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Abstract—The state-of-the-art Galois field GF ð2mÞ multipliers offer advantageous space and time complexities when the field is

generated by some special irreducible polynomial. To date, the best complexity results have been obtained when the irreducible

polynomial is either a trinomial or an equally spaced polynomial (ESP). Unfortunately, there exist only a few irreducible ESPs in the

range of interest for most of the applications, e.g., error-correcting codes, computer algebra, and elliptic curve cryptography.

Furthermore, it is not always possible to find an irreducible trinomial of degree m in this range. For those cases where neither an

irreducible trinomial nor an irreducible ESP exists, the use of irreducible pentanomials has been suggested. Irreducible pentanomials

are abundant, and there are several eligible candidates for a given m. In this paper, we promote the use of two special types of

irreducible pentanomials. We propose new Mastrovito and dual basis multiplier architectures based on these special irreducible

pentanomials and give rigorous analyses of their space and time complexity.

Index Terms—Finite fields arithmetic, parallel multipliers, pentanomials, multipliers for GF ð2mÞ.
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1 INTRODUCTION

EFFICIENT hardware implementations of the arithmetic
operations in the Galois field GF ð2mÞ are frequently

desired in coding theory, computer algebra, and elliptic curve

cryptosystems [9], [10]. For these implementations, the

measure of efficiency is the space complexity, i.e., the number

of XOR and AND gates, and the time complexity, i.e., the total

gate delay of the circuit. The representation of the field

elements plays a crucial role in the efficiency of the
architectures for the arithmetic operations. Several architec-

tures have been reported for multiplication in GF ð2mÞ. For

example, efficient bit-parallel multipliers for both polynomial

and normal basis representation have been proposed [4], [12],

[6], including the Mastrovito multiplier [15].

Another technique, which was first suggested in [1], is

known as the dual basis multiplier [11], [2], [17], [18].

Conventional dual basis multipliers have the property that

one of the input operands is given in the polynomial basis

while the other input is in the dual basis. The product is

then obtained in the dual basis [1]. In this paper, we use a

new approach for dual basis multipliers that was suggested

in [13]. In contrast to the conventional approach, the

technique proposed in [13] assumes that both operands

are given in the polynomial basis. This assumption yields

less time and space complexity for certain types of

irreducible polynomials.

In all of these state-of-the-art techniques for finite field

GF ð2mÞ multipliers, less space and time complexity have

been reported when the irreducible polynomial used to

construct the field is either an equally spaced polynomial

defined as:

pðxÞ ¼ xm þ xðk�1Þd þ � � � þ x2d þ xd þ 1; ð1Þ

where m ¼ kd, or a trinomial [7], [8], [17], [15], [3].

Unfortunately, irreducible equally spaced polynomials

(ESP) are very rare. There are only 81 m values less than

1,024 such that an irreducible ESP of degree m exists [17].
On the other hand, an irreducible trinomial does not

exist for every value of m. In fact, there are 468 m values less

than 1,024 such that an irreducible trinomial of degree m

does not exist [14]. Since, in finite fields of characteristic 2,

an irreducible polynomial must have an odd number of

nonzero coefficients, the next option is to use irreducible

pentanomials. It has been suggested [5] that an irreducible

pentanomial can be used whenever there does not exist an

irreducible trinomial of degree m. This is a good, practical

suggestion since there exists either an irreducible trinomial

or pentanomial of degree m 2 ½2; 10; 000� as was established

by enumeration in [14]. In fact, there is no known value of m

for which either an irreducible trinomial or pentanomial

does not exist [14]. Therefore, the design of multipliers

using irreducible pentanomials is of practical importance,

particularly for cryptographic applications, and efforts to

obtain efficient implementations are well justified. This

work is a step in this direction.
In this paper, we study the time and space complexity for

multipliers in GF ð2mÞ generated by using certain special

classes of irreducible pentanomials. We consider the

following types of irreducible pentanomials, which we

name arbitrarily as type 1 and type 2 pentanomials:
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Type 1: xm þ xnþ1 þ xn þ xþ 1;

where 2 � n � bm=2c � 1:

Type 2: xm þ xnþ2 þ xnþ1 þ xn þ 1;

where 1 � n � bm=2c � 1:

ð2Þ

There are many values of m for which an irreducible

pentanomial of these types exists: There are 416 m values

less than 515 such that an irreducible type 1 pentanomial of

degree m exists. Furthermore, there are 304 m values less

than 526 such that an irreducible type 2 pentanomial exists.

