ai,0

b0,0

cs0,0

m01

p0,1

cs0,1

ai,0

b0,1

ai,1
b0,0

m11

FSEL

FSEL

FSEL

FSEL

cc0,0

m10

m01

m00

La
tc

h

Figure 7: Selection logic for radix-(2,4) multiplier

calculates c := c + ai · b + q · p. The selection logic constitutes a major section of the local control. For

more information on the derivation of the formulae that the selection logic implements, see Appendix A. In

addition, for quick reference, the selection inputs of the multiplexers are tabulated in Table 1.

In GF (p)-mode the multiplier uses radix-2, hence m00 and m01 must be calculated while m10 and m11

are forced to be 0 since input 0 of MUX-1 is always selected in this mode. We can use the following formulae

to express the control inputs of MUX-0.

m00 = ai,0

m01 = q0 = (cs0,0 ⊕ cc0,0 ⊕ ai,0 · b0,0)

where ⊕ stands for modulo-2 addition, ai,j denotes jth bit of the digit ai and qj is the jth bit of q, and csi,j

and cci,j are the sum and carry bits of the partial result, respectively.

On the other hand, the multiplier computes with radix-4 in GF (2n)-mode. Thus, the select inputs of

MUX-1 must also be calculated. For this, we use the formulae

m10 = ai,1 · FSEL

m11 = q1 = [(cs0,1 ⊕ ai,0 · b0,1 ⊕ ai,1 · b0,0) ⊕ (cs0,0 ⊕ ai,0 · b0,0) · p0,1] · FSEL

Note that the first input of MUX-1, cc is always zero in this mode since redundant form is also used for

partial result and the carry part of it is forced to be zero.

As can easily be seen in Figures 1, 5, and 7, there are 3 XOR and 2 AND gates in the critical path of

the selection logic while the critical path of a PU is determined by the (3, 2) adder delay ( dominated by
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GF (p)-mode GF (2n)-mode

m00 ai,0 ai,0

m01 (cs0,0 ⊕ cc0,0 ⊕ ai,0 · b0,0) (cs0,0 ⊕ ai,0 · b0,0)

m10 0 ai,1

m11 0 (cs0,1 ⊕ ai,0 · b0,1 ⊕ ai,1 · b0,0) ⊕ (cs0,0 ⊕ ai,0 · b0,0)

Table 1: Selection Inputs to MUX-0 and MUX-1

two serially connected XOR gates) and some delay due to the multiplexers (multiplexer delay is usually less

than a XOR gate). The computation of m00,m01,m10 and m11 needs to be performed at the first clock

cycle when a PU starts processing. However, the computation regarding the selection logic can be done at a

separate clock cycle at the beginning, before a PU starts its actual computation. This does not increase the

number of clock cycles between the two consecutive PUs in the pipeline, which is 2 in the original design,

since the inputs to the selection logic of a PU become ready at the end of the first clock cycle of the previous

PU. Therefore, this extra selection cycle at the very beginning increases the total number of the clock cycles

to perform one multiplication by only one clock cycle independent of the precision of the operands.

The selection logic dominates the critical path since its 3 XOR and 2 AND gate delay is greater than

that of the core part of a PU. Therefore, the selection logic is divided into two parts as seen in Figure 7. As

the first part of the computation is done in the selection cycle (the very first cycle) the second part can be

performed in the following cycle. The second part introduces one XOR gate delay to the circuitry, whose

effect is compensated by connecting the output of the MUX-1 to the input x of the dual field adder. This

approach avoids serially connecting the XOR gate in the second part of the selection logic to the second

XOR gate of the dual field adder. This implementation detail prevents the selection logic from dominating

the critical path of the design. The gate level realization of the selection logic and its division into two parts,

to some extent, depend on the technology being used and with careful implementation the delay of first part

can almost always be made less than the core part of a PU.

