IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 1,

Brief Contributions

JANUARY 2001

83
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Abstract—This paper presents a new parallel multiplier for the Galois field
GF(2™) whose elements are represented using the optimal normal basis of type II.
The proposed multiplier requires 1.5(m? — m) XOR gates, as compared to

2(m? —m) XOR gates required by the Massey-Omura multiplier. The time
complexities of the proposed and the Massey-Omura multipliers are similar.

Index Terms—Galois field, optimal normal basis, Massey-Omura multiplier,
space complexity.
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1 INTRODUCTION

ARITHMETIC operations in the Galois field GF(2™) (i.e., addition,
subtraction, multiplication, and inversion) have several applica-
tions in coding theory, computer algebra, and cryptography [7],
[5]. In these applications, time- and area-efficient algorithms and
hardware structures are desired for addition, multiplication,
squaring, and exponentiation operations. The performance of
these operations is closely related to the representation of the field
elements. An important advance in this area is the Massey-Omura
algorithm [8], which is based on the normal basis representation of
the field elements. One advantage of the normal basis is that the
squaring of an element is computed by a cyclic shift of the binary
representation. Efficient algorithms for the multiplication opera-
tion in the canonical basis have also been proposed [6], [3], [4]. The
space and time complexities of these canonical basis multipliers are
much less than those of the Massey-Omura multiplier.

In recent years, efficient normal basis multipliers for special
classes of finite fields have been proposed [2], [4]. These multi-
pliers work only for the optimal normal basis of type I. The
Massey-Omura algorithm works for both the optimal normal basis
of type I and type II. However, its parallel space complexity is
about twice that of these special multipliers. The parallel Massey-
Omura algorithm requires 2(m? — m) XOR gates, while both of the
special multipliers in [2], [4] require m? —1 XOR gates. This paper
presents a new multiplication algorithm for the field GF(2™)
whose elements are represented using the optimal normal basis of
type II. The parallel multiplier proposed in this paper requires
25 percent fewer XOR gates than the Massey-Omura multiplier.

We also compare the proposed algorithm to a recently
introduced multiplication method [1] for the optimal normal basis
of type II, which is based on the palindromic representation of
polynomials of length 2m. The details and an analysis of this
multiplication algorithm are not given in [1]; however, we expect
that its XOR complexity will be at least (2m)°.
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2 OPTIMAL NORMAL BASES

The field GF(2™) is often viewed as an m-dimensional vector space
defined over GF(2). A set of m linearly independent vectors
(elements of GF(2™)) are chosen to serve as the basis of
representation. The following are the most commonly used bases:

e A straightforward choice for a basis is the ordered set
{1,8,3,...,8" '} where 8 € GF(2™). This is called the
canonical basis.

e If the set of elements M = {3,5,3,...,52""} forms a
basis for some € GF(2™), then the basis M is called
normal basis and the element 3 is called normal element.

The introduction of the Massey-Omura multiplier [8] was
followed by the definition of a special type of normal basis called
optimal normal basis. This type of basis minimizes the complexity
of the Massey-Omura multiplier. There exists two types of optimal
normal basis, as classified in [7]. These bases are historically
named as the optimal normal basis of type I and the optimal
normal basis of type II.

An optimal normal basis of type II for the field GF(2™) is
constructed using the normal element 3=~ +~~!, where 7 is a
primitive (2m + 1)th root of unity, i.e., 7! = 1 and 4’ # 1 for any
1 <4 < 2m + 1. It turns out that an optimal normal basis of type II
can be constructed if p=2m+1 is prime and if either of the
following two conditions also holds:

e 2 is a primitive root modulo p.
e p=7(mod 8) and the multiplicative order of 2 modulo p
is m.

The second condition also means that (—1) is a quadratic
nonresidue modulo p and 2 generates the quadratic residues
modulo p. As enumerated in [7, Table 5.1], there are 117 and 319 m
values in the range m € [2,2001], for which an optimal normal
basis of type I and type II exists, respectively. In other words, the
optimal normal basis of type II is three times more likely to occur
in this range and, thus, efficient algorithms for this representation
would be highly useful. In the following sections, we propose an
efficient parallel algorithm for multiplying operands represented
in the optimal normal basis of type II.