Thus, pentanomials type I and type II are abundant and, as

we will see, they offer advantageous design options for

Mastrovito and dual basis multipliers, respectively.
In this paper, we present efficient architectures for two

different types of multipliers: the Mastrovito and the dual

basis multipliers. We give rigorous analyses of these

multipliers in terms of their space and time complexity. In

Section 2, we introduce efficient Mastrovito multipliers

based on the aforementioned type I irreducible pentano-

mial, and give their complexity analyses. We then introduce

efficient dual basis multipliers in Section 3, based on the

methodology proposed in [13]. The analyses of the dual

basis multiplier used with the special pentanomials type II

are given in Section 4. Finally, we summarize the findings of

this research and give a comparative analysis of similar

multipliers in Section 5.

2 MASTROVITO MULTIPLIERS AND THEIR ANALYSIS

The algorithms for multipliers in GF ð2mÞ based on the

polynomial basis usually consist of two steps: the poly-

nomial multiplication and the modular reduction. Let AðxÞ,
BðxÞ, and C0ðxÞ be elements of GF ð2mÞ and P ðxÞ be the

degree m irreducible polynomial defining the field GF ð2mÞ.
In order to compute C0ðxÞ ¼ AðxÞBðxÞmod P ðxÞ, we first

obtain the product polynomial CðxÞ which is of degree at

most 2m� 2 using

CðxÞ ¼ AðxÞBðxÞ ¼
Xm�1

i¼0

aix
i

 ! Xm�1

i¼0

bix
i

 !
: ð3Þ

Then, the reduction operation is performed in order to

obtain the ðm� 1Þ-degree polynomial C0ðxÞ, which is

defined as

C0ðxÞ ¼ CðxÞmod P ðxÞ: ð4Þ

Once the irreducible polynomial P ðxÞ is selected and fixed,

the reduction step can be accomplished using only XOR

gates. The Mastrovito algorithm formulates these two steps

into a single matrix-vector product and then reduces the

product matrix using the irreducible polynomial defining

the field.
We propose an architecture for computation of the final

product C0ðxÞ in (4) by first computing the product to obtain

the vector C which has 2m� 1 elements. By using a standard

matrix-vector product, it can be shown that C can be

computed with a total space and time complexity given as:

AND Gates ¼ m2

XOR Gates ¼ ðm� 1Þ2
Total Delay ¼ TA þ dlog2 meTX:

ð5Þ

In order to obtain the final product after the reduction in (4),
we need to use the irreducible polynomial defining the
field. The complexity of this computation is determined by
the properties of the irreducible polynomial. The complex-
ity results for several types of irreducible polynomials have
been obtained [7], [8], [12], [15], [3]. Below, we derive the
space and time complexity for irreducible type 1 pentano-
mials using Mastrovito multipliers.

2.1 Type 1 Pentanomials

Let the field GF ð2mÞ be constructed using the irreducible
type 1 pentanomial defined in (2). In order to obtain the
final product C0ðxÞ, we compute the reduction array as
defined in [15]. We use the property P ð�Þ ¼ 0 and write

�m ¼ 1þ �þ �n þ �nþ1

�mþ1 ¼ �þ �2 þ �nþ1 þ �nþ2

�mþ2 ¼ �2 þ �3 þ �nþ2 þ �nþ3

..

.

�2m�n�2 ¼ �m�n�2 þ �m�n�1 þ �m�2 þ �m�1

�2m�n�1 ¼ �m�n�1 þ �m�n þ �m�1 þ 1þ �þ �n

þ �nþ1

�2m�n ¼ �m�n þ �m�nþ1 þ 1þ �þ �n þ �nþ1 þ �

þ �2 þ �nþ1 þ �nþ2

¼ �m�n þ �m�nþ1 þ 1þ �n þ �2 þ �nþ2

�2m�nþ1 ¼ �m�nþ1 þ �m�nþ2 þ �þ �nþ1 þ �3

þ �nþ3

�2m�nþ2 ¼ �m�nþ2 þ �m�nþ3 þ �2 þ �nþ2 þ �4 þ �nþ4

..