In Figure 2 observe that a processing unit, PUi generates all the bits of a partial result word except

the leftmost k bits in each clock cycle and wait for another cycle for the rest of the leftmost k bits before

passing the partial result word to PUi+1 in the next stage. This explains the two clock cycle delay between

the starting times of two consecutive pipeline stages. In this design, although PUi+1 waits two clock cycles

to start calculation, its selection logic starts processing some of the available rightmost bits (exact number

depends on the radix) arrived from PUi. A similar technique, called retiming, is explained in detail in

[31, 19].
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3.4 Complexity Analysis and Performance

There are three criteria to assess the performance of our multiplier design:

• Maximum clock frequency The signal propagation time of the critical path of a single PU, to a large

extent, determines the maximum clock frequency that can be applied to the multiplier. It is a desirable

feature to be able to operate the multiplier at higher frequencies when it is possible. As explained in

3.3, the delay of the selection logic is designed to be smaller than that of the main computation block

of a PU, which mainly consists of a multiplexer and (3,2) adder array. As opposed to the original

unified multiplier design in [10] in which a PU has two layers of adder arrays, our new design employs

PUs with only one layer of adder arrays. Considering that the two XOR gates in one layer of adder

arrays dominates the critical path of a PU, the new multiplier design theoretically allows twice the

clock frequency of the original design. However, one should take into account possible extra wiring

delays that might originate, for example, from the shifting of three operands p, b and b+p. In addition,

it is obvious that Shift-and-Alignment layer also have a negative impact on the critical path delay.

Nevertheless, it would be safe to say that eliminating one layer of dual-field adders from each PU

improve the maximum clock frequency.

• Number of clock cycles The total computation time of a multiplication operation is determined by

the number of clock cycles, which in turn depends on the underlying algorithm the unit implements.

In the new design, the number of clock cycles is determined by (1) the operand precision n, (2) the

operating mode (GF (p) or GF (2n)), (3) the word size w, and (4) the number of pipeline stages t (the

number of PUs in the pipeline).

Each column in the graph shown in Figure 2 represents operations that can be performed by separate

PUs in the pipeline. As explained in 3.1, each PU completes its share of work for a digit of the

multiplier a after e + 1 clock cycles, where e is the number of the words in the modulus and becomes

available for processing another digit of a. In case there is no available PU and there are more digits

of a to be processed, the data generated by the last PU waits in a buffer for the first PU to finish its

job. Therefore, the c buffers in Figure 3 are provided to store the partial results until the first PU

becomes free. The length requirement of these extra buffers, which depends on the precision and the

exact configuration of the pipeline organization in terms of number of stages and word size, is out of

scope of this paper and extensively studied in [10]. If there are at least �(e+ 1)/2� PUs in the pipeline

organization the extra buffers are not needed. Considering these extra cycles the data need to wait,

the total computation time in terms of number of clock cycles is given as:

T =




2t · � n
kt� + e + 1 if (e + 1) < 2t

� n
kt� · (e + 1) + 2t otherwise

(1)
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where t is the number of PUs, e is the number of words, k is the radix value (1 for GF (p) and 2 for

GF (2n)), and n is the modulus precision. Note that one extra cycle at the beginning for calculating

the first word of b + p and selection values, and one extra clock cycle at the end for transforming the

redundant result to non-redundant form are also included in the formula.

In the new design, the total computation time in GF (2n)-mode is almost half of the original design

since radix-4 (twice the radix in the original design) is used while the total computation time remains

identical to [10] in GF (p)-mode.

• Area To measure the size of VLSI implementation of a module we use the number of gates which would

take the same amount of circuit area as the module. The choice of gate for this equivalency depends

on the technology used. While the gate count of a PU cell is determined largely by the word size, the

area of whole pipeline organization depends also on the number of pipeline stages, local control logic,

inter-stage latches and the registers to hold the operands including those necessary when pipeline stalls

occurs.

