
Parallel Multiplication in GF (2k)

using Polynomial Residue Arithmetic ∗†

A. Halbutoǧulları‡ and Ç. K. Koç
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331

Abstract

We present a novel method of parallelization of the multiplication operation in GF (2k)
for an arbitrary value of k and arbitrary irreducible polynomial n(x) generating the field.
The parallel algorithm is based on polynomial residue arithmetic, and requires that we find
L pairwise relatively prime moduli mi(x) such that the degree of the product polynomial
M(x) = m1(x)m2(x) · · ·mL(x) is at least 2k. The parallel algorithm receives the residue rep-
resentations of the input operands (elements of the field) and produces the result in its residue
form, however, it is guaranteed that the degree of this polynomial is less than k and it is properly
reduced by the generating polynomial n(x), i.e., it is an element of the field. In order to perform
the reductions, we also describe a new table lookup based polynomial reduction method.

Key Words: Finite field multiplication, residue arithmetic, parallel algorithm, cryptography.

1 Introduction

The arithmetic operations in the Galois field GF (2k) have several applications in coding theory,
computer algebra and cryptography. We are especially interested in cryptographic applications
where k is very large. The cryptographic applications include elliptic curve cryptosystems [7, 3, 6]
and the Diffie-Hellman key exchange algorithm [1] based on the discrete exponentiation. In this
paper, we describe a parallel multiplication algorithm for the field GF (2k) using Polynomial Residue
Arithmetic (PRA). By proper selection of the modulus polynomials in the PRA, and the application
of the Chinese Remainder Theorem (CRT), we obtain an efficient parallel algorithm for multiplying
two elements of GF (2k) represented in the polynomial basis. The proposed parallel algorithm is
more suitable for hardware implementations. It provides an alternative method of parallelization
to the algorithm based on other types of bases. For example, the well-known Massey-Omura [8]
algorithm uses the normal basis representation, where each element of result can be computed in
parallel by replicating the same multiplication circuit k times and then by providing inputs to these
circuits as the bit-level rotated versions of the input operands.

The parallel algorithm proposed in this paper is based on polynomial representation of the
field elements with respect to an irreducible polynomial n(x) of degree k over the field GF (2). An
element a of the field GF (2k) is represented using a polynomial a(x) of degree k − 1 (length k),
whose coefficients are from the binary field GF (2), i.e., a(x) = (ak−1ak−2 · · · a0), where ai ∈ {0, 1}.

∗Designs, Codes and Cryptography, 20(2):155–173, June 2000.
†This research is supported in part by Intel Corporation and Secured Information Technology, Inc.
‡Present Address: i2 Technologies, 565 Technology Square, 9th Floor, Cambridge, MA 02139.

1

Furthermore, we assume that sw ≥ k > (s − 1)w, where w is the wordsize which depends on the
implementation details and the computer. Usually, we take w as 8 or 16, which determine the sizes
of the tables needed as well as the total computational time. We use the word-level representation
of a(x) = (As−1As−2 · · ·A0), where Ai is of length w for i = 0, 1, . . . , s− 1. In order to simplify the
analysis, we will often take k = sw.

In order to multiply two elements a and b in GF (2k), we need the irreducible polynomial n(x).
The product c = a · b in GF (2k) is obtained by computing

c(x) = a(x)b(x) mod n(x) , (1)

where c(x) is a polynomial of length k, representing the element c ∈ GF (2k). Thus, the multiplica-
tion operation in the field GF (2k) is accomplished by first multiplying the input polynomials, and
then performing a polynomial modular reduction using the generating polynomial n(x).

2 Polynomial Residue Arithmetic

Let m1(x), m2(x), . . . , mL(x) be a list of pairwise relatively prime polynomials such that the degree
of mi(x) is equal to di for i = 1, 2, . . . , L. We choose mi(x) such that each di is approximately equal
to 2k/L, and thus, the product polynomial M(x) =

∏L
i=1 mi(x) is of degree d ≥ 2k. We represent

a polynomial p(x) using a list of remainders

�p = (p1, p2, . . . , pL) , (2)

where pi(x) = p(x) mod mi(x) for i = 1, 2, . . . , L. For efficiency reasons, we select each mi(x) so
that pi(x) is represented using at most w bits or 1 word. This implies that deg(pi(x)) = di < w.
Furthermore, the polynomials mi(x) need to be pairwise relatively prime, i.e., gcd(mi, mj) = 1 for
i 	= j. Therefore, we construct a Polynomial Residue System (PRS) by finding L pairwise relatively
prime polynomials mi(x), each of which is of degree w, such that the degree of M(x) is Lw ≥ 2k.
Since k = sw, we have L ≥ 2s. The reason for choosing the range of PRS as twice the size of the
inputs is that we need to represent the product of two operands (or the square of one operand)
uniquely.

Once the PRS is constructed by proper selection of the L such polynomials, we can perform
polynomial residue arithmetic. The residue addition and multiplication operations in polynomial
residue arithmetic are defined as follows:

• �c := �a +�b represents the residue addition: ci := ai + bi mod mi for i = 1, 2, . . . , n.