.

�2m�3 ¼ �m�3 þ �m�2 þ �n�3 þ �2n�3 þ �n�1 þ �2n�1

�2m�2 ¼ �m�2 þ �m�1 þ �n�2 þ �2n�2 þ �n þ �2n:

The above equations can be summarized based on their
number of operands as follows:

�mþi ¼
�i þ �iþ1 þ �nþi þ �nþiþ1 for

i ¼ 0; 1; . . . ;m� n� 2

�i þ �iþ1 þ �nþi þ 1þ � for i ¼ m� n� 1

þ�n þ �nþ1

�i þ �iþ1 þ �i�ðm�nÞ þ �i�mþ2n for

þ�i�ðm�nÞþ2 þ �i�mþ2nþ2 i ¼ m� n;m� nþ 1;

. . . ;m� 2:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

In order to obtain the coordinates of the product C0 as
given by (4), we follow the method in [15]. From the matrix
representation shown above, we just need to add the
nonzero elements of each one of the m columns. For
instance, in order to obtain the first coordinate c00, we just
need to add the nonzero coefficients of the first column to
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the first coordinate of the product polynomial c0. We can

see that the nonzero elements for the first column of the

matrix are the coordinates cm, c2m�n�1, and c2m�n added to

the c0 coordinate, giving the first coordinate as

c00 ¼ c0 þ cm þ c2m�n�1 þ c2m�n:

The entire set of coordinates of C0 are obtained as follows:

c00 ¼ c0 þ cm þ c2m�n�1 þ c2m�n

c01 ¼ c1 þ cm þ cmþ1 þ c2m�n�1 þ c2m�nþ1

c02 ¼ c2 þ cmþ1 þ cmþ2 þ c2m�n þ c2m�nþ2

..

.

c0n�2 ¼ cn�2 þ cmþn�3 þ cmþn�2 þ c2m�4 þ c2m�2

c0n�1 ¼ cn�1 þ cmþn�2 þ cmþn�1 þ c2m�3

c0n ¼ cn þ cm þ cmþn�1 þ cmþn þ c2m�n�1 þ c2m�n þ c2m�2

c0nþ1 ¼ cnþ1 þ cm þ cmþ1 þ cmþn þ cmþnþ1 þ c2m�n�1

þ c2m�nþ1

..

.

c02n�2 ¼ c2n�2 þ cmþn�3 þ cmþn�2 þ cmþ2n�3

þ cmþ2n�2 þ c2m�4 þ c2m�2

c02n�1 ¼ c2n�1 þ cmþn�2 þ cmþn�1 þ cmþ2n�2 þ cmþ2n�1 þ c2m�3

c02n ¼ c2n þ cmþn�1 þ cmþn þ cmþ2n�1 þ cmþ2n þ c2m�2

c02nþ1 ¼ c2nþ1 þ cmþn þ cmþnþ1 þ cmþ2n þ cmþ2nþ1

c02nþ2 ¼ c2nþ2 þ cmþnþ1 þ cmþnþ2 þ cmþ2nþ1 þ cmþ2nþ2

..

.

c0m�2 ¼ cm�2 þ c2m�n�3 þ c2m�n�2 þ c2m�3 þ c2m�2

c0m�1 ¼ cm�1 þ c2m�n�2 þ c2m�n�1 þ c2m�2:

ð7Þ

In order to obtain the space and time complexities in the

computation of (7), we can classify these equations

according to their number of operands, as shown in Table 1.
Therefore, the total number of XOR gates needed to

obtain all coordinates of the product C0 is obtained as:

3þ 4ðn� 2Þ þ 3þ 6ðn� 1Þ þ 5þ 5þ 4ðm� 2n� 2Þ þ 3

¼ 4mþ 2n� 3:

However, taking advantage of the inherent redundancy of

the set of equations in (7), this number can be reduced

further. For example, we need exactly three XOR gates to

compute c0m�1. Then, in the computation of c0m�2, we notice a
redundancy since two of the operands of this coordinate

have been already added in the previous computation,
allowing us to save a single XOR gate. Examining the
equations in (7) more closely, we observe that the
coordinates between c0nþ1 and c0m�2 have the following
structure:

c0nþi ¼ cmþi�1 þ cmþi þ cmþnþi�1 þ cmþnþi þ � � �
c0nþiþ1 ¼ cmþi þ cmþiþ1 þ cmþnþi þ cmþnþiþ1 þ � � �
c0nþiþ2 ¼ cmþiþ1 þ cmþiþ2 þ cmþnþiþ1 þ cmþnþiþ2 þ � � �

for i ¼ 1; 2; . . . ;m� n� 4. Clearly, we can take advantage of
the redundancy of this structure by using the term cmþi þ
cmþnþi twice, in the computation of c0nþi and c0nþiþ1. Also, we

can use the term cmþiþ1 þ cmþnþiþ1 twice, in the computa-
tion of c0nþiþ1 and c0nþiþ2. Applying this strategy to the whole
range of coordinates from c0nþ1 and c0m�2, we can save a
single XOR gate in the computation of each coordinate. This
implies that we can save a total of m� 2� ðnþ 1Þ þ 1 ¼
m� n� 2 XOR gates. Also notice that the term c2m�n�1 þ
c2m�n appears in the equations for the coordinates c00 and c0n
and, furthermore, the term c2m�n�1þi þ c2m�nþi appears in
the equations for the coordinates c0i and c0nþi, for

i ¼ 0; 1; � � � ; n� 1. Hence, we can save n XOR gates for
those 2n coordinate equations. These two strategies together
yield a total saving of m� n� 2þ n ¼ m� 2 XOR gates.
Thus, the complete set of the coordinates c0i in (7) can be
obtained using only

4mþ 2n� 3� ðm� 2Þ ¼ 3mþ 2n� 1

XOR gates. On the other hand the gate delay depends on
the largest number of terms to be added, which is equal to 6
as seen in Table 1, giving the gate delay as

log2ð6Þd eTX ¼ 3TX:

Therefore, we obtain the total complexity of the Mastrovito

multipler based on the irreducible type 1 pentanomial as:

AND Gates ¼ m2

XOR Gates ¼ ðm� 1Þ2 þ 3mþ 2n� 1 ¼ m2 þmþ 2n

Total Delay ¼ TA þ ð3þ dlog2 meÞTX:

ð8Þ

In the case of n ¼ 2, i.e., when the irreducible polynomial

is given as xm þ x3 þ x2 þ xþ 1, a small improvement in the

time and space complexities can be obtained.
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As we derived, the XOR complexity of the reduction step

was 3mþ 2n� 1. By taking n ¼ 2, we obtain the XOR

complexity as 3mþ 3. However, a small improvement can

be obtained for this case. By examining (7), we observe that

the coordinate c0n with n ¼ 2 is given by:

c0n¼2 ¼ cn þ cm þ cmþn�1 þ cmþn þ c2m�n�1 þ c2m�n þ c2m�2

¼ cn þ cm þ cmþn�1 þ cmþn þ c2m�n�1;

yielding an extra saving of two XOR gates. Also, notice that

the term cm þ c2m�3 is present in three equations for the

coordinates c00, c01, and c02. By computing this term once and

reusing it as needed, we obtain an extra saving of two XOR

gates. In summary, 3mþ 3� 4 ¼ 3m� 1 XOR gates are

sufficient in the reduction step. This gives the XOR

complexity of the proposed multiplier for these irreducible

special pentanomials as ðm� 1Þ2 þ 3m� 1 ¼ m2 þm.

Therefore, the total complexity result for this case is

AND Gates ¼ m2

XOR Gates ¼ m2 þm

Total Delay ¼ TA þ ð3þ dlog2 meÞTX:

ð9Þ

3 DUAL BASIS MULTIPLICATION

In this section, we briefly describe the dual basis multi-

plication algorithm proposed in [13]. A set of m elements

f�0; �1; �2; . . . ; �m�1g forms a basis for GF ð2mÞ if the �is are

linearly independent over the field GF ð2Þ. Let pðxÞ be a

degree-m polynomial, irreducible over GF ð2Þ. Also let � be

a root of pðxÞ, i.e., pð�Þ ¼ 0. Then, the set f1; �; �2; . . . ; �m�1g
is a basis for GF ð2mÞ and is called the polynomial