3 OPTIMAL NORMAL BASsIS OF TYPE Il

We assume that p=2m 41 is a prime and either of the
aforementioned two conditions holds, i.e., we have an optimal
normal basis of type II in GF'(2™) based on the normal element
B8 =1+ ~7!, where 7 is the primitive pth root of unity. The basis is
given as:

M={8,8%8'....62}. (1)

We now show that there exists another basis N which is obtained
by a simple permutation of the basis elements in M and construct a
new parallel multiplication algorithm in the new basis N. We
examine both cases below:

e If 2 is primitive modulo p, then the set of powers of 2
modulo p

P={2,2%2 .21 2"} (mod p) (2)
is equivalent' to

1. Note that P, and @, are sets, i.e., the elements are unordered.
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1 B2

/6 'm—2 ﬁm —1 ﬁ'm

a1bs + ash aq b3 + a/Sbl
asbs + asbs a9by + aqbo

Am—2bm—1 + Gm—1bm—2
Am—1bm + ambm—1

am—2bm + ambm—2

a1bp—1 + am—1b1 a1l + am b

a2by, + ambs

Fig. 1. The construction of C.
Q1 =1{1,2,3,4,...2m}. (3)

Therefore, a basis element of the form 7> 4+~~% can be
written as v/ 4+ v for j € [1, 2m]. Furthermore, it is always
possible to rewrite 4/ +v 77 as AN 4o~ CmED4I; f
j > m + 1, then this has the benefit of bringing the power
of v to the range [1,m].

e  If the multiplicative order of 2 modulo p is equal to m, then
the set of powers of 2 modulo p

P={2,2%2%,...,272"}  (modp)  (4)

consists of m distinct integers in the range [1,2m]. If
2! (modp) is in the range [1,m], we leave it as it is. If
2¢ (mod p) is in the range [m + 1,2m], we write in its place
the number (2m + 1) — (2 mod p) to bring it to the range
[1,m]. Since these numbers are all distinct, the set P, is
equivalent to

Q:={1,2,3,4,...m}. (5)

As a result, following the presented facts, a basis element
of the form 4% + =% for i € [1,m] can be written uniquely
as v+~ with j € [1,m)].

Consequently, the bases A/ and N are given as

o(m-1)

_ _ 2 02 _o(m-1)
M={y+7 2+ +97%, 0y 72 (6)

N={y+7 "7+ 7 7%y ™) (7

are equivalent. The basis N is obtained from the basis M using a
simple permutation. Let A be expressed in the basis M as

A=dB+aB+dy8” +- +a g, (8)

where 8 = v + v~ !. The representation of A in the basis N is given
as

A=a1f + a2 + azfz + - - + amfn, 9)

where 3; =~ +~7. We can express the permutation between the
coefficients a; = a/ as

if kel[l,m],

if kem+1,2m], (10)

) k

7= { 2m+1) —k
where k = 2! (mod 2m + 1) for i = 1,2,...,m. This permutation is
a crucial part of the algorithm. It is used to convert the operands
from the normal basis to a representation similar to the canonical
basis. The inverse permutation is used to convert the elements back
to the normal basis after the operation is completed.

The basis N is not a normal basis, it is a shifted form of the
canonical basis [4]. Note that the exponents of the basis elements of
the shifted canonical basis are one more than the ones of the
canonical basis. We construct an efficient parallel multiplier in the
following section using this new basis.

