
Incomplete Reduction in Modular Arithmetic ∗†‡

T. Yanık, E. Savaş, and Ç. K. Koç
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331

Abstract

We describe a novel method for obtaining fast software implementations of the arithmetic
operations in the finite field GF (p) with an arbitrary prime modulus p which is of arbitrary
length. The most important feature of the method is that it avoids bit-level operations which
are slow on microprocessors and performs word-level operations which are significantly faster.
The proposed method has applications in public-key cryptographic algorithms defined over the
finite field GF (p), most notably the elliptic curve digital signature algorithm.

1 Introduction

The basic arithmetic operations (i.e., addition, subtraction, and multiplication) in the finite field
GF (p) have several applications in cryptography, such as decipherment operation of the RSA
algorithm [11], the Diffie-Hellman key exchange algorithm [2], elliptic curve cryptography [5, 8], and
the Digital Signature Standard including the Elliptic Curve Digital Signature Algorithm (ECDSA)
[10]. These applications demand high-speed software implementations of the arithmetic operations
in GF (p) for 160 ≤ �log2(p)� ≤ 2048. In this paper, we describe a new method for obtaining
high-speed software implementations of the arithmetic operations on microprocessors and general-
purpose computers. The most important feature of this method is that it avoids bit-level operations
which are slow on modern microprocessors. The algorithms proposed in this paper perform word-
level operations, trading them off for bit-level operations, and thus, resulting in much higher speeds.
We provide the timing results of our implementations on a Pentium II computer, supporting our
speedup claims.

2 Representation of the Numbers

The arithmetic of GF (p) is also called modular arithmetic where the modulus is p. The elements of
the field are the set of integers {0, 1, . . . , (p−1)}, and the arithmetic functions (addition, subtraction,
and multiplication) takes two input operands from this set and produces the output which is also
in this set. We are assuming that the modulus p is a k-bit integer where k ∈ [160, 2048]. A number
in this range is represented as an array of words, where each word is of length w. Most software

∗This research is supported in part by rTrust Technologies.
†The reader should note that Oregon State University has filed US and International patent applications for

inventions described in this paper.
‡IEE Proceedings: Computers and Digital Technique, 149(2):46-52, March 2002.

1



implementations require that w = 32, however, w can be selected as 8 or 16 on 8-bit or 16-bit
microprocessors.

In order to create a scalable implementation, we are not placing any restrictions on the prime
p or its length k. The prime number does not need to be in any special form, as some methods
require, for example, the method in [1] requires that p = 2k − c. Furthermore, the length of the
prime p does not need to be an integer multiple of the wordsize of the computer.

We have the following definitions:

• k : The exact number of bits required to represent the prime modulus p, i.e., k = �log2 p�.

• w : The word-size of the representation (i.e., the computer). Usually, w = 8, 16, 32.

• s: The exact number of words required to represent the prime modulus p, i.e., s = � k
w�.

• m : The total number of bits in s words, i.e., m = sw.

Since our computers are capable of performing only two’s complement binary arithmetic, we rep-
resent the numbers as unsigned binary numbers. A number from the field GF (p) is represented as
an s-word array of unsigned binary integers. We will use the notation A = (As−1As−2 . . . A1A0),
where the words Ai for i = 0, 1, . . . , (s − 1) are unsigned binary numbers of length w. The most
significant word (MSW) of A is As−1, while the least significant word (LSW) of A is A0. The
bit-level representation of A is given as A = (ak−1ak−2 . . . a1a0). Similarly, the most significant bit
(MSB) of A is ak−1, while the least significant bit (LSB) of A is a0. We will use exactly s words to
represent a number. If k is not an integer multiple of w, then we have k = (s−1)w+u where u < w
is a positive integer, and thus, only the least significant u bits of the MSW of As−1 are occupied,
and the most significant (w − u) bits are all zero.

As−1 As−2 · · · A1 A0

0 · · · 0
︸ ︷︷ ︸

w−u

a(s−1)w+u−1 · · · a(s−1)w a(s−1)w−1 · · · a(s−2)w · · · a2w−1 · · · aw aw−1 · · · a0

2.1 Incompletely Reduced Numbers

This representation methodology has a shortcoming: it requires bit-level operations on the MSW in
order to perform arithmetic, which affects the speed of the operations in software implementations.
In order to overcome this shortcoming, we introduce the concept of incomplete modular arithmetic.
In order to explain the mechanics of the method, we make the following definitions:

• Completely Reduced Numbers: the numbers from 0 to (p − 1).

C = {0, 1, . . . , (p − 1)} .

• Incompletely Reduced Numbers: the numbers from 0 to (2m − 1).

I = {0, 1, . . . , p − 1, p, p + 1, . . . , (2m − 1)} .