(canonical) basis of the field [9]. An element A 2 GF ð2mÞ
is expressed in this basis as A ¼

Pm�1
i¼0 ai�

i. The trace of

� 2 GF ð2mÞ relative to the subfield GF ð2Þ is defined by:

Trð�Þ ¼
Xm�1

i¼0

�2i : ð10Þ

It is well-known [9] that the trace function is a linear

mapping from the finite field GF ð2mÞ onto the finite field

GF ð2Þ. Let f�0; �1; �2; . . . ; �m�1g and f�0; �1; �2; . . . ; �m�1g
be any two bases for GF ð2mÞ and also let � 2 GF ð2mÞ with

� 6¼ 0. Then, these two bases are said to be dual with respect

to � if [2]:

Trð��i�jÞ ¼
1 if i ¼ j;
0 if i 6¼ j:

�
ð11Þ

Let � be a fixed nonzero element of the field GF ð2mÞ and let

f�0; �1; �2; . . . ; �m�1g be a dual basis of f1; �; �2; . . . ; �m�1g,

the polynomial basis previously defined. Then, any element

A can be expressed either in the polynomial basis or in the

dual basis as:

A ¼
Xm�1

i¼0

ai�
i ¼

Xm�1

i¼0

a�i �i: ð12Þ

Using (11), we can obtain the jth coordinate of the element

A in the dual basis as:

Trð��jAÞ ¼ Tr ��j
Xm�1

i¼0

a�i �i

 !
¼
Xm�1

i¼0

a�i Trð��j�iÞ ¼ a�j :

ð13Þ

The algorithm proposed in [13] takes the input operands A

and B in the polynomial basis, and computes the product

C� in the dual basis with respect to �. This is in contrast to

the standard definition of the dual basis multiplication,

where one of the input operands needs to be represented in

the dual basis. In the rest of this section, we give a brief

description of that algorithm.
Let A;B 2 GF ð2mÞ be given in the polynomial basis as

A ¼
Pm�1

i¼0 ai�
i and B ¼

Pm�1
i¼0 bi�

i, where ai; bi 2 GF ð2Þ are

their coordinates, respectively. Given a fixed element

� 2 GF ð2mÞ, we are interested in computing the product

C� in the dual basis with respect to �, given as,

C� ¼
Xm�1

k¼0

c�k�k: ð14Þ

Using e(13), the coefficient c�k is given by c�k ¼ Trð��kCÞ ¼

Trð��kABÞ for k ¼ 0; 1; . . . ; ðm� 1Þ as

c�k ¼ Tr ��k
Xm�1

i¼0

ai�
i

 ! Xm�1

j¼0

bj�
j

 ! !

¼
Xm�1

i¼0

Xm�1

j¼0

Trð��iþjþkÞbjai:
ð15Þ

Thus, the coefficient c�k can be written as:

c�k ¼
Xm�1

i¼0

tiþkai; ð16Þ

where the trace coefficients tiþk for i; k ¼ 0; 1; . . . ; ðm� 1Þ

are defined by:

tiþk ¼
Xm�1

j¼0

Tr ��iþjþk
� �

bj: ð17Þ

Therefore, the field product C� can be expressed as a

matrix-vector product:
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C� ¼

c�0
c�1
c�2

..

.

c�m�2

c�m�1

2
6666666664

3
7777777775

¼

t0 t1 t2 � � � tm�2 tm�1

t1 t2 t3 � � � tm�1 tm

t2 t3 t4 � � � tm tmþ1

..

. ..
. ..

. . .
. ..

. ..
.

tm�2 tm�1 tm � � � t2m�4 t2m�3

tm�1 tm tmþ1 � � � t2m�3 t2m�2

2
6666666664

3
7777777775

a0

a1

a2

..

.

am�2

am�1

2
6666666664

3
7777777775
:

ð18Þ

Each row of the multiplication matrix in (18) corresponds to

a state of the shift register in Berlekamp’s bit-serial

multiplier of [1], holding the dual basis factor �.

