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The Montgomery Modular InverseÐRevisited
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AbstractÐWe modify an algorithm given by Kaliski to compute the Montgomery

inverse of an integer modulo a prime number. We also give a new definition of the

Montgomery inverse, and introduce efficient algorithms for computing the classical

modular inverse, the Kaliski-Montgomery inverse, and the new Montgomery

inverse. The proposed algorithms are suitable for software implementations on

general-purpose microprocessors.

Index TermsÐModular arithmetic, modular inverse, almost inverse, Montgomery

multiplication, cryptography.

æ

1 INTRODUCTION

THE basic arithmetic operations (i.e., addition, multiplication, and
inversion) modulo a prime number p have several applications in
cryptography, for example, the deciphering operation in the RSA
algorithm [9], the Diffie-Hellman key exchange algorithm [1], the
US Government Digital Signature Standard [8], and also, recently,
elliptic curve cryptography [5], [6]. The modular inversion
operation plays an important role in public-key cryptography,
particularly, to accelerate the exponentiation operation using the
so-called addition-subtraction chains [2], [4] and also in computing
point operations on an elliptic curve defined over the finite field
GF �p� [5], [6].

The modular inverse of an integer a 2 �1; pÿ 1� modulo the

prime p is defined as the integer x 2 �1; pÿ 1� such that

ax � 1�mod p�. It is often written as x � aÿ1�mod p�. This is the

classical definition of the modular inverse [4]. In the sequel, we

will use the notation

x :� ModInv�a� � aÿ1�mod p� �1�
to denote the inverse of a modulo p. The definition of the modular

inverse was recently extended by Kaliski to include the so-called

Montgomery inverse [3] based on the Montgomery multiplication

algorithm [7]. In this paper, we introduce a new definition of the

Montgomery inverse, and also give efficient algorithms to compute

the classical modular inverse, the Kaliski-Montgomery inverse,

and the new Montgomery inverse of an integer a modulo the

prime number p.

2 THE MONTGOMERY INVERSE

The Montgomery multiplication [7] of two integers a; b 2 �0; pÿ 1�
is defined as c � ab2ÿn�mod p�, where n � dlog2 pe. We denote this

multiplication operation using the notation

c :� MonPro�a; b� � ab2ÿn�mod p�; �2�
where p is the prime number and n is its bit-length. The

Montgomery inverse of an integer a 2 �1; pÿ 1� is defined by

Kaliski [3] as the integer x � aÿ12n�mod p�. Similarly, we will use

the notation
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x :� MonInv�a� � aÿ12n�mod p� �3�
to denote the Montgomery inversion as defined by Kaliski. The

algorithm introduced in [3] computes the Montgomery inverse of

a. We give this algorithm below. The output of Phase I is the

integer r such that r � aÿ12k�mod p�, where n � k � 2n. This result

is then corrected using Phase II to obtain the Montgomery inverse

x � aÿ12n�mod p�.
Phase I

Input: a 2 �1; pÿ 1� and p

Output: r 2 �1; pÿ 1� and k, where r � aÿ12k�mod p�
and n � k � 2n

1: u :� p, v :� a, r :� 0, and s :� 1

2: k :� 0

3: while (v > 0)

4: if u is even then u :� u=2, s :� 2s

5: else if v is even then v :� v=2, r :� 2r

6: else if u > v then u :� �uÿ v�=2, r :� r� s, s :� 2s

7: else if v � u then v :� �vÿ u�=2, s :� s� r, r :� 2r

8: k :� k� 1

9: if r � p then r :� rÿ p
10: return r :� pÿ r and k

Phase II

Input: r 2 �1; pÿ 1�, p, and k from Phase I

Output: x 2 �1; pÿ 1�, where x � aÿ12n�mod p�
11: for i � 1 to kÿ n do

12: if r is even then r :� r=2
13: else then r :� �r� p�=2

13: return x :� r

3 THE ALMOST MONTGOMERY INVERSE

As shown above, Phase I computes an integer r � aÿ12k�mod p�,
where n � k � 2n. The Montgomery inverse of a is defined as