• Unreduced Numbers: the numbers from p to (2m − 1).

U = {p, p + 1, . . . , (2m − 1)} .

2



Note that we have the following relationship between these sets:

C ⊂ I

U ⊂ I

U = I − C

If A ∈ C and 2p < 2m, then A has an incompletely reduced equivalent B ∈ I such that A = B
(mod p). Thus, instead of working with A, we can also work with B in our arithmetic operations.
The incompletely reduced numbers completely occupy s words as follows:

Bs−1 Bs−2 · · · B1 B0

bsw−1 · · · b(s−1)w b(s−1)w−1 · · · b(s−2)w · · · b2w−1 · · · bw bw−1 · · · b0

When we perform arithmetic with incompletely reduced numbers, we do not need to perform bit-
level operations on the MSW. All operations are word-level operations, and checks for carry bits
are performed on the word boundaries, not within the words. Furthermore, we skip unnecessary
reductions until the actual output is produced, in which case, we make sure that it belongs to C.
This representation yields high-speed implementations of the arithmetic operations.

An incompletely reduced number B can be converted to its completely reduced equivalent A
by subtracting integer multiples of p from B as many times as necessary (until it is less than p).

2.2 Positive and Negative Numbers

The numbers in the range [0, p − 1] as defined are positive numbers. The implementation of the
subtraction operation requires a method of representation for negative numbers as well. We use
the least positive residues which allow simultaneous representation of the positive and negative
numbers modulo p. In this representation, the numbers are always left as positive, i.e., if the result
of a subtraction operation is a negative number, then it is converted back to positive by adding p
to it. For example, for p = 7, the operation s = 3 − 4 is performed as s = 3 − 4 + 7 = 6. The
numbers from 0 to (p − 1)/2 can be interpreted as positive numbers modulo p, while the numbers
from (p − 1)/2 + 1 to p − 1 can be interpreted as negative numbers modulo p. However, numbers
are always kept as unsigned positive integers.

2.3 A Representation Example

We take the prime modulus as p = 11 = (1011) and the word size as w = 3. Thus, we have k = 4
and s = �k/w� = �4/3� = 2, which gives m = 2 · 3 = 6. The completely reduced set of numbers
is C = {0, 1, . . . , 9, 10}, while the incompletely reduced set contain the numbers ranging from 0 to
(2m − 1) = (26 − 1) = 63 as I = {0, 1, . . . , 62, 63}. The incompletely reduced numbers occupy 2
words as A = (A1A0) = (a5a4a3 a2a1a0). For example, the decimal number 44 is represented as
(101 100) in binary or (5 4) in octal.

An incompletely reduced equivalent of A is given as B = A + i · p, where B ∈ [0, 63] and i is a
positive integer. For example, if A = 5, then the incompletely reduced equivalents of A are given
as {5, 16, 27, 38, 49, 60}. The incompletely reduced representation is a redundant representation:
we use the notation 5 = {5, 16, 27, 38, 49, 60} to represent the residue class 5. We will show in the
following sections that this redundant representation provides more efficient arithmetic in GF (p).

3



3 Modular Addition

Since we use the incompletely reduced numbers, our numbers are allowed to grow as large as
2m−1. The incompletely reduced representation avoids unnecessary reduction operations. We add
the input operands as X := A + B (mod p). If the result does not exceed 2m − 1, we do not
perform reduction. This check is simple to perform: since m = sw, we are only checking to see if
there is a carry-out from the MSW. We will use the notation

(c, Si) := Ai + Bi + c (1)

to denote the word-level addition operation which adds the 1-word numbers Ai and Bi and the
1-bit carry-in c, producing the outputs c and Si such that c is the 1-bit carry-out and Si is the
1-word sum. The addition algorithm is given below:

Modular Addition Algorithm
Inputs: A = (As−1 · · ·A1A0) and B = (Bs−1 · · ·B1B0)
Auxilary: F = (Fs−1 · · ·F1F0)
Output: X = (Xs−1 · · ·X1X0)
Step 1: c := 0
Step 2: for i = 0 to s − 1
Step 3: (c, Si) := Ai + Bi + c
Step 4: if c = 0 then return X = (Ss−1 · · ·S1S0)
Step 5: c := 0
Step 6: for i = 0 to s − 1
Step 7: (c, Ti) := Si + Fi + c
Step 8: if c = 0 then return X = (Ts−1 · · ·T1T0)
Step 9: c := 0
Step 10: for i = 0 to s − 1
Step 11: (c, Ui) := Ti + Fi + c
Step 12: return X = (Us−1 · · ·U1U0)