• �c := �a ∗�b represents the residue multiplication: ci := ai · bi mod mi for i = 1, 2, . . . , n.

If the polynomial representation of an operand a has degree less than w, then we will assume that
it is a vector with all entries equal to a as (a, a, . . . , a). We will use the notation �c = a ∗�b to mean
(c1, c2, . . . , cL) = (a, a, . . . , a) ∗ (b1, b2, . . . , bL), or in other words, ci = a · bi mod mi.

The conversion from the PRS representation to the weighted polynomial representation is based
on the extension of the Chinese Remainder Theorem to polynomials [5, 2]. Given the PRS repre-
sentation of p(x) as �p = (p1, p2, . . . , pL), we use the Single Radix Conversion (SRC) algorithm to
compute p(x). Let Mi(x) for i = 1, 2, . . . , L be defined as

Mi(x) =
M(x)
mi(x)

= m1(x)m2(x) · · ·mi−1(x)mi+1(x) · · ·mL(x) . (3)

The inverse of Mi(x) modulo mi(x) exists since gcd(Mi, mi) = 1. We define the inverse Ii(x) as

Ii = M−1
i (mod mi) . (4)

2

The SRC algorithm computes the weighted polynomial p(x) using the formula

p(x) =
L∑

i=1

(pi · Ii mod mi) · Mi . (5)

Unlike the integer case, the final reduction by the product polynomial M(x) is not necessary in
the case for polynomials over GF (2). The degree of the sum is the less than or equal to the term
(pi · Ii mod mi) ·Mi, whose degree is at most Lw−1 since deg(pi · Ii) < w and deg(Mi) ≤ (L−1)w.
We will assume that the coefficients Mi for i = 1, 2, . . . , L and the inverse vector

�I = (M−1
1 mod m1, M

−1
2 mod m2, . . . , M

−1
L mod mL) (6)

are precomputed and used in the SRC algorithm. Using these definitions, we give the steps of SRC
algorithm which computes the polynomial p(x) given its residue representation �p as follows:

The SRC Algorithm
Input: �p = (p1, p2, . . . , pL)
Output: p(x) mod M(x)
Auxiliary: M1, M2, . . . , ML and �I

Step 1. �r := �p ∗ �I

Step 2. p(x) :=
∑L

i=1 ri · Mi

Step 3. return p(x)

If s(x) = a(x)+ b(x), then the degree of s(x) is not larger than the maximum of the degrees ofa(x)
and b(x), thus, the polynomial residue arithmetic would yield the exact result, i.e., �s = �a + �b.
However, in multiplication p(x) = a(x)b(x), the degree of the resulting polynomial increases. The
polynomial p(x) needs to be reduced modulo the irreducible polynomial n(x) in order to obtain
the product c = a · b in GF (2k). Therefore, if we want to use polynomial residue arithmetic for
multiplication modulo n(x), we need to devise a method to reduce the resulting polynomial modulo
n(x). We will perform this reduction using the table lookup reduction algorithm which is described
and analyzed in the following sections.

3 Table Lookup Reduction Algorithm

We propose a modular reduction method which uses a table of the multiples of the generating
polynomial n(x), and performs word-level divisions. We start with n(x), which is a polynomial of
degree k, and compute all multiples of n(x) having degrees less than k + w. Consider the set Qw

of all polynomials over GF (2) of length w and the set Iw of all w-bit integers as

Qw = {0, 1, x, x + 1, x2, x2 + 1, x2 + x, . . . , xw−1 + xw−2 + · · · + 1} ,

Iw = {0, 1, 2, . . . , 2w − 1} .

Let i ∈ Iw and qi(x) ∈ Qw. The binary representation of the integer i is given as (iw−1iw−2 · · · i0)
which determines qi(x) as

∑w−1
j=0 ijx

j . We also define vi(x) = qi(x)n(x) for i ∈ Iw. The polynomial
vi(x) is of degree less than k + w, which we represent as an (s + 1)-word number

vi(x) = (Vi,sVi,s−1 · · ·Vi,1Vi,0) . (7)

We then construct the table T containing 2w rows, in which we store the polynomial vi(x) using
its most significant word (w-bits) as the index, i.e.,

T (Vi,s) = (Vi,s−1 · · ·Vi,1Vi,0) , (8)

3

for i ∈ Iw. An important observation is that the most significant words Vi,s for i ∈ Iw span the set
Qw, in other words, they are all unique.

Proposition 1 The most significant words Vi,s are all unique for i ∈ Iw.

Proof Assume Vi,s = Vj,s for i 	= j. The polynomial p(x) = vi(x) + vj(x) is of length at most k
since

p(x) = (Vi,sVi,s−1 · · ·Vi,1Vi,0) + (Vj,sVj,s−1 · · ·Vj,1Vj,0)
= (0Ps−1 · · ·P1P0) .