In the new design, the PU cell area is reduced since the second layer of adder array is no longer

necessary. On the other hand, local control logic becomes more complicated due to the selection logic

and precomputed value b+ p that must be hold in inter-stage latches. Since there are already 4 inter-

stage latches of length w in the original design (considering the partial result is treated in two separate

parts) we increase the register size in PU by 20% by adding one extra latch of length w for b+p. Also,

a more complicated Shift-and-Alignment layer is expected to increase the area requirement of a single

PU.

The exact overall effect of reduction in the PU cell size and increase in the size of local control logic,

and the registers and latches depends on the design choices such as word size, number of stages etc.

4 Implementation results

We implemented processing units of three different multiplier architectures: (A1) the original unified mul-

tiplier in [10], (A2) single-radix multiplier utilizing precomputation techniques, and (A3) radix-(2,4) mul-

tiplier. We used VHDL to implement three architectures and synthesized the resulting code using Mentor

Graphics tools for an ASIC technology of 0.5µm AMI CMOS (ADK library [32]). During the synthesis, we

adopted the Preserve Hierarchy 1 option.

Figure 8 demonstrates the area and time delay of three different PU designs, using different word sizes.

Area consumption is always given in terms of 2-input NAND gates. Note that the actual area requirements
1preserve hierarchy option prevents the CAD tool from flattening design, having the effect that synthesis results (time and

area) do not change depending on the number of the PUs.
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Figure 8: Implementation results: Critical path delay and area

depend not only on the word size but also the number of PUs used in the pipeline organization. Detailed

analysis and necessary formulation are provided for the original unified architecture in [10], which identically

apply to the two new designs introduced in this paper. Due to the highly modular nature of the design, the

critical path of a PU determines the maximum clock frequency that can be applied to the whole multiplier.

Besides these three unified multiplier architectures, there is also GF (p)-only multiplier architecture in-

troduced in [23]. An extensive comparison of GF (p)-only multiplier against a simple unified architecture

is done in [10] and it has been found that the critical path delay of the unified architecture is almost the

same as that of GF (p)-only multiplier, while the increase in area is about 2.8%. Because of this insignificant

increase in area as well as the fact that the comparison has already been done, we chose not to include the

implementation results of GF (p)-only multiplier here.

As can easily be observed from Table 2, where the relative increases of chip areas of the two new designs

with respect to basic unified architecture is shown, there is an increase in area of the new architectures.

Common to both designs, there are two basic reasons for this increase: (1) having an extra interstage

register for passing the precomputed value, b + p, to the next stage, (2) selection logic. We compared logic

and register area in three architectures, and confirmed that the register area is relatively higher in the two

new architectures than the original unified design. The selection logic becomes more complicated due to

what may be appropriately called as a look-ahead technique which processes the least-significant bits of the
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operands. In the dual-radix case, the fact that two least significant bits of some operands are needed in

the look-ahead technique partially explains the further increase in the area. More complicated shift-and-

alignment layer (see Figure 6) is another reason for larger area usage in the dual-radix design. Note also

that, the relative increase in area becomes less significant as the word size also increases. This can also be

explained by the fact that the area of selection logic is independent of word size. When w = 32, the area

consumed by the selection logic becomes less significant. The architecture A2 uses only 35% more area

than the basic unified design (A1) while this increase becomes, in the dual-field multiplier (A3), 45% when

w = 32. It is also important to note that the additional functionality of operating with different radices in

GF (p) and GF (2n) of the dual-field multiplier comes with an increase of 8% to 21% in area.

Word size (w) A2/A1 A3/A2 A3/A1

8 55% 21% 88%

16 55% 18% 83%

32 35% 8% 45%

Table 2: Relative increase in design area

Table 3 summarizes the relations in the maximum clock frequencies that can be applied to each archi-

tecture. The use of the precomputation technique in the architecture A2 improves the critical path delay

by 25% to 34%, while the improvement in the architecture A3 is 18% to 23%. The relative deterioration of

8% to 14% in critical path delay in A3 with respect to A2 is due to a more complicated shift-and-alignment

layer and use of two multiplexers (see Figures 1 and 6).