If the carry-out from the MSW is zero, the algorithm produces the correct result in Step 4 as
X = S = (Ss−1 · · ·S1S0). If the carry-out is one, we first ignore the carry-out and then correct the
result. By ignoring the carry-out, we are essentially performing the operation S := S − 2m. Since
we need to perform modulo p arithmetic, we are allowed only add or subtract integer multiples of
p, therefore, we need to correct the result as T := (S−2m)+F , where F = (Fs−1 · · ·F1F0) is called
the correction factor for addition and is defined as

F = 2m − Ip , (2)

where I is largest possible integer which brings F to the range [1, p−1], in other words, I = �2m/p�.
The number F is precomputed and saved. By performing the operation T := (S − 2m) + F , we
essentially perform a modulo p reduction as

T := (S − 2m) + F = S − 2m + 2m − Ip = S − Ip . (3)

Thus, the result X = T will be correct as a modular number after Step 8. However, there is a
danger in performing the operation T := S + F since this might also cause a carry-out from the
MSW. The input operands A and B are arbitrary numbers, they can be as large as 2m − 1, which

4



gives S = 2m+1 − 2. By ignoring the carry in Step 3, we obtain S = 2m − 2. Therefore, T := S + F
in Step 4 may exceed 2m, and we need to correct the result one more time, which is accomplished in
Steps 9–11. This is the last correction we need to perform. There is no need for another correction
after Step 11, since the maximum value of U is strictly less than 2m.

U = (T − 2m) + F = 2m − 2 − 2m + F = −2 + F ≤ −2 + p − 1 < 2m . (4)

3.1 Addition Examples

Let p = 11, k = 4, w = 3, m = 6, and s = 2. We also compute F as

F = 2m − �2m/p� · p = 64 − �26/11� · 11 = 64 − 5 · 11 = 9 . (5)

• We illustrate the addition of 4 = {4, 15, 26, 37, 48, 59} and 5 = {5, 16, 27, 38, 49, 60} and using
the incompletely reduced numbers 26 and 27.

S = 26 + 27
= 53 (c = 0 return Step 4)

The result is indeed correct since 53 is equivalent to 9 = {9, 20, 31, 42, 53}.

• We give an addition example where the first correction (Steps 5–8) would be required. The
addition of 4 = {4, 15, 26, 37, 48, 59} and 5 = {5, 16, 27, 38, 49, 60} and using the incompletely
reduced numbers 37 and 49 is such an example.

S = 37 + 49
= 86 (c = 1 Step 4)
= 86 − 64 (ignore carry Step 4)
= 22

T = 22 + 9 (correction Steps 5–7)
= 31 (c = 0 return Step 8)

The result is indeed correct since 31 is equivalent to 9 = {9, 20, 31, 42, 53}.

• We give an addition example where the second correction (Steps 10 and 11) would also be
required. The addition of 6 = {6, 17, 28, 39, 50, 61} and 7 = {7, 18, 29, 40, 51, 62} using the
incompletely reduced numbers 61 and 62 is such an example.

S = 61 + 62
= 123 (c = 1 Step 4)
= 123 − 64 (ignore carry Step 4)
= 59

T = 59 + 9 (correction Steps 5–7)
= 68 (c = 1 Step 8)
= 68 − 64 (ignore carry Step 8)
= 4

U = 4 + 9 (correction Steps 9–11)
= 13 (return Step 12)

The result is indeed correct since 13 is equivalent to 2 = {2, 13, 24, 35, 46, 57}.

5



4 Modular Subtraction

The subtraction is performed using two’s complement arithmetic. The input operands are least
positive residues represented using incompletely reduced representation. We will use the notation

(b, Si) := Ai − Bi − b (6)

to denote the word-level subtraction operation which subtracts the 1-word number Bi and the 1-bit
borrow-in b from the 1-word number Ai, producing the outputs which are the 1-word number Si

and the 1-bit borrow-out b. The field subtraction algorithm for computing X = A − B (mod p)
is given below:

Modular Subtraction Algorithm
Inputs: A = (As−1 · · ·A1A0) and B = (Bs−1 · · ·B1B0)
Auxilary: G = (Gs−1 · · ·G1G0) and F = (Fs−1 · · ·F1F0)
Output: X = (Xs−1 · · ·X1X0)
Step 1: b := 0
Step 2: for i = 0 to s − 1
Step 3: (b, Si) := Ai − Bi − b
Step 4: if b = 0 then return X = (Ss−1 · · ·S1S0)
Step 5: c := 0
Step 6: for i = 0 to s − 1
Step 7: (c, Ti) := Si + Gi + c
Step 8: if c = 0 then return X = (Ts−1 · · ·T1T0)
Step 9: c := 0
Step 10: for i = 0 to s − 1
Step 11: (c, Ui) := Ti + Fi + c
Step 12: return X = (Us−1 · · ·U1U0)