Furthermore, p(x) is divisible by n(x) since

p(x) = vi(x) + vj(x) = qi(x)n(x) + qj(x)n(x) = (qi(x) + qj(x))n(x) ,

which means p(x) can only be the zero polynomial, i.e., i = j. ✷

The table T is used for reducing polynomials modulo n(x). Let p(x) be a polynomial of length
sw + w denoted as p(x) = (PsPs−1 · · ·P1P0) which is to be reduced. The reduction algorithm
computes p(x) mod n(x), which is of length sw. In order to reduce p(x) = (PsPs−1 · · ·P1P0),
we select the entry (Vs−1Vs−2 · · ·V1V0) from the table T using the index Ps = Vs. Since T was
constructed so that the element (PsVs−1Vs−2 · · ·V1V0) resides in position Ps, we have

p(x) := (PsPs−1 · · ·P1P0) + (PsVs−1Vs−2 · · ·V1V0)
:= (0P ′

s−1 · · ·P ′
1P

′
0) ,

where P ′
j = Pj + Vj for j = 0, 1, . . . , s − 1. We also discard the most significant w bits of the new

p(x), which are all zeros. Since we add a multiple of n(x) to p(x), and obtain a polynomial of
length sw, we effectively compute p(x) mod n(x), as required. We denote the above computation
as

p(x) := p(x) + T (Ps) . (9)

4 Multiplication using Table Lookup Reduction

The multiplication algorithm computes c(x) = a(x)b(x) mod n(x) given a(x), b(x), and n(x). In
order to apply the table lookup reduction method, we first construct the table T using the generating
polynomial n(x). The algorithm then proceeds by multiplying one word of a(x) by the entire b(x),
which is followed by a table lookup reduction to reduce the partial product. The steps of the table
lookup multiplication algorithm are given below:

The Table Lookup Multiplication Algorithm
Input: a(x) and b(x)
Output: c(x)
Auxiliary: n(x), T , and w
Step 1. c(x) := 0
Step 2. for i = s − 1 downto 0 do
Step 3. c(x) := xwc(x) + Ai(x)b(x)
Step 4. c(x) := c(x) + T (Cs)
Step 5. return c(x)

4

The operation in Step 4 is performed by first discarding the sth (the most significant) word of
c(x) = (CsCs−1 · · ·C1C0), and then by adding the s-word number T (Cs) = (Ms−1Ms−2 · · ·M1M0)
to the partial product c(x) as

Cs−1 Ci−2 · · · C1 C0

+ Ms−1 Ms−2 · · · M1 M0

Similarly, we perform the squaring operation using the table lookup reduction method. The steps
of the squaring algorithm steps are given below. An important saving in this case is that the cross
product terms disappear because the ground field is GF (2). Since

a2(x) =
k−1∑
i=0

aix
2i = ak−1x

2(k−1) + ak−2x
2(k−2) + · · · + a1x

2 + a0 , (10)

the word-level multiplications (Step 3) can be skipped. The squaring algorithm starts with the
degree 2(k − 1) polynomial c(x) = a2(x) given by

c(x) = (ak−10ak−20 · · ·0a10a0) ,

and then performs the reduction steps using the table T .

The Table Lookup Squaring Algorithm
Input: a(x)
Output: c(x)
Auxiliary: n(x), T , and w

Step 1. c(x) :=
∑k−1

i=0 aix
2i

Step 2. for i = 2s − 1 downto s do
Step 3. c(x) := c(x) + T (Ci)
Step 4. return c(x)

We perform the operation in Step 3 by first discarding the ith (the most significant) word of
c(x) = (CiCi−1 · · ·C1C0), and then by adding the s-word number

T (Ci) = (Vs−1Vs−2 · · ·V1V0)

to the partial product c(x) by aligning Vs−1 with Ci−1 from the left:

Ci−1 Ci−2 · · · Ci−s+1 Ci−s Ci−s−1 · · · C1 C0

+ Vs−1 Vs−2 · · · V1 V0

Thus, each addition operation in Step 3 requires exactly s XOR operations.

5 An Example of Table Lookup Multiplication

We take the field GF (28) to illustrate the construction of the table T , and also give an example of
the table lookup multiplication method. We select the irreducible polynomial as

n(x) = x8 + x5 + x3 + x2 + 1 = (1 0010 1101) . (11)

We also select w = 4, which gives s = k/w = 8/4 = 2. The table T is constructed by taking
a polynomial q(x) from Q4, multiplying it by n(x) to obtain v(x) = q(x)n(x), and then placing
the least significant s = 2 words of v(x) to T using the most significant word as the index. The
step-by-step construction of T is shown in Figure 1. The multiples of n(x) do not necessarily come
in an increasing order, however, we have a complete set of first words, and thus, we can use these
values as their indices to store them in T . The table T is shown in Figure 1 in its unsorted form.