Word size (w) A2/A1 A2/A3 A3/A1

8 25% 8% 18%

16 24% 14% 21%

32 34% 14% 23%

Table 3: Speedup in delay

The performance of all three multipliers in terms of clock cycle count to perform a multiplication is

determined, to a large extent, by the number of PUs (t) and the word size (w), which is subject to the

limitations on the silicon area available. This can be easily observed in Equation 1. Therefore, the relative

increase in the area of a PU may be misleading in evaluating the overall performance of the new architectures.

All three architectures utilize many PUs organized in a pipeline. Although the architectures scale to any

operand precision, a certain number of the PUs in the pipeline offers an optimized performance for only a

specific range of operand precision. Due to pipeline stalls explained in [10], the performance of the multiplier
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Figure 9: Multiplication Timings (in µs) for an area of 30.000 gates with w = 8, 16, and 32 in GF (p)-mode

precision w = 8 w = 16 w = 32

(bits) A1 A2 A3 A1 A2 A3 A1 A2 A3

160 2.3 1.4 1.5 2.1 1.3 1.6 2.2 1.5 1.7

192 2.4 1.7 2.0 2.5 1.6 1.9 2.8 1.8 2.0

228 2.9 2.0 2.3 2.8 1.9 2.2 3.2 2.1 2.4

256 3.5 2.2 2.6 3.4 2.1 2.6 3.6 2.4 2.8

Table 4: Multiplication Timings (in µs) for different precisions with 30,000 gates in GF (p)-mode
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deteriorates for the operands beyond the specified operand precision. As the operand precision increases, it

may become necessary to add more PUs to the pipeline, which will naturally leads to increase in chip area.

The problem of the best area/time relationship has been extensively investigated in [33]. To provide more

insight in the overall effect of the new architectures on the area and time, we investigated the time to compute

multiplication for a precision range of cryptographic interest given a limited area. Figure 9 demonstrates

the results for multiplier configuration in GF (p)-mode with approximately 30, 000 gates (which has been

considered, in previous works on the architecture, as typical for an optimized performance in cryptographic

applications). We basically designed the multipliers for each architectures by putting as many PUs as

possible.

In this configuration, the new architectures, A2 and A3, offer a significant speedup in time performance

over the original architecture A1 for the range of [160,∼ 500]. Note also that for this range of precision, A2

performs better than A3. Beyond the precision of 500 bits, higher area requirements of new architectures will

have a negative impact on the performance. In order to demonstrate the advantage of two new architectures,

we listed the times needed to compute multiplication of operands for different precisions in Table 4. For

the same area the new architecture, A2 offers a speedup in time over A1 by 26% to 39% for these different

precisions in GF (p)-mode, while this speedup in case of A3 is by 13% to 35%3. Note that the maximum

speedup in both architectures, A2 and A3, exceeds the maximum speedup provided by a single PU. This

is due to the fact that having more PUs not always improves the performance, hence may result in a slight

degradation for some bit lengths.

While the architecture A3 performs slightly worse than A2 in GF (p)-mode (between 7% to 19%), it

offers a significant speedup over both A2 and A1 in GF (2n)-mode. It outperforms A1 by 56% to 67%,

while the speedup over A2 is 38% to 46% in this mode.

precision w = 8 w = 16 w = 32

(bits) A1 A2 A3 A1 A2 A3 A1 A2 A3

160 1.9 1.4 1.6 2.1 1.4 1.6 2.2 1.5 1.7

192 2.4 1.7 1.9 2.4 1.6 2.0 2.7 1.8 2.4

228 2.7 2.0 2.6 2.8 2.0 2.7 3.1 2.0 3.2

256 3.2 2.6 3.4 3.2 2.6 3.5 3.6 2.6 4.1

Table 5: Multiplication Timings (in µs) for different precisions with 15,000 gates in GF (p)-mode

