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AbstractÐThis paper presents a new parallel multiplier for the Galois field

GF �2m� whose elements are represented using the optimal normal basis of type II.

The proposed multiplier requires 1:5�m2 ÿm� XOR gates, as compared to

2�m2 ÿm� XOR gates required by the Massey-Omura multiplier. The time

complexities of the proposed and the Massey-Omura multipliers are similar.

Index TermsÐGalois field, optimal normal basis, Massey-Omura multiplier,

space complexity.
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1 INTRODUCTION

ARITHMETIC operations in the Galois field GF �2m� (i.e., addition,
subtraction, multiplication, and inversion) have several applica-
tions in coding theory, computer algebra, and cryptography [7],
[5]. In these applications, time- and area-efficient algorithms and
hardware structures are desired for addition, multiplication,
squaring, and exponentiation operations. The performance of
these operations is closely related to the representation of the field
elements. An important advance in this area is the Massey-Omura
algorithm [8], which is based on the normal basis representation of
the field elements. One advantage of the normal basis is that the
squaring of an element is computed by a cyclic shift of the binary
representation. Efficient algorithms for the multiplication opera-
tion in the canonical basis have also been proposed [6], [3], [4]. The
space and time complexities of these canonical basis multipliers are
much less than those of the Massey-Omura multiplier.

In recent years, efficient normal basis multipliers for special

classes of finite fields have been proposed [2], [4]. These multi-

pliers work only for the optimal normal basis of type I. The

Massey-Omura algorithm works for both the optimal normal basis

of type I and type II. However, its parallel space complexity is

about twice that of these special multipliers. The parallel Massey-

Omura algorithm requires 2�m2 ÿm� XOR gates, while both of the

special multipliers in [2], [4] require m2 ÿ 1 XOR gates. This paper

presents a new multiplication algorithm for the field GF �2m�
whose elements are represented using the optimal normal basis of

type II. The parallel multiplier proposed in this paper requires

25 percent fewer XOR gates than the Massey-Omura multiplier.
We also compare the proposed algorithm to a recently

introduced multiplication method [1] for the optimal normal basis

of type II, which is based on the palindromic representation of

polynomials of length 2m. The details and an analysis of this

multiplication algorithm are not given in [1]; however, we expect

that its XOR complexity will be at least �2m�2.

2 OPTIMAL NORMAL BASES

The field GF �2m� is often viewed as an m-dimensional vector space

defined over GF �2�. A set of m linearly independent vectors

(elements of GF �2m�) are chosen to serve as the basis of

representation. The following are the most commonly used bases:

. A straightforward choice for a basis is the ordered set
f1; �; �2; . . . ; �mÿ1g where � 2 GF �2m�. This is called the
canonical basis.

. If the set of elements M � f�; �2; �4; . . . ; �2mÿ1g forms a
basis for some � 2 GF �2m�, then the basis M is called
normal basis and the element � is called normal element.

The introduction of the Massey-Omura multiplier [8] was

followed by the definition of a special type of normal basis called

optimal normal basis. This type of basis minimizes the complexity

of the Massey-Omura multiplier. There exists two types of optimal

normal basis, as classified in [7]. These bases are historically

named as the optimal normal basis of type I and the optimal

normal basis of type II.
An optimal normal basis of type II for the field GF �2m� is

constructed using the normal element � � 
 � 
ÿ1, where 
 is a

primitive �2m� 1�th root of unity, i.e., 
2m�1 � 1 and 
i 6� 1 for any

1 � i < 2m� 1. It turns out that an optimal normal basis of type II

can be constructed if p � 2m� 1 is prime and if either of the

following two conditions also holds:

. 2 is a primitive root modulo p.

. p � 7 �mod 8� and the multiplicative order of 2 modulo p
is m.