If b = 0 after Step 4, then the result is positive, and it is a properly reduced modular number.
If b = 1, then the result is negative, we obtain the two’s complement result, i.e., we essentially
compute

S := A − B = A + 2m − B . (7)

The result S is in the range [0, 2m − 1], as required. However, it is incorrectly reduced, i.e., 2m

is added, and thus, we need to correct the result by adding G = (Gs−1 · · ·G1G0) which is the
correction factor for subtraction defined as

G = Jp − 2m , (8)

where J is the smallest integer which brings G to the range [1, p − 1], i.e., J = �2m/p�. It is easily
proven that the sum of the correction factors for addition and subtraction, i.e., the sum of F and
G, is equal to p since

F + G = 2m − Ip + Jp − 2m = (J − I)p = (�2m/p� − �2m/p�)p = p , (9)

in other words, we have G = p − F or F = p − G. The result S is corrected to obtain T in Steps
of 5–8. After the correction of S in Step 8, we obtain

T = S + G = A + 2m − B + Jp − 2m = A − B + Jp . (10)

6



Similar to the addition algorithm in Step 8, this correction might cause a carry from the MSW,
requiring another correction which we need to take care of using F . This is accomplished in Steps
9–11. There is no need for another correction after Step 12, since the maxium value S = (2m − 1)
gives

U ≤ (2m − 1) + G − 2m + F = −1 + p < 2m . (11)

4.1 Subtraction Examples

Let p = 11, k = 4, w = 3, m = 6, and s = 2. We also compute G as

G = �2m/p� · p − 2m = �26/11� · 11 − 64 = 6 · 11 − 64 = 2 . (12)

Since F + G = p, we could have also obtained G using G = p − F = 11 − 9 = 2.

• We illustrate the subtraction operation S := 5 − 7, where 5 = {5, 16, 27, 38, 49, 60} and
7 = {7, 18, 29, 40, 51, 62}, using the incompletely reduced equivalents 49 and 40.

S = 49 − 29
= 20 (b = 0 return Step 4)

The result is indeed correct since 20 is a incompletely reduced number represents the reduced
number 9 = {9, 20, 31, 42, 53} which is equal to 5 − 7 = −2 = 9 (mod 11).

• On the other hand, the same subtraction S := 5−7 operation using the incompletely reduced
equivalents 16 and 40 is performed as

S = 16 − 40
= −24 (b = 1 Step 4)
= 64 − 24 (two’s complement Step 4)
= 40

T = 40 + 2 (correction Steps 5–8)
= 42 (c = 0 eturn Step 8)

The incompletely reduced number 42 is also the correct result since it represents 9 = {9, 20, 31, 42, 53}.

• We now give an addition example where the second correction (Step 9–12) would be required.
The subtraction operation 5−6, where 5 = {5, 16, 27, 38, 49, 60} and 6 = {6, 17, 28, 39, 50, 61},
using the incompletely reduced numbers 49 and 50 is such an example:

S = 49 − 50
= −1 (b = 1 Step 4)
= 64 − 1 (two’s complement Step 4)
= 63

T = 63 + 2 (correction Steps 5–8)
= 65 (c = 1 Step 8)
= 65 − 64 (ignore carry Step 8)
= 1

U = 1 + 9 (correction Steps 9–11)
= 10 (return Step 12)

The result is indeed correct since 10 is equal to (−1) modulo 11.

7



5 Montgomery Modular Multiplication

The modular multiplication operation multiplies the input operands A and B and reduces the prod-
uct modulo p, i.e., it computes C := AB (mod p). The reduction operation often requires bit-level
shift-subtract operations [6]. We are interested in algorithms which requires word-level operations.
Instead of the classical modular multiplication operation, we prefer to use the Montgomery modular
multiplication [9] which computes

T := ABR−1 (mod p) , (13)

where R is an integer with property gcd(R, p) = 1. The selection of R is very important since it
determines the algorithmic details and the speed of the Montgomery multiplication. Generally R
is selected as the smallest power of 2 which is larger than p, i.e., R = 2k, where k = �log2 p�. Thus,
we have 1 < p < R, however, 2p > R. If k is not an integer multiple of the word-length w, this
selection requires that we perfom bit-level operations. Following the general premise of this paper,
we propose the use of R = 2m, where m = sw, in order to avoid performing bit-level operations.
In this case, 2m may be several times larger than p, as it was also the case for the addition and
subtraction algorithms presented in the previous sections.