As one can anticipate, stringent limitations on silicon area will have a negative impact on the time

performance of the new architectures. In order to illustrate this effect, Figure 10 shows the time for various
3The speedup in percentage is obtained by subtracting the improved timing result from the previous timing result and then

dividing it by the previous timing result.
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Figure 10: Multiplication Timings (in µs) for an area of 15.000 gates with w = 8, 16, and 32 in GF (p)-mode

operand precisions in a chip configuration with only 15, 000 gates. The new architectures still provide a

better time performance against the original design. Table 5 shows that A2 provides a significant speedup

up to 256-bits, while A3 does up to 192-bits.

To summarize, our two new architectures provide new alternatives which facilitate a higher maximum

clock frequency due to the decrease in the critical path delay and offer superior time complexity for the

operand precision range of cryptographic interest. Furthermore, the dual-radix architecture, A3, offers a

new functionality that enables to operate with radix-4 in GF (2n)-mode, which halves the clock count to

compute a multiplication. On the other hand, for higher precisions and for configurations with smaller area,

the new architectures may result in a negative impact on the time performance in GF (p)-mode. However,

for a very large range of precision, the cost of improving the performance for GF (2n) is a small degradation

of performance for multiplication in GF (p) and extra chip area.

5 Comparison with Previous Architectures

There is a plethora of efficient multipliers proposed for fast cryptographic computations [14, 15, 16, 17, 18, 19,

10, 12, 13, 9, 7, 8, 21, 22]. Multipliers in [18, 34, 35] offer a relatively efficient computation of multiplication

for a specified precision; but they fail to scale well for other precisions. High-radix architectures such as
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those in [21, 22] are specifically tailored for GF (2n) computation and it is not straightforward to apply

the design approach utilized in these multipliers to unified design. Systolic-array based multipliers [7, 8, 9]

usually feature high clock frequency due to low bit complexity cells composing the architecture and achieve

extremely high throughput when the there are many successive multiplication operations as in the case of

exponentiation operation of RSA. However, two-dimensional systolic arrays usually require large chip area

and low utilization of array cells adversely affects the throughput when the multiplication operations are not

successive as in the case of elliptic curve cryptography.

Our basic architecture distinguishes itself from many other architectures in the sense that it is scalable,

unified, flexible, and semi-systolic that allows a low chip area with high utilization. Therefore, comparing

the new architectures against any other architecture may not yield profitable insight as expected. Instead,

we only compare the new architecture with two other unified and scalable designs [12, 13] proposed in the

literature. The following reports on the results from comparison of different aspects of the three architectures.

The comparison against [13], however, is not extensive since their architecture is based on a fast multiplication

unit as opposed to carry-save adder based architecture of our work and [12].

Time comparison: We first compare the critical path delay and number of clocks to compute a mul-

tiplication of several precisions. While the clock counts are well documented in [12, 13], the critical path

delay of their multipliers are not clearly specified. Therefore, we will estimate the critical path delays in

terms of main modules in the critical path. We use A3 (radix-(2,4)) architecture with w = 32 optimized

for operands of up to 256-bit in the comparisons considering it is the most area consuming one among the

three new architectures. In a PU of A3 architecture, one full adder(FA) of w-bit is connected to a 4-to-2

multiplexer and two 2-to-1 multiplexers as seen in Figure 1. Selection logic, on the other hand, is parallel to

the FA, hence not in the critical path. Unified multiplier in [12], has two layers of FA along with two 2-to-1

multiplexers and a subtrahend generation logic in its critical path. Assuming that the logic besides FAs in

both designs is almost equivalent to each other in terms of propagation time - with a cautionary note of

being imprecise -, we can formulate their critical path delay using the number of serially connected FAs and

some extra delay due to multiplexers in the critical path. Therefore, having only one FA in its critical path

as opposed to two FAs in [12], A3 is expected to have less delay than that of the multiplier in [12]. Based

on these assumptions, Table 6 lists critical path delay and cycle counts of the three designs.