5

Figure 1: The construction of T for n(x) = (0001 0010 1101).

q(x) v(x) i T (i)
(0000) (0000 0000 0000) (0000) (0000 0000)
(0001) (0001 0010 1101) (0001) (0010 1101)
(0010) (0010 0101 1010) (0010) (0101 1010)
(0011) (0011 0111 0111) (0011) (0111 0111)
(0100) (0100 1011 0100) (0100) (1011 0100)
(0101) (0101 1001 1001) (0101) (1001 1001)
(0110) (0110 1110 1110) (0110) (1110 1110)
(0111) (0111 1100 0011) (0111) (1100 0011)
(1000) (1001 0110 1000) (1001) (0110 1000)
(1001) (1000 0100 0101) (1000) (0100 0101)
(1010) (1011 0011 0010) (1011) (0011 0010)
(1011) (1010 0001 1111) (1010) (0001 1111)
(1100) (1101 1101 1100) (1101) (1101 1100)
(1101) (1100 1111 0001) (1100) (1111 0001)
(1110) (1111 1000 0110) (1111) (1000 0110)
(1111) (1110 1010 1011) (1110) (1010 1011)

As an example, we take

a(x) = x7 + x6 + x4 + x3 + x + 1 ,

b(x) = x7 + x5 + x3 + x2 + x .

We have a = (A1A0) = (1101 1011) and b = (B1B0) = (1010 1110). The algorithm starts with
c(x) = 0 and then performs the following steps to find the result:

i = 1 Step 3: c(x) := c(x)x4 + A1(x)b(x) = (C2C1C0)
= 0 + (1101)(1010 1110) = (0111 0110 0110)

Step 4: c(x) := c(x) + T (C2) = (C1C0) + T (C2)
= (0110 0110) + (1100 0011) = (1010 0101)

i = 0 Step 3: c(x) := c(x)x4 + A0(x)b(x) = (C2C1C0)
= (1010 0101 0000) + (1011)(1010 1110) = (1110 1101 0010)

Step 4: c(x) := c(x) + T (C2) = (C1C0) + T (C2)
= (1101 0010) + (1010 1011) = (0111 1001)

Therefore, the result is found as c(x) = (0111 1001) = x6 + x5 + x4 + x3 + 1.

6 Parallel Multiplication using Polynomial Residue Arithmetic

In this section, we present the parallel multiplication algorithm based on polynomial residue arith-
metic and the table lookup reduction method. In order to utilize the table lookup multiplication
algorithm, we compute the multiples of n(x) in the PRS representation and store them similarly in
the table �T , which has 2w rows and L independent columns, where each column contains a 1-word
number at each row. If the PRS representation of (VsVs−1 . . . V1V0) is given as �v = (v1, v2, . . . , vL),
then the row Vs of the table �T holds vi in column i for i = 1, 2, . . . , L, i.e., �T [Vs] = (v1, v2, . . . , vL).
The tables T and �T are used to reduce a polynomial modulo the irreducible polynomial n(x). The
steps of the PRA-based multiplication algorithm are given below.

6

The PRA-based Multiplication Algorithm

Input: �a and �b
Output: �c and c(x)
Auxiliary: M1, M2, . . . , ML, �I, T , and �T

Step 1. �c := �a ∗�b

Step 2. �r := �c ∗ �I

Step 3. c(x) :=
∑L

i=1 ri · Mi

Step 4. for i = 2s − 1 downto s

Step 5. �c := �c + �T [Ci] ∗ x(i−s)w

Step 6. c(x) := c(x) + T [Ci] · x(i−s)w

Step 7. return �c and c(x)

Assuming the input polynomials a(x) and b(x) are of degree at most k − 1, we have the product
polynomial c(x) in its residue representation at the end of Step 1, however, this polynomial is of
degree at most 2(k − 1). The representation is still unique, since the degree of M(x) is at least
2k, and thus, the SRC algorithm will yield a unique result. However, we cannot use the resulting
polynomial c(x) and its residue representation �c as an input to another multiplication. We need
to use the generating polynomial n(x) to reduce �c and c(x) so that the result is again less than
n(x). Steps 3–6 accomplish this reduction. First we use the SRC algorithm to compute c(x),
and then in Steps 5 and 6, we use the table lookup reduction algorithm to reduce c(x) so that it
is of degree at most k − 1. We perform the operation in Step 6 by first discarding the ith (the
most significant) word Ci of c(x) = (CiCi−1 · · ·C1C0), and then by adding the s-word number
T [Ci] = (Vs−1Vs−2 · · ·V1V0) to the partial product c(x) by aligning Vs−1 with Ci−1 from the left:

Ci−1 Ci−2 · · · Ci−s+1 Ci−s Ci−s−1 · · · C1 C0

+ Vs−1 Vs−2 · · · V1 V0

The addition of the most significant words Ci + Ci = 0 is not performed. Also the terms Ci−s−1

down to C0 are not involved in the addition either. Only the terms starting from Vs−1 down to V0

are added to the corresponding terms of c(x) in order to reduce c(x) modulo n(x). Thus, the shift
factor x(i−s)w is taken care of by this alignment process.