Provided that the trace coefficients tk for k ¼

0; 1; . . . ; ð2m� 2Þ are all available, the space and time

complexities for computing the matrix-vector product in

(18) are obtained as:

AND Gates ¼ m2;

XOR Gates ¼ m2 �m;

Total Delay ¼ TA þ dlog2 meTX:

ð19Þ

On the other hand, from (17) we see that, in order to obtain

all ð2m� 1Þ trace coefficients required in (18), we need to

compute a total of ð3m� 2Þ different traces. This can be

accomplished by using the following transformation matrix

of dimension ð2m� 1Þ �m, which we will call the extended

Gram matrix:

t0

t1

t2

..

.

tm�1

tm

tmþ1

..

.

t2m�2

2
666666666666666666664

3
777777777777777777775

¼

Trð�Þ Trð��Þ Trð��2Þ � � � Trð��m�1Þ
Trð��Þ Trð��2Þ Trð��3Þ � � � Trð��mÞ
Trð��2Þ Trð��3Þ Trð��4Þ � � � Trð��mþ1Þ

..

. ..
. ..

. . .
. ..

.

Trð��m�1Þ Trð��mÞ Trð��mþ1Þ � � � Trð��2m�2Þ

Trð��mÞ Trð��mþ1Þ Trð��mþ2Þ � � � Trð��2m�1Þ
Trð��mþ1Þ Trð��mþ2Þ Trð��mþ3Þ � � � Trð��2mÞ

..

. ..
. ..

. . .
. ..

.

Trð��2m�2Þ Trð��2m�1Þ Trð��2mÞ � � � Trð��3m�3Þ

2
6666666666666666666664

3
7777777777777777777775

b0

b1

b2

..

.

bm�1

2
66666664

3
77777775
:

ð20Þ

The matrix-vector equation in (20) provides a method to

compute the remaining trace coefficients required in (18) by

using only the coordinates of the operand B in the

polynomial basis. The space complexity for computing all

trace coefficients defined in (20) depends only on the

number of nonzero entries in the extended Gram matrix,

which is a function of the irreducible polynomial pðxÞ
defining the field and the element � 2 GF ð2mÞ. Once the

parameter � is fixed, the elements of the extended Gram

matrix are fixed zero and one values. Thus, the trace

coefficients in (20) can be computed using only XOR gates,

i.e., no AND gates are required. A good selection of � is

crucial in order to obtain an extended Gram matrix with as

few ones as possible.
The total complexity of the proposed multiplier consists

of two parts:

. The space complexity for computing all ð2m� 1Þ
trace coefficients which are defined in (17) or (20)
and used in (18). The first m trace coefficients are
simply equal to the coordinates of the operand B
expressed in the dual basis with respect to the
selected element � 2 GF ð2mÞ. The remaining ðm� 1Þ
coefficients are determined using the extended Gram
matrix given by (20).
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. The complexity of computing the matrix-vector
product in (18), which was established in (19),
assuming that the coordinates of the operand A
expressed in the polynomial basis and all ð2m� 1Þ
trace coefficients are given.

4 ANALYSIS OF DUAL BASIS MULTIPLIERS FOR

IRREDUCIBLE PENTANOMIALS

In this section, we analyze the complexity of the trace
coefficient computation for the dual basis multiplier, as
defined in (20), using certain types of irreducible pentano-
mials as generating polynomials of the field GF ð2mÞ.

4.1 Type 2 Pentanomials

Let the field GF ð2mÞ be constructed using the irreducible
pentanomial P ðxÞ ¼ xm þ xnþ2 þ xnþ1 þ xn þ 1, where
2 � n � dm=2e � 1. It has been shown [2], [11] that there
exists a � such that the dual basis of the polynomial basis
f1; �; �2; . . . ; �m�1g is given as:

f1þ �n; �n�1; �n�2; . . . ; 1; �m�1; �m�2; . . . ; �nþ2;

�m�1 þ �nþ1g:
ð21Þ

Therefore, the trace coefficients tk for k ¼ 0; 1; . . . ; ðm� 1Þ
are obtained directly from the polynomial basis coordinates
of the operand B using these relations:

t0 ¼ b�0 ¼ b0 þ bn

tk ¼ b�k ¼ bn�k for k ¼ 1; 2; . . . ; n

tk ¼ b�k ¼ bmþn�k for k ¼ nþ 1; nþ 2; . . . ;m� 2

tm�1 ¼ b�m�1 ¼ bm�1 þ bnþ1:

ð22Þ

In order to obtain the remaining trace coefficients tk for
k ¼ m;mþ 1; . . . ; ð2m� 2Þ, we use the property P ð�Þ ¼ 0
and write

�m ¼ 1þ �n þ �nþ1 þ �nþ2

�mþ1 ¼ �þ �nþ1 þ �nþ2 þ �nþ3

�mþ2 ¼ �2 þ �nþ2 þ �nþ3 þ �nþ4

..