x � aÿ12n�mod p�, where n � dlog2 pe. We will call the output of

Phase I the almost Montgomery inverse of a, and denote it as

�r; k� :� AlmMonInv�a� � aÿ12k�mod p�; �4�
where n � k � 2n, in the sequel. We note that a similar concept, the

almost inverse of elements in the Galois field GF �2m�, was

introduced in [11] and some implementation issues were

addressed in [10].
Since k is an output of Phase I, we will include it in the

definition of the AlmMonInv function as an output value. We also

propose to make an additional change in the way the almost

Montgomery inverse algorithm is being used. Instead of selecting

the Montgomery radix as R � 2n, where n � dlog2 pe, we will select

it as R � 2m, where m is an integer multiple of the wordsize of the

computer w, i.e., m � iw for some positive integer i. The

Montgomery product algorithm would work with any m as long

as m � n, where n is the bit-length of the prime number p. For

efficiency reasons, we select the smallest i which makes m larger

than n, in other words, iw � m � n, but �iÿ 1�w < n. It turns out

that the almost Montgomery inverse algorithm (Phase I) works for

this case as well. Furthermore, it even works for an input a which

may be larger than p as long as it is less than 2m, as proven below

in Theorem 1. The second issue is the value of k after the almost

Montgomery inverse algorithm terminates. We show in Theorem 2

below that n � k � m� n.

Theorem 1. If p > 2 is a prime and a � 1 (a might be larger than p),
then the intermediate values r, s, and u in the almost Montgomery
inverse algorithm are always in the interval �0; 2pÿ 1�.

Proof. If a < p, then the proof given in [3] is applicable here. If
a > p and a is not an integer multiple of p, then only Step 5 and
Step 7 are executed in the while loop until v becomes smaller
than u. Until then, the variables u, r, and s keep their initial
values. They start changing when v < u and, after this point, the
algorithm proceeds as in the case a < p. Thus, the intermediate
values remain in the interval �0; 2pÿ 1� for a > p as well. tu

Theorem 2. If p > 2 is a prime and a � 1, then the index k produced at
the end of the almost Montgomery inverse algorithm takes a value
between n and m� n, where n � dlog2 pe and m � sw with sw � n
with �sÿ 1�w < n.

Proof. The reduction of uv and u� v at each iteration (at Steps 4-7)
is illustrated in Table 1. Note that these steps are mutually
exclusive, i.e., at an iteration only one of the four cases occurs.
At each iteration, the value uv is at least halved while the value
u� v is at most halved and, furthermore, both u and v are equal
to 1 before the last iteration. Since the initial values of the
product uv and the sum u� v are ap and a� p, respectively, the
index value k (i.e., the number of iterations) satisfies

�a� p�=2 � 2kÿ1 � ap:
Since 2nÿ1 < p < 2n and 0 < a < 2m, we have

2nÿ2 < 2kÿ1 < 2m � 2n;
2nÿ1 � 2kÿ1 � 2m�nÿ1:

Thus, we obtain the result: n � k � m� n. Furthermore, we
note that mÿ n � wÿ 1, where w is the word size of the
machine. This implies that mÿ w� 1 � k � m� n. tu

4 USING THE ALMOST MONTGOMERY INVERSE

The Montgomery inverse algorithm computes x � aÿ12n�mod p�.
The Kaliski algorithm [3] uses the bit-level operations in Phase II in
order to achieve its goal. It uses kÿ n steps in Phase II, where, at
each step, a bit-level right shift operation is performed. Addition-
ally, if r is odd, an addition operation r� p needs to be performed.

As suggested earlier , we will use the definit ion
x � aÿ12m�mod p�. Furthermore, it is possible to eliminate the bit-
level operations completely and use the Montgomery product
algorithm to obtain the same result. In our approach, we replace
these bit-level operations by word-level Montgomery product
operations which are intrinsically faster on microprocessors,
particularly when the wordsize of the computer is large (i.e., 16,
32, or 64).