Furthermore, as we reduce c(x) modulo n(x) in Step 6, we also reduce its residue representation �c
using �n and �T in Step 5 by multiplying the residue numbers �T [Ci] and (x(i−s)w, x(i−s)w, . . . , x(i−s)w),
and then adding the result to �c.

7 An Example of the PRA-based Multiplication

We will illustrate the PRA-based multiplication algorithm for the field GF (28) generated by the
irreducible polynomial n(x) = x8 + x5 + x3 + x2 + 1 = (1 0010 1101) which is the same polynomial
(11) used in §5. Since k = 8, w = 4, and s = k/w = 2, we have L = 2s = 4, which implies that we
need 4 pairwise relatively prime polynomials mi(x), each of which is of degree 4, to construct the
PRS. We select the following:

m1(x) = x4 + x + 1 ,

m2(x) = x4 + x3 + 1 ,

m3(x) = x4 + x3 + x2 + 1 ,

m4(x) = x4 + x3 + x2 + x + 1 .

7

This gives us M(x) = m1(x)m2(x)m3(x)m4(x) as

M(x) = x16 + x15 + x14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + 1 . (12)

The following values are also easily computed:

M1 = x12 + x11 + x10 + x7 + x + 1 ,

M2 = x12 + x10 + x8 + x3 + x2 + 1 ,

M3 = x12 + x9 + x6 + x3 + 1 ,

M4 = x12 + x8 + x5 + x4 + x3 + x2 + x + 1 ,

�n = (x3 + x2 + x, x3, x3, x2) ,

�I = (M−1
1 , M−1

2 , M−1
3 , M−1

4) ,

= (x + 1, x3 + x + 1, x2 + x + 1, x3 + x2) .

We then compute the multiples of n(x) and �n and store them in tables T and �T . The construction
of the table T was already shown in §5 in Figure 1. In order to construct �T , we take qi(x)n(x),
where qi(x) is an element of Qw, and compute the residues of this polynomial with respect to each
of the modulus as qi(x)n(x) (mod mj(x)) for j = 1, 2, 3, 4. For example, �T (0010) is computed by
taking q2(x)n(x) = (x)(x8 +x5 +x3 +x2 +1) = x9 +x6 +x4 +x3 +x, and then reducing it modulo
mi(x) for i = 1, 2, 3, 4 as

x9 + x6 + x4 + x3 + x (mod x4 + x + 1) = 1111 ,
x9 + x6 + x4 + x3 + x (mod x4 + x3 + 1) = 1000 ,
x9 + x6 + x4 + x3 + x (mod x4 + x3 + x2 + 1) = 1000 ,
x9 + x6 + x4 + x3 + x (mod x4 + x3 + x2 + x + 1) = 0100 ,

which gives �T (0010) = (1111, 1000, 1000, 0100). The final forms of the lookup tables T and �T are
given in Figure 2.

Figure 2: The lookup tables T and �T .

i T (i) �T (i)
(0000) (0000 0000) (0000, 0000, 0000, 0000)
(0001) (0010 1101) (1110, 1000, 1000, 0100)
(0010) (0101 1010) (1111, 1001, 1101, 1000)
(0011) (0111 0111) (0001, 0001, 0101, 1100)
(0100) (1011 0100) (1101, 1011, 0111, 1111)
(0101) (1001 1001) (0011, 0011, 1111, 1011)
(0110) (1110 1110) (0010, 0010, 1010, 0111)
(0111) (1100 0011) (1100, 1010, 0010, 0011)
(1000) (0100 0101) (0111, 0111, 0110, 0101)
(1001) (0110 1000) (1001, 1111, 1110, 0001)
(1010) (0001 1111) (1000, 1110, 1011, 1101)
(1011) (0011 0010) (0110, 0110, 0011, 1001)
(1100) (1111 0001) (1010, 1100, 0001, 1010)
(1101) (1101 1100) (0100, 0100, 1001, 1110)
(1110) (1010 1011) (0101, 0101, 1100, 0010)
(1111) (1000 0110) (1011, 1101, 0100, 0110)

8

We now illustrate the steps of the PRA-based finite field multiplication algorithm for computing
c(x) = a(x)b(x) mod n(x), where a, b ∈ GF (28) are given as

a(x) = x7 + x6 + x4 + x3 + x + 1 = (1101 1011) = (A1A0) ,
b(x) = x7 + x5 + x3 + x2 + x = (1010 1110) = (B1B0) .

The PRS representations of a and b are found as

�a = (1111, 1010, 1001, 0010) ,

�b = (0011, 0010, 1000, 1011) .