We propose to use the Montgomery multiplication algorithm for incompletely reduced numbers,
which receives two numbers A and B in the range [0, 2m − 1], and computes the result T which is
also an incompletely reduced number in the range [0, 2m − 1], given by (13). In the high-level view,
the Montgomery multiplication algorithm computes the result T using

T =
AB + p (ABp′ mod R)

R
, (14)

where p′ is defined using the multiplicative inverse R−1 (mod p) as

RR−1 − pp′ = 1 , (15)

and computed using the extended Euclidean algorithm. The algorithm receives the inputs A, B ∈
[0, R − 1] and computes the result T in (14). Since A, B < R, the result of the operation in (14)
will have the maximum value

(R − 1)(R − 1) + p(R − 1)
R

=
(R − 1)(R − 1 + p)

R
< R − 1 + p . (16)

In other words, T as computed by (14) exceeds R only by an additive factor of p, therefore, we
need to perform only a single subtraction to bring it back to the range [0, R − 1].

The word-level description of the Montgomery multiplication involves a word-level multiplica-
tion operation, which we denote as

(c, Tj) := Tj + Ai · Bj + c , (17)

in which the new value of Tj and the new carry word c are computed using the old value of Tj and also
the 1-word operands Ai and B, and the old carry word c. Here, all operands Ai, Bj , Tj , c ∈ [0, 2w−1],
i.e., they are all 1-word numbers. Since we have

(2w − 1) + (2w − 1) · (2w − 1) + (2w − 1) = (2w − 1)(2w + 1) = 22w − 1 , (18)

8



the result of the operation in (17) is a 2-word number represented using the 1-word numbers Tj

and c.
The details of different Montgomery multiplication algorithms can be found in [7]. Here we

describe an algorithm which computes T using the least significant word of the number p′ defined
in (15). Since R = 2sw, we can reduce the equation (15) modulo 2w, and obtain

−pp′ = 1 (mod 2w) . (19)

Let P0 and Q0 be the LSW of p and p′, respectively. Then, Q0 is the negative of the multiplicative
inverse of the LSW of p modulo 2w, i.e.,

Q0 = −P−1
0 (mod 2w) . (20)

This 1-word number can be computed very quickly using a variation of the extended Euclidean
algorithm given in [3]. The Montgomery multiplication algorithm for computing T = AB2−m

(mod p) using Q0 is given below.

Montgomery Modular Multiplication Algorithm
Inputs: A = (As−1 · · ·A1A0) and B = (Bs−1 · · ·B1B0)
Auxilary: Q0 and p = (Ps−1 · · ·P1P0)
Output: T = (Ts−1 · · ·T1T0)
Step 1: for j = 0 to s − 1
Step 2: Tj := 0
Step 3: for i = 0 to s − 1
Step 4: c := 0
Step 5: for j = 0 to s − 1
Step 6: (c, Tj) := Tj + Ai · Bj + c
Step 7: Ts := c
Step 8: M := T0 · Q0 (mod 2w)
Step 9: c := (T0 + M · P0)/2w

Step 10: for j = 1 to s − 1
Step 11: (c, Tj−1) := Tj + M · Pj + c
Step 12: (c, Ts−1) := Ts + c
Step 13: if c = 0 return T = (Ts−1 · · ·T1T0)
Step 14: b := 0
Step 15: for j = 0 to s − 1
Step 16: (b, Tj) := Tj − Pj − b
Step 17: return T = (Ts−1 · · ·T1T0)

The explanations and proofs of the steps are given below:

• In Steps 1 and 2, we clear the words of the result T to zero. The final result T = AB2−m

(mod p) will be located in the s-word T at the end of the computation.

• The first part of the multiplication loop (Steps 3-7) computes a partial product T which is of
length s + 1. For i = 0, this value is given as

T := A0 · B .

Since A0 ∈ [0, 2w−1] and B ∈ [0, 2m−1], this value of T is less than equal to

2w−1 · 2m−1 = 2w−1 · 2sw−1 = 2(s+1)w−2 .

9



• In Steps 8-12, we are reducing T modulo p in such a way that it is now of length s words at
the end of Step 12. This is accomplished using the following substeps:

– First, in Step 8, we multiply the LSW of T by Q0 modulo 2w. Recall that Q0 is the
LSW of p′ or it is equal to −P−1

0 (mod 2w). Thus, M (which is a 1-word number) is
given as

M := T0 · Q0 = T0 · (−P−1
0 ) = −T0P

−1
0 (mod 2w) .

– Then, in Step 9, we compute T0 + M · P0 which is equal to

X := T0 + M · P0 := T0 + (−T0P
−1
0 )P0 .

Note that X is a 2-word number, however, the LSW of X is zero since

T0 + (−T0P
−1
0 )P0 = 0 (mod 2w) .

Therefore, after the division by 2w in Step 9, we obtain the 1-word carry c from the
computation T0 + M · P0.