The new Phase II is based on the precomputed Montgomery
radix R � 2m�mod p�, however, we only need R2�mod p�. This
value can be precomputed and saved and used as necessary.
Another issue is the range of input variables to the AlmMonInv
and MonPro functions. For both of these functions, any input
cannot exceed 2m ÿ 1.
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Reduction of uv and u� v at Each Iteration



4.1 The Modified Kaliski-Montgomery Inverse

This algorithm computes x � MonInv�a� � aÿ12m�mod p� given the
integer a. Thus, it finds the inverse of the integer a modulo p and
also converts it to the Montgomery domain. The modified Kaliski-
Montgomery inverse algorithm is given below.

Input: a, p, n, and m, where a 2 �1; 2m ÿ 1�.
Output: x � aÿ12m�mod p�, where x 2 �1; pÿ 1�.
1: �r; k� :� AlmMonInv�a� where r � aÿ12k�mod p�

and n � k � m� n.

2: If n � k � m then

2.1: r :� MonPro�r; R2� � �aÿ12k��22m��2ÿm� �
aÿ12m�k�mod p�

2.2: k :� k�m > m

3: r :� MonPro�r; 22mÿk� � aÿ1 � 2k � 22mÿk � 2ÿm �
aÿ12m�mod p�

4: Return x � r, where x � aÿ12m�mod p�
The inputs to the MonPro function in Step 2.1 are r and R2, which
are both in the correct range. The input 22mÿk to MonPro in Step 3
is also in the correct range since k is adjusted to be larger than m in
Step 2.2 when k � m, thus, 0 < 22mÿk < 2m.

4.2 The Classical Modular Inverse

In some cases, we are only interested in computing x �
ModInv�a� � aÿ1�mod p� without converting to the Montgomery
domain. One way to achieve this is to first compute the Kaliski-
Montgomery inverse of a to obtain b � aÿ12m�mod p� and, then,
reconvert the result back to the residue (non-Montgomery) domain
using the Montgomery product as

b :� MonInv�a� � aÿ12m�mod p�;
x :� MonPro�b; 1� � �aÿ12m��1�2ÿm � aÿ1�mod p�:

Another way of computing the classical inverse is by reversing the
order of MonInv and MonPro operations, and using the constant
R2 � 22m�mod p� as follows:

b :� MonPro�a;R2� � �a��22m�2ÿm � a2m�mod p�;
x :� MonInv�b� � �a2m�ÿ12m � aÿ1�mod p�:

However, either one of these approaches requires two or three
Montgomery product operations in addition to the AlmMonInv
function. Instead, we can modify the Kaliski-Montgomery inverse
algorithm so that it directly computes the classical modular inverse
after the AlmMonInv function with one or two Montgomery
product operations.

Input: a, p, n, and m, where a 2 �1; 2m ÿ 1�
Output: x � aÿ1�mod p�, where x 2 �1; pÿ 1�
1: �r; k� :� AlmMonInv�a� where r � aÿ12k�mod p�

and n � k � m� n.

2: If k > m then

2.1: r :� MonPro�r; 1� � �aÿ12k��2ÿm� �
aÿ12kÿm�mod p�

2.2: k :� kÿm < m

3: r :� MonPro�r; 2mÿk� � �aÿ1��2k��2mÿk��2ÿm� �
aÿ1�mod p�

4: Return x � r, where x � aÿ1�mod p�

4.3 The New Montgomery Inverse

We propose the following new definition of the Montgomery
inverse: x � aÿ122m�mod p� given the input a�mod p�. According to
this new definition, we compute the Montgomery inverse of an
integer which is already in the Montgomery domain, producing

the output x which is also in the Montgomery domain. We will

denote the new Montgomery inverse computation by

x :� NewMonInv�a2m� � �a2m�ÿ122m � aÿ12m�mod p�:
The Kaliski-Montgomery inverse of a is defined as

MonInv�a� � aÿ12m�mod p�, which has the following property

MonPro�a;MonInv�a�� � MonPro�a; aÿ12m�
� a�aÿ12m�2ÿm � 1�mod p�:

In other words, according to the Kaliski-Montgomery inverse, the

multiplicative identity is equal to 1, which is an incorrect

assumption if we are operating in the Montgomery domain where

the image of 1 is 2m�mod p�. On the other hand, the new

Montgomery inverse has the following property:

MonPro�a2m;NewMonInv�a2m�� � a2m�aÿ12m�2ÿm
� 2m�mod p�:

This new definition of the inverse is more suitable for computing

expressions using the Montgomery multiplication since it com-

putes the result in the Montgomery domain.
The new Montgomery inverse cannot be directly computed

using the MonInv algorithm by giving the input as a2m�mod p�
since we would obtain

MonInv�a2m� � �a2m�ÿ12m � aÿ1�mod p�:
However, this can be converted back to the Montgomery domain

using a single Montgomery product with R2�mod p�. Thus, we

obtain a method of computing the new Montgomery inverse as

b :� MonInv�a2m� � �a2m�ÿ12m � aÿ1�mod p�;
x :� MonPro�b; R2� � aÿ122m2ÿm � aÿ12m�mod p�:

Similarly, another method to obtain the same result is by reversing

the order of the operations:

b :� MonPro�a2m; 1� � �a2m��1��2ÿm� � a�mod p�;
x :� MonInv�a� � aÿ12m�mod p�:

The new algorithm uses the precomputed value R2�mod p� and it is

more efficient: It uses only two or three Montgomery product

operations after the AlmMonInv function.

Input: a2m�mod p�, p, n, and m

Output: x � aÿ12m�mod p�, where x 2 �1; pÿ 1�
1: �r; k� :� AlmMonInv�a2m� where

r � aÿ12ÿm2k�mod p� and n � k � m� n
2: If n � k � m then

2.1: r :� MonPro�r; R2� � �aÿ12ÿm2k��22m��2ÿm� �
aÿ12k�mod p�

2.2: k :� k�m > m

3: r :� MonPro�r; R2� � �aÿ12ÿm2k��22m��2ÿm� �
aÿ12k�mod p�

4: r :� MonPro�r; 22mÿk� � �aÿ12k��22mÿk��2ÿm� �
aÿ12m�mod p�

5: Return x � r, where x � aÿ12m�mod p�

5 CONCLUSIONS AND APPLICATIONS

We have proposed a new definition of the Montgomery inverse

and have given efficient algorithms to compute the classical

modular inverse, the Kaliski-Montgomery inverse, and the new

Montgomery inverse. The new algorithms are based on the almost
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Montgomery inverse function and require two or three Montgom-
ery product operations thereafter, instead of using the bit-level
operations as in [3].

We have performed some experiments by implementing all
three inversion algorithms using both classical (shift and add) and
newly proposed Montgomery product-based Phase II steps. These
algorithms were coded using the Microsoft Visual C++ 5.0
development system. The timing results are obtained on a
450-MHz Pentium II processor running the Windows NT 4.0
operating system. In Table 2, we summarize the timing results. The
table contains the old and new Phase II timings (Old PhII and New
PhII) in microseconds for operands of length 160 and 192 bits. The
last two columns (PhII Spd and All Spd) give the speedup in
Phase II only and the overall speedup, which illustrates the
efficiency of the algorithms introduced.

An application of the new Montgomery inverse is found in
computing eP , where e is an integer and P is a point on an elliptic
curve defined over the finite field GF �p�. This computation
requires that we perform elliptic curve point addition P �Q and
doubling P � P � 2P operations, where each point operation
requires a few modular additions and multiplications and a
modular inversion. The inverse operation is used to compute the
variable � :� �y2 ÿ y1��x2 ÿ x1�ÿ1�mod p�, which is required in
computing elliptic curve point addition of P � �x1; y1� and Q �
�x2; y2� in order to obtain P �Q � �x3; y3�. Assuming the input
variables are given in the Montgomery domain, we would like to
obtain the result in the Montgomery domain. If the Kaliski-
Montgomery inverse is used, it will compute the classical inverse,
which is in the residue (non-Montgomery) domain and cannot be
readily used in subsequent operations. We need to perform a
Montgomery product with R2�mod p� in order to convert back to
the Montgomery domain. However, with the help of the new
Montgomery inverse, we can perform the above computation in a
single step. Since these operations are performed for every bit of
the exponent e, the new Montgomery inverse is more efficient and
highly useful in this context.
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