The PRA-based multiplication algorithm starts with c = 0 and performs the following steps to find
the result c(x) = x6 + x5 + x4 + x3 + 1 = (0111 1001) as follows:

Step 1: �c = �a ∗�b = (1111, 1010, 1001, 0010) ∗ (0011, 0010, 1000, 1011)
= (0010, 1101, 0110, 1001)

Step 2: �r = �c ∗ �I = (0010, 1101, 0110, 1001) ∗ (0011, 1011, 0111, 1100)
= (0110, 0010, 1111, 1111)

Step 3: c(x) =
∑4

i=1 ri · Mi

= (0110) · (0001 1100 1000 0011) + (0010) · (0001 0101 0000 1101)+
(1111) · (0001 0010 0100 1001) + (1111) · (0001 0001 0011 1111)

= (0111 0010 1110 0010) = (C3C2C1C0)
(i = 3) Step 5: �c = �c + �T [C3] ∗ x4 = �c + �T [0111] ∗ x4

= (0010, 1101, 0110, 1001) + (1100, 1010, 0010, 0011) ∗ x4

= (0101, 0001, 0001, 0111)
Step 6: c(x) = c(x) + T [C3] · x4 = (0010 1110 0010) + T [0111] · x4

= (1110 1101 0010) = (C2C1C0)
(i = 2) Step 5: �c = �c + �T [C2] ∗ x0 = �c + �T [1110]

= (0101, 0001, 0001, 0111) + (0101, 0101, 1100, 0010)
= (0000, 0100, 1101, 0101)

Step 6: c(x) = c(x) + T [C2] · x0 = (1101 0010) + T [1110]
= (1101 0010) + (1010 1011) = (0111 1001) = (C1C0)

The last vector �c in Step 5 or the last polynomial c(x) in Step 6 yields the result. The result �c in
Step 5 is reduced modulo n(x), and thus, it can be used as an input to another multiplication.

8 Improving the PRA-based Multiplication Algorithm

In this section, we give an improved PRA-based multiplication algorithm, which saves computa-
tional time and space as compared to the algorithm given in §6 and exemplified in §7. The improved
algorithm is based on the following observations:

• We compute the polynomial representation of c(x) along with its residue representation �c
only because we need the words of c(x) to reduce �c modulo n(x).

• We only use the most significant s words of c(x) starting from 2s − 1 down to s to perform
this reduction, as seen in Step 4.

Therefore, the SRC algorithm for computing c(x) can be modified so that we only compute the
most significant s words of c(x), and thus, save space and time in the PRA-based multiplication
algorithm. In Step 3 of the PRA-based multiplication algorithm, we compute c(x) =

∑L
i=1 ri · Mi

9

and then perform a modulo M(x) reduction. Since L = 2s, and each one of Mi is of length (at
most) 2s − 1 words, the above computation can be written as

c(x) =
L∑

i=1

ri · (Mi,2s−2Mi,2s−3 · · ·Mi,1Mi,0) . (13)

Since we are only interested in computing the most significant s words of c(x), the above sum
must be divided by xsw. To avoid unnecessary computation, we first divide Mi by x(s−1)w, then
perform the multiplications and the summation, and finally divide the result by xw. This way we
first discard the part of Mi which does not contribute to the final result, and then, we perform
another division to get only the necessary part of c(x). More explicitly, we truncate Mi by ignoring
the words indexed from 0 up to s− 2, and only keep the ones from s− 1 up to 2s− 2. This implies
that we compute

L∑
i=1

ri · (Mi,2s−2Mi,2s−3 · · ·Mi,sMi,s−100 · · · 0) . (14)

The least significant s − 1 words of zeros can be ignored by computing

L∑
i=1

ri · (Mi,2s−2Mi,2s−3 · · ·Mi,sMi,s−1) =
L∑

i=1

ri ·
Mi

x(s−1)w
. (15)

The multiplication operation ri · (Mi,2s−2Mi,2s−3 · · ·Mi,sMi,s−1) produces an (s + 1)-word number;
the sum of L such numbers is still of length s + 1 words. Since we only need the most significant s
words, we ignore the least significant word of the result as

c′(x) =

(
L∑

i=1

ri ·
Mi

x(s−1)w

)
· 1
xw

= (C ′
s−1C

′
s−2 · · ·C ′

1C0) . (16)

The values M ′
i(x) = Mi(x)/x(s−1)w can be precomputed. The most significant s words of c(x) is

computed using the modified SRC algorithm as follows:

The Modified SRC Algorithm
Input: �p = (p1, p2, . . . , pL)
Output: p′(x): The most significant s words of p(x)
Auxiliary: M ′

1, M
′
2, . . . , M

′
L and �I

Step 1. �r := �p ∗ �I

Step 2. p′(x) :=
(∑L

i=1 ri · M ′
i

)
· x−w

Step 3. return p′(x)

The improved PRA-based multiplication algorithm uses the modified SRC algorithm given above
to compute c′(x) in order to reduce �c.

The Improved PRA-based Multiplication Algorithm

Input: �a and �b
Output: �c

Auxiliary: M ′
1, M

′
2, . . . , M

′
L, �I, T , and �T

Step 1. �c := �a ∗�b

Step 2. �r := �c ∗ �I

Step 3. c′(x) :=
(∑L

i=1 ri · M ′
i

)
· x−w

10

Step 4. for i = s − 1 downto 0
Step 5. �c := �c + �T [C ′

i] ∗ xiw

Step 6. c′(x) := (c′(x) mod xiw) + T [C ′
i] · x−(s−i)w

Step 7. return �c

We have only the most significant s words of c(x). The entire c(x) can be written as

c(x) = (C ′
s−1C

′
s−2 · C ′

1C
′
0Cs−1Cs−2 · C1C0) .