– Then, in the remaining steps, i.e., in Steps 10-12, we are finishing the computation of
T + M ·P . Since the LSW of the result is zero, we are also shifting the result by 1 word
to the right (towards the least significant) in order to obtain the s-word number given
by Equation (14).

• According to Equation (16), the result computed at the end of Step 12 can exceed R − 1 by
at most p, and thus, a single subtraction will bring it back to the range [0, R− 1]. In Step 13,
we check if the carry computed at the end of Step 12 is 1, i.e., if T exceeds R − 1. If there is
no carry, then we return the result T in Step 13 as the final product.

• Otherwise, we perform a simple subtraction T := T − p in order to bring back T to the range
[0, R − 1]. The subtraction operation is accomplished in Steps 14-16, and the final product
value is returned in Step 17.

Therefore, the Montgomery modular multiplication works even if the modulus R = 2sw is much
larger than p, i.e., it need not be the smallest number of the form 2i which is larger than p. While
there may be several correction steps needed in the addition and subtraction operations, a single
subtraction operation is sufficient for computing the Montgomery product T = AB2−sw (mod p).

The complete Montgomery multiplication and the incomplete Montgomery multiplication al-
gorithms differ only slightly from one another. Algorithmically, these two algorithms are similar.
Their main differences are in the way the input and output operands are specified:

• The radix R in the complete Montgomery multiplication algorithm is taken as 2k, while
the incomplete Montgomery multiplication algorithm uses the value 2sw, therefore avoiding
bit-level operations if k is not an integer multiple of w.

• The complete Montgomery multiplication algorithm requires that input operands be complete,
i.e., numbers in the range [0, p−1], while the incomplete Montgomery multiplication algorithm
requires that input operands be in the range [0, 2m − 1].

• The complete Montgomery multiplication algorithm computes the final result as a complete
number, i.e., a number in the range [0, p−1], while the incomplete Montgomery multiplication
algorithm computes the result in the range [0, 2m − 1].

10



5.1 Multiplication Examples

Let p = 53, k = 4, w = 3, m = 6, and s = 2. Since p = 53 = (110101) and P0 = (101) = 5, we
compute Q0 = −P−1

0 (mod 2w) as

Q0 = −5−1 (mod 8) = −5 = 3 .

Also, we have R = 2m = 26 = 64. Here are two multiplication examples:

• We illustrate the multiplication of 5 = {5, 58} and 7 = {7, 60} using the incompletely reduced
numbers 58 and 60. Taking A = 58 = (111 010) and B = 60 = (111 100), we compute
T = A · B · R−1 (mod p) as follows:

– Step 3: i = 0

– Step 4,5,6 and j = 0: (c, T0) := A0 · B0 = 2 · 4 = 8 = (001 000).

– Step 5,6 and j = 1: (c, T1) := A0 · B1 + c = 2 · 7 + 1 = 15 = (001 111).

– Step 7: T2 = c = 1. Therefore, we have T=(001 111 000)

– Step 8: M = T0 · Q0 = 0 · 3 (mod 8) = 0.

– Step 9: c = (T0 + M · P0)/8 = (0 + 0 · 5)/8 = 0.

– Step 10,11 and j = 1: (c, T0) = T1 + M · P1 + c = 7 + 0 · 6 + 0 = 7 = (000 111).

– Step 12: (c, T1) = T2 + c = 1 + 0 = 1 = (000 001). We now have T = (001 111).

– Step 3: i = 1

– Step 4,5,6 and j = 0: (c, T0) := T0 + A1 · B0 = 7 + 7 · 4 = 35 = (100 011).

– Step 5,6 and j = 1: (c, T1) := T1 + A1 · B1 + c = 1 + 7 · 7 + 4 = 54 = (110 110).

– Step 7: T2 = c = 6. Therefore, we have T = (110 110 011).

– Step 8: M = T0 · Q0 = 3 · 3 (mod 8) = 1.

– Step 9: c = (T0 + M · P0)/8 = (3 + 1 · 5)/8 = 1.

– Step 10,11 and j = 1: (c, T0) = T1 + M · P1 + c = 6 + 1 · 6 + 1 = 13 = (001 101).

– Step 12: (c, T1) = T2 + c = 6 + 1 = 7 = (000 111). We now have T = (111 101).

– Step 13: since c = 0, the result T = (111 101) is returned.

The final result is T = (111 101) = 61 which is an incomplete number. The complete
equivalent of 61 is 8 which is equal to 5 · 7 · 64−1 (mod 53).

• We now illustrate the multiplication of 8 = {8, 61} and 10 = {10, 63} using the incompletely
reduced numbers 61 and 63. Taking A = 61 = (111 101) and B = 63 = (111 111), we compute
T = A · B · R−1 (mod p) below. In this multiplication, the subtraction steps (Steps 14-17)
are performed.