.

�2m�n�3 ¼ �m�n�3 þ �m�3 þ �m�2 þ �m�1

�2m�n�2 ¼ �m�n�2 þ �m�2 þ �m�1 þ �m

..

.

�2m�2 ¼ �m�2 þ �mþn�2 þ �mþn�1 þ �mþn:

Due to the linearity property of the trace function and using
(22), we obtain:

tm ¼ t0 þ tn þ tnþ1 þ tnþ2 ¼ bn þ bm�1 þ bm�2

tmþ1 ¼ t1 þ tnþ1 þ tnþ2 þ tnþ3 ¼ bn�1 þ bm�1 þ bm�2 þ bm�3

tmþ2 ¼ t2 þ tnþ2 þ tnþ3 þ tnþ4 ¼ bn�2 þ bm�2 þ bm�3 þ bm�4

..

.

tmþn ¼ tn þ t2n þ t2nþ1 þ t2nþ2 ¼ b0 þ bm�n þ bm�n�1

þ bm�n�2

tmþnþ1 ¼ tnþ1 þ t2nþ1 þ t2nþ2 þ t2nþ3 ¼ bm�1 þ bm�n�1

þ bm�n�2 þ bm�n�3

..

.

t2m�n�3 ¼ tm�n�3 þ tm�3 þ tm�2 þ tm�1 ¼ b2nþ3 þ bnþ3

þ bnþ2 þ bnþ1 þ bm�1

t2m�n�2 ¼ tm�n�2 þ tm�2 þ tm�1 þ tm ¼ b2nþ2 þ bnþ2 þ bnþ1

þ bn þ bm�2

t2m�n�1 ¼ tm�n�1 þ tm�1 þ tm þ tmþ1 ¼ b2nþ1 þ bnþ1 þ bm�1

þ bn þ bn�1 þ bm�3

t2m�n ¼ tm�n þ tm þ tmþ1 þ tmþ2 ¼ b2n þ bn þ bn�1 þ bn�2

þ bm�2 þ bm�4

t2m�nþ1 ¼ tm�nþ1 þ tmþ1 þ tmþ2 þ tmþ3 ¼ b2n�1 þ bn�1

þ bm�1 þ bn�2 þ bn�3 þ bm�3 þ bm�5

t2m�nþ2 ¼ tm�nþ2 þ tmþ2 þ tmþ3 þ tmþ4 ¼ b2n�2 þ bn�2

þ bm�2 þ bn�3 þ bn�4 þ bm�4 þ bm�6

..

.

t2m�2 ¼ tm�2 þ tmþn�2 þ tmþn�1 þ tmþn

¼ bnþ2 þ b2 þ bm�nþ2 þ b1 þ b0 þ bm�n þ bm�n�2:

ð23Þ

Some intermediate steps to derive the final m� 1 equations

are not explicity shown above. These equations can be

classified by their number of operands, as shown in Table 2,

which shows the number of XOR gates needed to

implement each one of the trace equations based on the

number of operands.
The first m trace coefficients are obtained from the

polynomial basis coordinates of the operand B using the

transformation given by (22). This computation is per-

formed using rewiring in all coefficients except the first and

the last one. Hence, we only need two XOR gates to obtain

this first block of traces. Therefore, the total number of XOR

gates needed to obtain all the 2m� 1 trace coefficients from

ti for i ¼ 0; 1; . . . ; 2m� 2 is given as:
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TABLE 2
The Trace Coefficients in (23) Classified by the Number of Operands



2þ 2þ 3ðm� n� 4Þ þ 4 � 2þ 5 � 2þ 6ðn� 2Þ
¼ 3mþ 3n� 2:

Taking advantage of the inherent redundancy of the m� 1
trace equations in (23), the above number can be further
reduced. Any of the m� 1 trace coefficients from tm to t2m�1

can be implemented by reusing one of the XOR gates used
in computing a previous coefficient. When k is odd, the
computation of tmþk requires one less XOR gate since the
XOR gate in the computation of tmþk�1 can be reused. For
instance, we notice that the computation of tmþ1 requires
two XOR gates if we reuse one of the XOR gates required
for computing tm. We need three XOR gates to compute
tmþ2. Then, the computation of tmþ3 requires only two XOR
gates. Continuing in this fashion, it is not hard to prove that
this strategy can be extended. Therefore, the complete set of
2m� 1 coefficients can be computed using only

3m� dðm� 2Þ=2e þ 3n� 4

XOR gates. Furthermore, only 3TX gate delays are sufficient
to obtain the entire set of tk terms for k ¼ 0; 1; . . . ; ð2m� 2Þ.
Combining these results with (19), we obtain the complexity
of the proposed multiplier for an irreducible type 2
pentanomial as:

AND Gates ¼ m2

XOR Gates ¼ m2 þ 2m� dðm� 2Þ=2e þ 3n� 4

Total Delay ¼ TA þ ð3þ dlog2 meÞTX:

ð24Þ

For the special case of n ¼ 1, i.e., when the irreducible
pentanomial is given as xm þ x3 þ x2 þ xþ 1, it can be
shown that the space and time complexities of the dual
basis multiplier reduce to

AND Gates ¼ m2

XOR Gates ¼ m2 �mþ 2ðmþ 1Þ ¼ m2 þmþ 2

Total Delay ¼ TA þ ð3þ dlog2 meÞTX:

ð25Þ

5 SUMMARY OF RESULTS AND CONCLUSIONS

The complexity results of the proposed Mastrovito and dual
basis multipliers are given in Table 3. This table also
contains the complexity results of previously proposed
multipliers based on irreducible trinomials and equally
spaced polynomials [7], [8], [12], [15], [3].

While the multipliers based on trinomials and ESPs offer

more advantageous designs, we have no choice but to

consider other irreducible polynomials whenever irreduci-

ble trinomials or EPSs do not exist. This paper promotes the

use of special types of irreducible pentanomials, as defined

in Section 1. We proposed new Mastrovito and dual basis

multiplier architectures and obtained their complexity

results, using these special pentanomials.
It has been shown in [16] that an irreducible polynomial

with Hamming weight (the number of terms) equal to r

would require ðm� 1Þ2 þ ðr� 1Þðm� 1Þ XOR gates. We

also give this complexity result as applied to pentanomials

(r ¼ 5) in Table 3. As can be seen from Table 3, the special

multipliers described in this paper using the pentanomials

type I and type II, require m� 2nþ 3 and dm�2
2 e � 3nþ 1

fewer XOR gates than the multiplier in [16], respectively.
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[15] B. Sunar and Ç.K. Koç, “Mastrovito Multiplier for All Trinomials,”
IEEE Trans. Computers, vol. 48, no. 5, pp. 522-527, May 1999.

[16] H. Wu, “Low Complexity Bit-Parallel Finite Field Arithmetic
Using Polynomial Basis,” Cryptographic Hardware and Embedded
Systems, Ç.K. Koç and C. Paar, eds., pp. 280-291, Berlin: Springer-
Verlag, 1999.

[17] H. Wu and M.A. Hasan, “Low Complexity Bit-Parallel Multipliers
for a Class of Finite Fields,” IEEE Trans. Computers, vol. 47, no. 8,
pp. 883-887, Aug. 1998.

[18] H. Wu, M.A. Hasan, and I.F. Blake, “New Low-Complexity Bit-
Parallel Finite Field Multipliers Using Weakly Dual Bases,” IEEE
Trans. Computers, vol. 47, no. 11, pp. 1223-1233, Nov. 1998.

Francisco Rodrı́guez-Henrı́quez received the
PhD (2000) degree in electrical and computer
engineering from Oregon State University, the
MS (1992) degree in electrical and computer
engineering from the National Institute of Astro-
physics, Optics and Electronics (INAOE), Méx-
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