In order to reduce c(x) in step for i = s − 1, we need to take the most significant word C ′
s−1 and

obtain the table entry T [C ′
s−1] = (Vs−1Vs−2 · · ·V1V0), and add it to c(x) by ignoring the addition

of the most significant word C ′
s−1, as follows:

C ′
s−2 · · · C ′

1 C ′
0 Cs−1 Cs−2 · · · C1 C0

+ Vs−1 · · · V2 V1 V0

In general, in the ith step, we need to take the least significant i words of c′(x) and add (s−i) words
right-shifted version of T [C ′

i] to c′(x) in Step 6. Similarly, we perform the reduction on �c in Step
5. The most significant words of c(x) are completely zeroed during the reduction process in Step
6. We do not provide c′(x) as an output, and the improved PRA-based multiplication algorithm
returns �c only.

9 An Example for the Improved Algorithm

We illustrate the steps of the improved PRA-based multiplication algorithm using the same example
as the one in §7. The precomputation part and the tables remain the same. Additionally, we need
to compute M ′

i(x) for i = 1, 2, . . . , L, which are obtained using M ′
i = Mi/x(s−1)w = Mi/x4 as

M ′
1 = (0001 1100 1000 0011)/x4 = (0001 1100 1000) ,

M ′
2 = (0001 0101 0000 1101)/x4 = (0001 0101 0000) ,

M ′
3 = (0001 0010 0100 1001)/x4 = (0001 0010 0100) ,

M ′
4 = (0001 0001 0011 1111)/x4 = (0001 0001 0011) ,

The algorithm takes the same �a and �b as input operands, and performs the following steps to find
the result �c = (0000, 0100, 1101, 0101).

Step 1: �c = �a ∗�b = (1111, 1010, 1001, 0010) ∗ (0011, 0010, 1000, 1011)
= (0010, 1101, 0110, 1001)

Step 2: �r = �c ∗ �I = (0010, 1101, 0110, 1001) ∗ (0011, 1011, 0111, 1100)
= (0110, 0010, 1111, 1111)

Step 3: c′(x) = (
∑4

i=1 ri · M ′
i) · x−4

= [(0110) · (0001 1100 1000) + (0010) · (0001 0101 0000)+
(1111) · (0001 0010 0100) + (1111) · (0001 0001 0011)] · x−4

= (0111 0010)
(i = 1) Step 5: �c = �c + �T [C ′

1] ∗ x4 = �c + �T [0111] ∗ x4

= (0010, 1101, 0110, 1001) + (1100, 1010, 0010, 0011) ∗ x4

= (0101, 0001, 0001, 0111)
Step 6: c′(x) = (c′(x) mod x4) + T [C ′

1] · x−4 = (0010) + T [0111] · x−4

= (0010) + (1100) = (1110)

11

(i = 0) Step 5: �c = �c + �T [C0] ∗ x0 = �c + �T [1110]
= (0101, 0001, 0001, 0111) + (0101, 0101, 1100, 0010)
= (0000, 0100, 1101, 0101)

Step 6: c′(x) = (c′(x) mod x0) + T [C ′
0] · x0 = (1110) + T [1110] = (0000)

Since c′(x) after Step 6 for i = 0 is not needed, this computation may be skipped.

10 Analysis of the Algorithms

In this section, we analyze the table lookup based reduction and multiplication algorithms, and
then calculate the time and processor requirements of the improved PRA-based multiplication
algorithm. We calculate the size of the lookup tables and count the total number of the table read,
the word-level GF (2) addition, and the word-level GF (2) multiplication operations.

First we start the word-level GF (2) operations. The word-level addition is simply the bit-wise
XOR operation on a pair of 1-word binary numbers, which is a readily available instruction on most
general purpose microprocessors and signal processors. On the other hand, the word-level multipli-
cation operation receives two 1-word (w-bit) polynomials A(x) and B(x) defined over GF (2), and
computes the 2-word polynomial C(x) = A(x)B(x). The degree of the product polynomial C(x) is
2(w − 1). For example, given A = (1101) and B = (1010), this operation computes C as

A(x)B(x) = (x3 + x2 + 1)(x3 + x) = x6 + x5 + x4 + x = (0111 0010) .

The implementation of this operation, which we call MULGF2 as in [4], can be performed in three
different ways. From the fastest to the slowest, these methods are:

• An instruction implemented on the processor.

• The table lookup method.

• The emulation using the XOR and SHIFT operations.