The second condition also means that �ÿ1� is a quadratic

nonresidue modulo p and 2 generates the quadratic residues

modulo p. As enumerated in [7, Table 5.1], there are 117 and 319 m

values in the range m 2 �2; 2001�, for which an optimal normal

basis of type I and type II exists, respectively. In other words, the

optimal normal basis of type II is three times more likely to occur

in this range and, thus, efficient algorithms for this representation

would be highly useful. In the following sections, we propose an

efficient parallel algorithm for multiplying operands represented

in the optimal normal basis of type II.

3 OPTIMAL NORMAL BASIS OF TYPE II

We assume that p � 2m� 1 is a prime and either of the

aforementioned two conditions holds, i.e., we have an optimal

normal basis of type II in GF �2m� based on the normal element

� � 
 � 
ÿ1, where 
 is the primitive pth root of unity. The basis is

given as:

M � f�; �2; �4; . . . ; �2mÿ1g: �1�
We now show that there exists another basis N which is obtained

by a simple permutation of the basis elements in M and construct a

new parallel multiplication algorithm in the new basis N . We

examine both cases below:

. If 2 is primitive modulo p, then the set of powers of 2
modulo p

P1 � f2; 22; 23; . . . ; 22mÿ1; 22mg �mod p� �2�
is equivalent1 to
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Q1 � f1; 2; 3; 4; . . . 2mg: �3�
Therefore, a basis element of the form 
2i � 
ÿ2i can be

written as 
j � 
ÿj for j 2 �1; 2m�. Furthermore, it is always

possible to rewrite 
j � 
ÿj as 
�2m�1�ÿj � 
ÿ�2m�1��j; if

j � m� 1, then this has the benefit of bringing the power

of 
 to the range �1;m�.
. If the multiplicative order of 2 modulo p is equal to m, then

the set of powers of 2 modulo p

P2 � f2; 22; 23; . . . ; 2mÿ1; 2mg �mod p� �4�
consists of m distinct integers in the range �1; 2m�. If

2i �modp� is in the range �1;m�, we leave it as it is. If

2i �mod p� is in the range �m� 1; 2m�, we write in its place

the number �2m� 1� ÿ �2i mod p� to bring it to the range

�1;m�. Since these numbers are all distinct, the set P2 is

equivalent to

Q2 � f1; 2; 3; 4; . . .mg: �5�
As a result, following the presented facts, a basis element

of the form 
2i � 
ÿ2i for i 2 �1; m� can be written uniquely

as 
j � 
ÿj with j 2 �1; m�.
Consequently, the bases M and N are given as

M � f
 � 
ÿ1; 
2 � 
ÿ2; 
22 � 
ÿ22

; . . . ; 
2�mÿ1� � 
ÿ2�mÿ1� g �6�

N � f
 � 
ÿ1; 
2 � 
ÿ2; 
3 � 
ÿ3; . . . ; 
m � 
ÿmg �7�
are equivalent. The basis N is obtained from the basis M using a

simple permutation. Let A be expressed in the basis M as

A � a01� � a02�2 � a03�22 � � � � � a0m�2mÿ1

; �8�
where � � 
 � 
ÿ1. The representation of A in the basis N is given

as

A � a1�1 � a2�2 � a3�3 � � � � � am�m; �9�
where �i � 
i � 
ÿi. We can express the permutation between the

coefficients aj � a0i as

j � k if k 2 �1;m�;
�2m� 1� ÿ k if k 2 �m� 1; 2m�;

�
�10�

where k � 2iÿ1�mod 2m� 1� for i � 1; 2; . . . ;m. This permutation is

a crucial part of the algorithm. It is used to convert the operands

from the normal basis to a representation similar to the canonical

basis. The inverse permutation is used to convert the elements back

to the normal basis after the operation is completed.
The basis N is not a normal basis, it is a shifted form of the

canonical basis [4]. Note that the exponents of the basis elements of

the shifted canonical basis are one more than the ones of the

canonical basis. We construct an efficient parallel multiplier in the

following section using this new basis.

4 NEW MULTIPLICATION ALGORITHM

We propose a new algorithm for multiplying the elements of

GF �2m� in the basis M as follows:

1. Convert the elements represented in the basis M to the
basis N using the permutation.

2. Multiply the elements in the basis N .
3. Convert the result back to the basis M using the inverse

permutation.