4 NEW MULTIPLICATION ALGORITHM

We propose a new algorithm for multiplying the elements of
GF(2™) in the basis M as follows:

1. Convert the elements represented in the basis M to the
basis N using the permutation.
2. Multiply the elements in the basis N.
3.  Convert the result back to the basis M using the inverse
permutation.
The first and third steps are implemented without any gates since
the permutation operation requires a simple rewiring. The second
step is a multiplication operation in the basis N, which we present
below. Let A, B € GF(2™) be represented in the basis N as

m m

A=Y 0= a(y +77) (11)
=1 =1
B= ill biB; = ibi("/i +47h. (12)
= i=
The product of these two numbers C' = A - B is written as
C=A -B= <2 ai(y' + v”)) (Zn; bi(y + W)) . (13)
i= =
This product can be transformed to the following form:
C= g ];il aibj(y 7+ 70y 4 g ]’:il aibj (v 4 7)) 14)

=C1 + Cs.

For future reference, the two double summations are denoted as C}
and Cj, as shown above. The term C; has the property that the
exponent (i — j) of v is already within the proper range, i.e., —m <
(i—j) <m for all i,j€[l,m]. Furthermore, if i=j then

471 4477 = 40 4 A0 = (. Thus, we can write C| as

aib(v 7+ ) = > abi(y T 7). (15)

If k = |i — j|, then the product a;b; contributes to the basis element
B = +* + v7F. For example, the coefficients of 3, are the sum of all
a;b; for which |i — j| = 1. Fig. 1 shows the elements contributed by
the summation C) arranged in terms of the order of the basis

elements.
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S B2 B3 Bmn—2  Bm-1  OBm
a1br  aibo a1bm—3 aibm-—2 aibm1
azby a2bm—a  asbm—3 a2bp—2
am—3b1  am_3by  an-_3b3
Om—2b1  am—_2bo
m—1b1

Fig. 2. The construction of D;.

Furthermore, the term C; is transformed into the following;:

m o m

i=1 j=

m.om-—i m

= ZZaibj('yiﬁ Ay Z i aiby (v 4+ 4~ 0)

=1 j=1 =1 j=m—i+1
=D; + D».

(16)
The double summations are denoted by D; and D, respectively.
The exponents of the basis elements 77+~ (%) in D, are
guaranteed to be in the proper range 1< (i+j) <m for i =
1,2,...,m and j=1,2,..., m—i. If k=1i+ j, then product a;b;
contributes to the basis element 3 as i and j take these values.

Fig. 2 shows the construction of the summation D;.
On the other hand, the basis elements of D, are all out of range.

2m+1

We use the identity =1 to bring them to the proper range:

m m

Dy = Z: D> 1aibj(7iﬂ' +77 )
=1 j=m—i+

(17)

m m

_ z z aibj(,anHI—(Hj) +,y—(2m+1—(i+j))).

i=1 j=m—it1
Therefore, if k = i + j > m, we replace (3, by Bay,+1-. For example,
the term a,b, contributes to the basis element (; since

2m +1 — (m+m) = 1. Fig. 3 shows the construction of D,.
The multiplication algorithm in the basis N’ constructs C}, Dy,

and D, and sums the appropriate terms in order to obtain the
product C =C; + D; + D;. The details of the multiplication
operation and its complexity analysis are given in the following

section.
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5 DETAILS OF MULTIPLICATION AND COMPLEXITY
ANALYSIS

If these three arrays (), D;, and D, are inspected closely, the
following observations can be made:

1. All three arrays are composed of the elements of the form
a;b; for i,j € [1,m)].

2. The height of the ith column in the array C; is 2(m — i) for
i=1,2,...,m. This is the number of terms of the form a;b;
to be summed in the ith column.

3. The height of the ith column in the array D; is equal to
1—1.

4. The height of the ith column in the array D, is equal to 1.

5. Therefore, the height of the ith column in the entire
array representing the total sum C is found as
2(m —14)+i—1414i=2m—1, which follows from obser-
vations 2, 3, and 4.

6. If there is an element q;b; is present in a column, then the
element a;b; is also present in the same column. This is true
for all three arrays Cy, D;, and Ds.

7. An element of the form q;b; is present only once in a
column of either D; or D,.

8. Because of observations 5, 6, and 7, a column of the entire
array representing the total sum C contains a single
element of the form a;b; and 2m — 2 elements of the form
a;bj, where a;b; is also present.