[13], in fact, proposes three different word length (i.e. w = 8, 16, 32) for their multiplier based architec-

tures. Their area complexity compares favorably with A3 and that in [12], while its time complexity is very

poor comparing to the other two architecture. As can be observed in Table 6, even the multiplier with the

shortest word length (w = 8) has seven FAs and one w-bit carry propagation adder (CPA) in its critical

path. In terms of both critical path delay and cycle count, [13] with w = 8 compares very poorly with A3

and [12]. For larger word lengths, [13] offers very low cycle counts, while the critical path delay becomes

incomparably high with carry-save based multipliers.
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Architecture Critical Clock Count GF (p) Clock Count GF (2n)

type path delay 160 192 224 256 160 192 224 256

this work - A3, w = 32 τFA + textra 326 397 458 529 166 207 238 269

[12] 2τFA + textra 240 288 336 384 160 192 224 256

[13], w = 8 7τFA + τCPA 946 1326 1770 2278 882 1250 1682 2178

Table 6: Timing comparisons
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Figure 11: Time delays of A3 and [12]

As can be observed in Table 6, [12] has longer critical path than A3 while its cycle count is better than

A3 for GF (p) (Note that the cycle counts of both designs for GF (2n) are almost the same). textra in Table 6

is due to extra logic (basically multiplexers) in the critical path and its contribution to the critical path

delay is found to be 54% of a FA in A3 with w = 32. Thus, total critical path delay of A3 can be given

as 1.54 · τFA. Assuming that textra in [12] is equivalent to that of A3, the critical path delay of [12] can be

approximated as 2.54 · τFA. Taking τFA = 3.425 ns in our technology, we compare the time delays of two

architectures for various operand precisions in Figure 11. Clearly, A3 architecture compares favorably with

[12].

Area and register size comparison: Since area and register requirements are not reported in [12],

we can only compare the lengths of FA layers and registers. A3 with w = 32 optimized for operands up

to 256 bit utilizes five PUs, hence the length of the FA layer is 5 · 32 = 160. [12], on the other hand, uses
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Figure 12: Area comparison of A3 and [12]

full-precision approach, therefore, requires two FA layers of length n each, where n is the precision. For the

lowest precision n = 160, the length of FA layer in [12] is twice the length of FA in A3. The register sizes

to store all operands and temporary variables in two architectures are comparable as seen in Figure 12.

6 Results and Future Work

Even though very high-radix designs might introduce longer critical paths and more complex circuitry in

hardware realizations, moderate range of radix values offers faster alternatives (in terms of clock cycle count

to perform a multiplication) to simple radix-2 multiplier designs. While the number of clock cycles decreases

in high radix designs since more multiplier bits are scanned in each clock cycle, the signal propagation

time of the critical path and the silicon area increase in a similar fashion. Yet, moderately high radix

multipliers may be attractive for hardware realizations when extra cost in the chip area is tolerable and very

advanced VLSI technologies compensate the maximum clock frequency degradation. Note that, the new

design techniques introduced in this work, can be applied to higher radix designs. For future work, it may

prove to be beneficial to investigate higher radix architectures with precomputation as well as the radix-(4, 8)

and radix-(8, 16) architectures. There are also certain optimization possibilities in the high radix members

of the family such as using optimized (4, 2) or (5, 2) dual-field adders instead of using two or three layers of