The first and third steps are implemented without any gates since

the permutation operation requires a simple rewiring. The second

step is a multiplication operation in the basis N , which we present

below. Let A;B 2 GF �2m� be represented in the basis N as

A �
Xm
i�1

ai�i �
Xm
i�1

ai�
i � 
ÿi� �11�

B �
Xm
i�1

bi�i �
Xm
i�1

bi�
i � 
ÿi�: �12�

The product of these two numbers C � A �B is written as

C � A � B �
Xm
i�1

ai�
i � 
ÿi�
 ! Xm

j�1

bj�
j � 
ÿj�
 !

: �13�

This product can be transformed to the following form:

C �
Xm
i�1

Xm
j�1

aibj�
iÿj � 
ÿ�iÿj�� �
Xm
i�1

Xm
j�1

aibj�
i�j � 
ÿ�i�j��

� C1 � C2:

�14�

For future reference, the two double summations are denoted as C1

and C2, as shown above. The term C1 has the property that the

exponent �iÿ j� of 
 is already within the proper range, i.e., ÿm �
�iÿ j� � m for all i; j 2 �1;m�. Furthermore, if i � j, then


iÿj � 
ÿ�iÿj� � 
0 � 
0 � 0. Thus, we can write C1 as

C1 �
Xm
i�1

Xm
j�1

aibj�
iÿj � 
ÿ�iÿj�� �
X

1�i;j�m
i 6�j

aibj�
iÿj � 
ÿ�iÿj��: �15�

If k � jiÿ jj, then the product aibj contributes to the basis element

�k � 
k � 
ÿk. For example, the coefficients of �1 are the sum of all

aibj for which jiÿ jj � 1. Fig. 1 shows the elements contributed by

the summation C1 arranged in terms of the order of the basis

elements.
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Furthermore, the term C2 is transformed into the following:

C2 �
Xm
i�1

Xm
j�1

aibj�
i�j � 
ÿ�i�j��

�
Xm
i�1

Xmÿi
j�1

aibj�
i�j � 
ÿ�i�j�� �
Xm
i�1

Xm
j�mÿi�1

aibj�
i�j � 
ÿ�i�j��

� D1 �D2:

�16�
The double summations are denoted by D1 and D2, respectively.

The exponents of the basis elements 
i�j � 
ÿ�i�j� in D1 are

guaranteed to be in the proper range 1 � �i� j� � m for i �
1; 2; . . . ;m and j � 1; 2; . . . ;mÿ i. If k � i� j, then product aibj

contributes to the basis element �k as i and j take these values.

Fig. 2 shows the construction of the summation D1.
On the other hand, the basis elements of D2 are all out of range.

We use the identity 
2m�1 � 1 to bring them to the proper range:

D2 �
Xm
i�1

Xm
j�mÿi�1

aibj�
i�j � 
ÿ�i�j��

�
Xm
i�1

Xm
j�mÿi�1

aibj�
2m�1ÿ�i�j� � 
ÿ�2m�1ÿ�i�j���:
�17�

Therefore, if k � i� j > m, we replace �k by �2m�1ÿk. For example,

the term ambm contributes to the basis element �1 since

2m� 1ÿ �m�m� � 1. Fig. 3 shows the construction of D2.
The multiplication algorithm in the basis N 0 constructs C1, D1,

and D2, and sums the appropriate terms in order to obtain the

product C � C1 �D1 �D2. The details of the multiplication

operation and its complexity analysis are given in the following

section.

5 DETAILS OF MULTIPLICATION AND COMPLEXITY

ANALYSIS

If these three arrays C1, D1, and D2 are inspected closely, the

following observations can be made:

1. All three arrays are composed of the elements of the form
aibj for i; j 2 �1; m�.

2. The height of the ith column in the array C1 is 2�mÿ i� for
i � 1; 2; . . . ; m. This is the number of terms of the form aibj
to be summed in the ith column.