The proposed multiplication algorithm first computes the terms
a;b; for 4,j € [1,m] using exactly m? two-input AND gates. This
requires a single AND gate delay T4 because of the parallelism. Let
t,‘]‘:aibj‘f’ajbi for ¢ = 1,27..,,m and j:l+1,l+27,m We
compute the terms t;; using

1

(m—1)+(m—2)+---+2+1=§m(m71) (18)
two-input XOR gates and a single XOR gate delay 7. The ith
column of the entire array contains exactly % (2m —2)=m —1
terms of the form ¢;; and also a single element of the form a;b;.
These m numbers are summed using a binary XOR tree, which
requires m — 1 XOR gates and a total delay of [log, m| Tx. Due to
parallelism, all m columns require m(m — 1) XOR gates and the
same amount of delay. Therefore, the construction of the product C
requires

# AND Gates = m?,
1
# XOR Gates = im(m - +m(m—-1)= %m(m - 1),
Gate Delay = Ty + Tx + [logy m] Tx = Ta + (1 + [logy m])Tx.

On the other hand, the parallel Massey-Omura algorithm uses
m? AND gates and 2m(m —1) XOR gates and computes the

B1 B2 33

ambm  m—1bm  Gm—2bn
ambm—1  am—1bm—1
mbm—2

ﬁm—Z /Bm—l ﬂm
a3bp, a2bm, a1bm
agbym—_1 azbp_1 asbp,1
asbm—_2  asbp_2  azby,_o
m—1by  am_2by  am-_3by
ambs am—1b3  am—2b3
ambs am—1b2
amb1

Fig. 8. The construction of D,.
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Basis — B1 (o B3 e 35
C1 — | atbo +asby  a1bs +azby  a1bs+asby  aibs 4 asby
asbs + azby  asby + asby  asbs + asbs
aszby + agbs  azbs + asbs
Cb4b5 + a5b4
Dy — arby aiby aibz aiby
asby asby asbs
asby azbs
a4l)1
Dy — asbs aqbs agbs asbs a1bs
asby aaba asby aoba
a553 a4b3 agbg
a5b2 a4bg
a5bl
¢ — t12 t13 t14 t15 t14
to3 toy tos t13 to3
t34 135 t1o 125} t15
12} t45 t35 t34 to4
CL5b5 a1b1 a4b4 ang agbg

Fig. 4. The construction of Cy, Dy, D, and C in GF(2°).

product in T4 + (1 + [logy (m — 1)])Tx gate delays. The proposed
algorithm requires 25 percent fewer XOR gates than the Massey-
Omura algorithm.

6 AN EXAMPLE

In this section, we illustrate the construction of the basis N and the
new multiplication algorithm for the field GF(2%). Since 2m + 1 =
2:54+1=11 and 2 is primitive in modulo 11, there exists an
optimal basis of type II for the field GF(2°), which is of the form
M= {3,353, 6%}, where 3=~+~"!. Using the identity
v =1, we convert the basis M to the basis N. The first three
exponents 1, 2, and 4 are in the proper range [1,5]. We have
16 = 5 (mod 11), which brings the exponent 16 to the proper range.
In order to bring 8 to the range [1,m] = [1, 5], we use the identity

7% = 48711 = 473, Thus, we can write
B = v+ = a+yt = By,
B o= Y+ = Py = by
Bto= Ayt = Ayt = 6,
o= Pyt = 7y = B,
316 B L A

This gives a new basis which is of the form N = {1, 32, 83, 54, 05 }-
The conversion between these two bases is accomplished using a
permutation. Assuming, A expressed in M is given as

A = (d),dy,dy,dy,a) = a) B+ dy B + ay8* + a5 + a0,
we find the expression for A in N as

A= (a1, a2,a3,04,05) = @101 + a2 + a3 B3 + as By + asfs.
This gives the permutation as

(a17a27 agz, a4, a‘{')) = (al17 a‘/27 aip afy (1/5)