– Step 3: i = 0

– Step 4,5,6 and j = 0: (c, T0) := A0 · B0 = 5 · 7 = 35 = (100 011).

– Step 5,6 and j = 1: (c, T1) := A0 · B1 + c = 5 · 7 + 4 = 39 = (100 111).

– Step 7: T2 = c = 4. Therefore, we have T=(100 111 011)

– Step 8: M = T0 · Q0 = 3 · 3 (mod 8) = 1.

11



– Step 9: c = (T0 + M · P0)/8 = (3 + 1 · 5)/8 = 1.

– Step 10,11 and j = 1: (c, T0) = T1 + M · P1 + c = 7 + 1 · 6 + 1 = 14 = (001 110).

– Step 12: (c, T1) = T2 + c = 4 + 1 = 5 = (000 101). We now have T = (101 110).

– Step 3: i = 1

– Step 4,5,6 and j = 0: (c, T0) := T0 + A1 · B0 = 6 + 7 · 7 = 55 = (110 111).

– Step 5,6 and j = 1: (c, T1) := T1 + A1 · B1 + c = 5 + 7 · 7 + 6 = 60 = (111 100).

– Step 7: T2 = c = 6. Therefore, we have T = (110 110 011).

– Step 8: M = T0 · Q0 = 7 · 3 (mod 8) = 5.

– Step 9: c = (T0 + M · P0)/8 = (7 + 5 · 5)/8 = 4.

– Step 10,11 and j = 1: (c, T0) = T1 + M · P1 + c = 4 + 5 · 6 + 4 = 38 = (100 110).

– Step 12: (c, T1) = T2 + c = 7 + 4 = 11 = (001 011).

– Step 13: since c = 1, we execute the subtraction steps below.

– Step 14: b = 0.

– Step 15,16 and j = 0: (b, T0) = T0 − P0 − b = 6 − 5 − 0 = 1 = (000 001).

– Step 15,16 and j = 1: (b, T1) = T1 − P1 − b = 3 − 6 − 0 = −3 (mod 8) = 5(000 101).

– Step 17: T = (101 001) = 41 is returned.

The final result is T = (101 001) = 41 which is a complete number. The final result 41 is
equal to 8 · 10 · 64−1 (mod 53).

6 Implementation Results and Conclusions

In order to measure the speed of the incomplete addition, subtraction, and Montgomery multi-
plication algorithms together with their complete counterparts, we have implemented the ECDSA
[10, 4] over the finite field GF (p). The objective was to assess the performance impact of the
incomplete arithmetic as compared to the complete arithmetic on the ECDSA. We executed the
ECDSA code several hundred times using two different random elliptic curve sets. The addition,
subtraction, and multiplication timings shown in Table 1 are obtained by running the ECDSA code
and measuring the timings of the arithmetic operations in that context. The computer platform
was a 450-MHz Pentium II PC running Windows NT 4.0 operating system, with 256 megabytes of
memory. The code is written entirely in C. The timings of the complete and incomplete routines
are tabulated in Table 1 in microseconds.

The speedup in percentage is obtained by subtracting the incomplete timing result from the
complete timing result and then dividing it by the complete timing result. As can be seen from
Table 1, the incomplete addition is 34–43 % faster than the complete addition for the range of k from
161 to 256. Similarly, the incomplete subtraction is 17–23 % faster than the complete subtraction.
The reduction in the speedup for the subtraction operation as compared to the addition operation
is mainly due to the fact that we have to perform more corrections than the addition operation.
On the other hand, we obtain only a small speedup (3–5 %) for the incomplete Montgomery
multiplication operation since the incomplete and complete Montgomery multiplication algorithms
differ only slightly.

12



Table 1: Incomplete and complete arithmetic timings in microseconds.

Addition Subtraction Multiplication
k Complete Incomplete % Complete Incomplete % Complete Incomplete %

161 1.85 1.11 40 1.43 1.10 23 4.80 4.58 5
176 1.90 1.11 42 1.38 1.10 20 4.74 4.57 4
192 2.00 1.26 37 1.38 1.04 25 4.79 4.62 4
193 1.98 1.23 38 1.47 1.20 18 6.36 6.17 3
208 2.14 1.22 43 1.46 1.19 18 6.40 6.13 4
224 2.03 1.28 37 1.45 1.16 20 6.35 6.17 3
225 2.20 1.30 41 1.58 1.29 18 8.06 7.73 4
240 2.23 1.32 41 1.53 1.27 17 8.03 7.74 4
256 2.31 1.52 34 1.53 1.27 17 8.02 7.76 3