3. The height of the ith column in the array D1 is equal to
iÿ 1.

4. The height of the ith column in the array D2 is equal to i.
5. Therefore, the height of the ith column in the entire

array representing the total sum C is found as
2�mÿ i� � iÿ 1� i � 2mÿ 1, which follows from obser-
vations 2, 3, and 4.

6. If there is an element aibj is present in a column, then the
element ajbi is also present in the same column. This is true
for all three arrays C1, D1, and D2.

7. An element of the form aibi is present only once in a
column of either D1 or D2.

8. Because of observations 5, 6, and 7, a column of the entire
array representing the total sum C contains a single
element of the form aibi and 2mÿ 2 elements of the form
aibj, where ajbi is also present.

The proposed multiplication algorithm first computes the terms

aibj for i; j 2 �1;m� using exactly m2 two-input AND gates. This

requires a single AND gate delay TA because of the parallelism. Let

tij � aibj � ajbi for i � 1; 2; . . . ; m and j � i� 1; i� 2; . . . ;m. We

compute the terms tij using

�mÿ 1� � �mÿ 2� � � � � � 2� 1 � 1

2
m�mÿ 1� �18�

two-input XOR gates and a single XOR gate delay TX . The ith

column of the entire array contains exactly 1
2 �2mÿ 2� � mÿ 1

terms of the form tij and also a single element of the form aibi.

These m numbers are summed using a binary XOR tree, which

requires mÿ 1 XOR gates and a total delay of dlog2 me TX . Due to

parallelism, all m columns require m�mÿ 1� XOR gates and the

same amount of delay. Therefore, the construction of the product C

requires

# AND Gates � m2;

# XOR Gates � 1

2
m�mÿ 1� �m�mÿ 1� � 3

2
m�mÿ 1�;

Gate Delay � TA � TX � dlog2 me TX � TA � �1� dlog2 me�TX:
On the other hand, the parallel Massey-Omura algorithm uses

m2 AND gates and 2m�mÿ 1� XOR gates and computes the
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product in TA � �1� dlog2 �mÿ 1�e�TX gate delays. The proposed

algorithm requires 25 percent fewer XOR gates than the Massey-

Omura algorithm.

6 AN EXAMPLE

In this section, we illustrate the construction of the basis N and the

new multiplication algorithm for the field GF �25�. Since 2m� 1 �
2 � 5� 1 � 11 and 2 is primitive in modulo 11, there exists an

optimal basis of type II for the field GF �25�, which is of the form

M � f�; �2; �4; �8; �16g, where � � 
 � 
ÿ1. Using the identity


11 � 1, we convert the basis M to the basis N . The first three

exponents 1, 2, and 4 are in the proper range �1; 5�. We have

16 � 5 �mod 11�, which brings the exponent 16 to the proper range.

In order to bring 8 to the range �1; m� � �1; 5�, we use the identity


8 � 
8ÿ11 � 
ÿ3. Thus, we can write

� � 
 � 
ÿ1 � 
 � 
ÿ1 � �1;
�2 � 
2 � 
ÿ2 � 
2 � 
ÿ2 � �2;
�4 � 
4 � 
ÿ4 � 
4 � 
ÿ4 � �4;
�8 � 
8 � 
ÿ8 � 
ÿ3 � 
3 � �3;
�16 � 
16 � 
ÿ16 � 
5 � 
ÿ5 � �5:

This gives a new basis which is of the form N � f�1; �2; �3; �4; �5g.
The conversion between these two bases is accomplished using a

permutation. Assuming, A expressed in M is given as

A � �a01; a02; a03; a04; a05� � a01� � a02�2 � a03�4 � a04�8 � a05�16;

we find the expression for A in N as

A � �a1; a2; a3; a4; a5� � a1�1 � a2�2 � a3�3 � a4�4 � a5�5:

This gives the permutation as

�a1; a2; a3; a4; a5� � �a01; a02; a04; a03; a05�:
We now show the construction of the multiplication circuit. Let the

elements A and B be given as inputs expressed in the basis M as

A � �a01; a02; a03; a04; a05�;
B � �b01; b02; b03; b04; b05�:

The computation of the product C � A � B expressed in the basis

M as C � �c01; c02; c03; c04; c05� is computed using the following steps:

. First, we use the permutation to obtain the representations
of A and B in the basis N as:

A � �a1; a2; a3; a4; a5� � �a01; a02; a04; a03; a05�;
B � �b1; b2; b3; b4; b5� � �b01; b02; b04; b03; b05�:

This step requires a simple rewiring and no gates.
. Then, we generate the product terms aibj for i � 1; 2; 3; 4; 5

and j � 1; 2; 3; 4; 5 using m2 � 52 � 25 AND gates. This
computation requires a single AND gate delay TA.

. Then, we generate the terms tij � aibj � ajbi for i �
1; 2; 3; 4; 5 and j � i� 1; i� 2; . . . ; 5. Thus, we compute

t12�a1b2�a2b1 t13�a1b3�a3b1 t14�a1b4�a4b1 t15�a1b5�a5b1

t23�a2b3�a3b2 t24�a2b4�a4b2 t25�a2b5�a5b2

t34�a3b4�a4b3 t35�a3b5�a5b3

t45�a4b5�a5b4

This computation requires 1
2m�mÿ 1� � 10 XOR gates and

a single XOR gate delay TX .
. Then, we obtain the elements of the product as follows:

c1 � t12 � t23 � t34 � t45 � a5b5

c2 � t13 � t24 � t35 � t45 � a1b1

c3 � t14 � t25 � t12 � t35 � a4b4

c4 � t15 � t13 � t25 � t34 � a2b2

c5 � t14 � t23 � t15 � t24 � a3b3:

This step requires an additional m2 ÿm � 20 XOR gates.

This computation is accomplished using additional delay

of dlog2 5eTX � 3TX .
. The result is expressed in the basis N which is converted to

the basis M using the inverse permutation as follows:
�c01; c02; c03; c04; c05� � �c1; c2; c4; c3; c5�.
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In Fig. 4, we illustrate the construction of the arrays C1, D1, D2, and
the final array C. The multiplication circuit requires a total of m2 �
25 AND gates and 1:5�m2 ÿm� � 30 XOR gates. The total
computation is performed using TA � 4TX gate delays.

7 A SIMILAR DESIGN

Another method for multiplication in the normal basis type II

was described in a recent technical report [1]. This method uses

the permutation described in Section 3 of this paper and, thus,

it is also based on the shifted canonical representation.

However, to multiply two polynomials represented in the

shifted canonical basis, the palindromic representation is used.

The palindromic representation of a�x� �Pm
i�1 aix

i is the

polynomial
P2m

i�1 aix
i, where ai � apÿi for i � 1; 2; . . . ;m. It is

proven in [1] that the multiplication of two such palindromic

polynomials modulo xp ÿ 1 is equivalent to the optimal normal

basis type II multiplication However, an explicit algorithm for

multiplying two 2m-length polynomials modulo xp ÿ 1 is not given

in [1]. Therefore, we cannot compare their algorithm to the one

presented here. The complexity results will depend on the details

of the multiplication algorithm. However, we speculate that the

XOR complexity of the method in [1] will be at least �2m�2 � 4m2

since the operands are of length 2m.

8 CONCLUSIONS

We have presented a new parallel multiplier for the field GF �2m�
whose elements are represented using the optimal normal basis of
type II. The proposed bit-parallel multiplier requires 1:5�m2 ÿm�
XOR gates while the Massey-Omura multiplier requires 2�m2 ÿm�
XOR gates. The time complexities of these two multipliers are
similar: The parallel Massey-Omura multiplier requires TA � �1�
dlog2�mÿ 1�e�TX delays while the delay of the proposed multiplier
is TA � �1� dlog2 me�TX .

A serial version of the proposed multiplier is under considera-
tion. However, we think that it may not be possible to take
advantage of the symmetry aibj � ajbi in a serial version of the
multiplier. Thus, the design of a serial version may require
significant modification on the original algorithm.
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