We now show the construction of the multiplication circuit. Let the

elements A and B be given as inputs expressed in the basis M as

! ! / ! !
A= (alva%a:}:a/xvaﬁ)y
VAR VAR TAR VAT
B= (b17b27b37b4vb5)'

The computation of the product C' = A - B expressed in the basis
M as C = (d}, dy, &, ¢y, ¢f) is computed using the following steps:

e  First, we use the permutation to obtain the representations
of A and B in the basis N as:

A =
B =

(a1,a9,0a3,a4,a5) =
(b1, b2, b3,b4,b5) =

(d ab ay, df, ),
(b/lv /27b217 :/¥7bir))'

This step requires a simple rewiring and no gates.

o  Then, we generate the product terms a;b; for i = 1,2,3,4,5
and j=1,2,3,4,5 using m?> =52 =25 AND gates. This
computation requires a single AND gate delay T4.

e Then, we generate the terms t; = a;b; +a;b; for i=
1,2,3,4,5and j=14i+1,i+2,...,5. Thus, we compute

tip=aibytasby  tiz=arbstazby  tu=aibitashy  tiz=aibstasby
tog=apbz+agby  tog=asby+ashy  tos=asbs+asby
tyi=azbitasby  tzs=asbs+asby

tys=asbs+azby

This computation requires $m(m — 1) = 10 XOR gates and

a single XOR gate delay T.
e  Then, we obtain the elements of the product as follows:

¢ = tio +ta3 +t34 + tas + asbs
cy = t13 +tog +t35 + tys + a1y
c3 = t1y + tos + tio + t35 + agby
¢y = t15 + tiz + tos + t3a + a2by
c5 = ti4 + tog + t15 + tog + asbs.

This step requires an additional m? —m = 20 XOR gates.
This computation is accomplished using additional delay
of |—10g2 5] TX = 3Tx.

o  The result is expressed in the basis N which is converted to
the basis M using the inverse permutation as follows:
(ch,ch, s, ¢y, ch) = (e1, ¢, ¢4, 03, C5).
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In Fig. 4, we illustrate the construction of the arrays C, D;, D,, and
the final array C. The multiplication circuit requires a total of m? =
25 AND gates and 1.5(m?> —m) =30 XOR gates. The total
computation is performed using T4 4 4Tx gate delays.

7 A SIMILAR DESIGN

Another method for multiplication in the normal basis type II
was described in a recent technical report [1]. This method uses
the permutation described in Section 3 of this paper and, thus,
it is also based on the shifted canonical representation.
However, to multiply two polynomials represented in the
shifted canonical basis, the palindromic representation is used.
The palindromic representation of a(z)=> /', iz’ is the
polynomial Y77 a;2%, where a; =a,; for i=1,2,...,m. It is
proven in [1] that the multiplication of two such palindromic
polynomials modulo z? —1 is equivalent to the optimal normal
basis type II multiplication However, an explicit algorithm for
multiplying two 2m-length polynomials modulo z? — 1 is not given
in [1]. Therefore, we cannot compare their algorithm to the one
presented here. The complexity results will depend on the details
of the multiplication algorithm. However, we speculate that the
XOR complexity of the method in [1] will be at least (2m)* = 4m?
since the operands are of length 2m.

8 CONCLUSIONS

We have presented a new parallel multiplier for the field GF(2™)
whose elements are represented using the optimal normal basis of
type II. The proposed bit-parallel multiplier requires 1.5(m? — m)
XOR gates while the Massey-Omura multiplier requires 2(m? — m)
XOR gates. The time complexities of these two multipliers are
similar: The parallel Massey-Omura multiplier requires 74 + (1 +
[log,(m — 1)])Tx delays while the delay of the proposed multiplier
is Ta + (1 + [log, m])Tx.

A serial version of the proposed multiplier is under considera-
tion. However, we think that it may not be possible to take
advantage of the symmetry a;b; + a;b; in a serial version of the
multiplier. Thus, the design of a serial version may require
significant modification on the original algorithm.
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