On the other hands, the timing resuls of the ECDSA signature generation algorithm are given
in Table 2 in milliseconds. These ECDSA timings are obtained without using any precomputation.
The ECDSA code was executed several hundred times using two different random elliptic curve sets
for bit lengths as specified in Table 2. These random elliptic curves are not special in any meaning
of the term; the curve parameters are randomly selected from the field GF (p), i.e., they are full-
size numbers. The implementation results have shown that the ECDSA algorithm can be made
to execute 10–13 % faster using the incomplete modular arithmetic, which is very significant. The
method of computation of the point multiplication, i.e., the computation of dP in ECDSA, where d
is an integer and P is a point on the curve, is the addition-subtraction elliptic scalar multiplication
[4]. Furthermore, we use the projective coordinate system to represent the points on the curve.

Table 2: ECDSA over GF (p) signature generation timings in milliseconds.

C code only C + Assembly
k Complete Incomplete % Incomplete

161 13.6 12.0 12 5.3
176 14.8 12.9 13 5.8
192 16.5 14.7 11 6.6
193 20.8 18.4 12 8.5
208 22.6 19.7 13 9.1
224 23.7 21.1 11 9.7
225 29.8 26.5 11 12.2
240 31.1 27.9 10 12.8
256 34.2 30.8 10 14.0

According to the IEEE Standard [4], an elliptic curve point doubling requires 9 field additions, 3
field subtractions, and 10 field multiplications. On the other hand, an elliptic curve point addition
requires 3 field additions, 5 field subtractions, and 11 field multiplications. As an example of
performance estimation, let us take the scalar multiplication operation dP in which the integer
d is 176 bits. This means, the addition-subtraction elliptic curve scalar multiplication requires
approximately 176

3 ≈ 59 point additions and 175 point doublings. Therefore, the computation of
dP would require approximately (175× 9 + 59× 3) = 1752 field additions, (175× 3 + 59× 5) = 820
field subtractions, and (175 × 10 + 59 × 11) = 2399 field multiplications. This gives the total time

13



for the computation of the elliptic curve scalar multiplication using the complete and incomplete
arithmetic as

complete = (1752 × 1.9 + 820 × 1.38 + 2399 × 4.74) ≈ 15.83 ms
incomplete = (1752 × 1.11 + 820 × 1.1 + 2399 × 4.57) ≈ 13.81 ms

Thus, this rough estimation shows that the incomplete arithmetic based point multiplication opera-
tion is approximately 15.83

13.81 ≈ 1.15 times faster than its complete arithmetic version. This means, the
incomplete arithmetic for 176 bits would be about 15 percent faster than the complete arithmetic
for ECDSA; our actual timing result in Table 2 gives this as 13 percent which is very close.

7 Conclusions

In this paper, we have presented a new methodology for speeding up arithmetic operations, and
shown that the new method provides up to 13 % speedup in the execution of the ECDSA algorithm
over the field GF (p) for the length of p in the range 161 ≤ k ≤ 256. Coupled with some machine-
level programming, the ECDSA algorithm can be made significantly faster, as shown in the last
column of Table 2.

In this paper, we applied the incomplete arithmetic only to the modular addition, the modular
subtraction, and the Montgomery multiplication operations. A similar word-level methodology
was described in [12] for the modular inverse and Montgomery modular inverse operations. These
algorithms are also of type word-level, i.e., they avoid bit-level operation.

References

[1] R. E. Crandall. Method and apparatus for public key exchange in a cryptographic system.
U.S. Patent Numbers 5,463,690 and 5,271,061 and 5,159,632, October 1995.

[2] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22:644–654, November 1976.

[3] S. R. Dussé and B. S. Kaliski Jr. A cryptographic library for the Motorola DSP56000. In I. B.
Damg̊ard, editor, Advances in Cryptology — EUROCRYPT 90, Lecture Notes in Computer
Science, No. 473, pages 230–244. Springer, Berlin, Germany, 1990.

[4] IEEE. P1363: Standard specifications for public-key cryptography. Draft Version 13, November
12, 1999.

[5] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
January 1987.

[6] Ç. K. Koç. High-Speed RSA Implementation. Technical Report TR 201, RSA Laboratories,
73 pages, November 1994.

[7] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16(3):26–33, June 1996.

[8] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Boston,
MA, 1993.

14



[9] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, April 1985.

[10] National Institute for Standards and Technology. Digital Signature Standard (DSS). FIPS
PUB 186-2, January 2000.

[11] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryptosys-
tem. Electronics Letters, 18(21):905–907, October 1982.

[12] E. Savaş and Ç. K. Koç. The Montgomery modular inverse - revisited. IEEE Transactions on
Computers, 49(7):763–766, July 2000.

15