(3, 2) dual-field adders. This can be easily seen from Appendix B, where the architecture and selection logic

of radix-(4,8) multiplier are given.
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Using the design methodology proposed in [10], we presented two new unified multiplier architectures for

binary extension and prime fields. The first architecture utilizes a precomputation technique and improves

critical path delay significantly. The cost of implementing the precomputation technique in hardware in

terms of area is studied and it has been concluded that the overall impact is insignificant for a large range of

precision. The second architecture (dual-radix) facilitates faster computation of multiplication in GF (2n)-

mode than GF (p)-mode. The dual-radix architecture also utilizes the precomputation technique. The area

and speed characteristics of the dual-radix architecture is also extensively investigated and its performance

in terms of area and time is compared against other multiplier architectures such as [12] and its feasibility

is discussed. At the expense of using extra resources, which proved to have a very limited impact on the

silicon area under certain circumstances, it provides significant improvement in critical path delay compared

to the original unified design in both GF (p) and GF (2n)-modes. Furthermore, while it suffers from a slight

performance deterioration when compared against the architecture with precomputation in GF (p)-mode, it

provides a superior performance in GF (2n)-mode.
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GF(p) and GF(2m). In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded Systems

- CHES 2000, Lecture Notes in Computer Science No. 1965, pages 281–296. Springer, Berlin, Germany,

2000.
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A Derivation of Formulae for Selection logic

Selection logic calculates the coefficients of b and p in the following formula

c = (c + ai · b + q · p) >> 1

where q = (c0 + ai · b0) · p′0 and q, ai, b0, c0, and p′0 are radix-4 digits. In GF (p)-mode, we have

m00 = ai,0

m01 = q0 = (cs0,0 ⊕ cc0,0 ⊕ ai,0 · b0,0) · p′0,0

where p′0,0 = p0,0 = 1.

In GF (2n)-mode, we need to compute m00, m01, m10, and m11. m00 is the same as in the GF (p)-mode.

m10 must be forced to 0 in GF (p)-mode, thus we have m10 = ai,1 · FSEL. m01 and m11 are determined by

q. In order to have q we need to calculate p′0 first. We know that p0 · p′0 ≡ 1 (mod x2). Therefore,

(p′0,1 · x + p′0,1) · (p0,1 · x + p0,1) ≡ (p′0,1 + p′0,1 · p′0,1) · x + p′0,0 ≡ 1 (mod x2)

Consequently, p′0,0 = 1 and p′0,1 = p0,1. Also,

ai · b0 ≡ (ai,1 · x + ai,0) · (b0,1 · x + b0,0) ≡ (ai,1 · b0,0 + ai,0 · b0,1) · x + ai,0 · b0,0 (mod x2)

Therefore,

(c0 + aib0) · p′0 ≡ [(cs0,1 + ai,1 · b0,0 + ai,0 · b0,1) · x + (cs0,0 + ai,0 · b0,0)](p0,1 · x + 1) (mod x2)

≡ [cs0,1 + ai,1 · b0,0 + ai,0 · b0,1 + (cs0,0 + ai,0 · b0,0)p0,1] · x + cs0,0 + ai,0 · b0,0

Finally we obtain,

m01 = cs0,0 ⊕ ai,0 · b0,0

and

m11 = cs0,1 ⊕ ai,1 · b0,0 ⊕ ai,0 · b0,1 + (cs0,0 ⊕ ai,0 · b0,0)p0,1.

Since cc0,0 is always 0 in GF (2n)-mode, we can use

m01 = q0 = (cs0,0 ⊕ cc0,0 ⊕ ai,0 · b0,0)

for both mode. In addition, m11 is forced to 0 in GF (p)-mode, hence

m11 = q1 = (cs0,1 ⊕ ai,0 · b0,1 ⊕ ai,1 · b0,0) · FSEL⊕ (cs0,0 ⊕ ai,0 · b0,0) · p0,1 · FSEL
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B Radix-(4,8) Multiplier and Its Selection Logic
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Figure 13: Processing unit of dual-radix architecture with radix-4 for GF (p) and radix-8 for GF (2n)
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