The details of the analysis of these methods can be found in [4]. In this paper, we will simply count
the number of MULGF2 operations, and assume that they are implemented using any of the above
methods. A simple method for implementing the table lookup approach is to use two tables, one for
computing the higher (H) and the other for computing the lower (L) bits of the product. We store
the values H and L in two table reads. The tables are addressed using the bits of the operands, and
thus, the total size of the tables H and L would be of size 2 × 2w × 2w × w bits. For w = 4, w = 8,
and w = 10, these amount to 256 bytes, 131,072 bytes, and 2,621,440 bytes, respectively. The size
grows quite excessively, and thus, limiting the implementation for w ≥ 16. Other approaches are
also possible, for example, a hybrid approach was suggested in [4].

The other operation to consider is the table read operation from T . We will denote this operation
using TREAD, and count the total number of TREAD operations. In regard to the size of the table, we
note that the table T has 2w rows, each of which contains a polynomial of length k. This implies
that the size of the tables is 2w × k bits. The space requirements for the tables T (or T2) for
performing the TREAD operation are exemplified in Figure 3.

Figure 3: The size of the table T in bytes

k w = 4 w = 8 w = 10 w = 16
160 320 5,120 20,480 1,310,720
256 512 8,192 32,768 2,097,152
512 1,024 16,384 65,536 4,194,304

1024 2,048 32,768 131,072 8,388,608

12

For example, if w = 8 and k = 160, the size of the table is 28 × 20 = 5, 120 bytes, which is quite
reasonable. However, the table size becomes excessive as we increase the wordsize. For a fixed field
size k, we can decide about the wordsize w given the memory capacity of the computer system.

Now, we give the steps of the table lookup based multiplication algorithm in detail in Figure 4,
together with the number of TREAD, MULGF2, and XOR operations.

Figure 4: The operation counts for the table lookup based multiplication algorithm.

TREAD MULGF2 XOR
for i=0 to s do - - -
C[i]:=0 - - -

for i=s-1 downto 0 do - - -
P:=0 - - -
for j=s-1 downto 0 do - - -
(H,L):=MULGF2(A[i],B[j]) - s2 -
C[j+1]:=C[j] XOR H XOR P - - 2s2

P:=L - - -
C[0]:=P - - -
for j=0 to s-1 do - - -
C[j]:=C[j] XOR T[C[s]][j] s - s2

The total number of TREAD, MULGF2, and XOR operations for the multiplication algorithm is found
as s, s2, and 3s2, respectively. In Figure 5, we compare the two table lookup based multiplication
method to the algorithm in [4], which does not require table lookup. The operation counts indi-
cate that the table lookup based algorithms are computationally more efficient since we trade off
computational time for space for the tables.

Figure 5: The operation counts for the algorithms.

Method in [4] Table Lookup Method

TREAD 0 s

MULGF2 s2 s2

XOR 3s2(w/2 + 1) + sw/2 3s2

SHIFT 2s2(w + 1) + s(w + 1) 0

We now give a detailed analysis of the improved PRA-based multiplication algorithm. Following
the assumption made in §2, we select deg(mi) = w, and perform modulo mi(x) multiplications
using the table lookup method. Since there are L different moduli, we assume that we have L = 2s
processors each of which performs its arithmetic (addition and multiplication) operations with
respect to its selected modulus. We also use a processor which we call the ‘server’ to perform a few
table lookup operations. The server can be one of the processors. We ignore the server operations
and the communication overhead in our analysis.

The analysis of the improved PRA-based multiplication algorithm is given below. The results
are summarized in Figure 6.

Step 1: This step requires a single MULGF2 operation by each of 2s processors.

Step 2: This step requires a single MULGF2 operation by each of 2s processors.

Step 3: Let M ′
i = (M ′

i,s−1M
′
i,s−2 · · ·M ′

i,0). This value is already precomputed and saved. During
Step 3, the ith processor multiplies ri by M ′

i using MULGF2 operation and obtains the (s + 1)-
word result. Each word multiplication for j = 0, 1, . . . , s−1 produces a 2-word result rj ·M ′

i,j =

13

(HjLj). These parts must then be added to obtain the final result ri · M ′
i as follows:

M ′
i,s−1 M ′

i,s−2 · · · M ′
i,2 M ′

i,1 M ′
i,0

× ri

Ls−1 Ls−2 L2 L1 L0

+ Hs−1 Hs−2 Hs−3 H1 H0

Ss Ss−1 Ss−2 · · · S2 S1 S0

The above operation is performed using s MULGF2 operations and s− 1 XOR operations by the
ith processor for all processors i = 1, 2, . . . , 2s.

Then the 0th word is discarded and the remaining s-word polynomials are summed by all 2s
processors using the binary tree algorithm. This operation takes log2(2s) steps, where at each
step two s-word polynomials are added. Therefore, s log2(2s) XOR operations are required.

The resulting s-word polynomial c′(x) is communicated to the server and to the first s pro-
cessors among all 2s processors. This polynomial is needed in Step 6.

Step 5: The values xiw (mod mj) are precomputed and stored for all i = 1, 2, . . . , s − 1 and
j = 1, 2, . . . , 2s. The server performs a lookup operation for xiw (mod mj) and also for
�T [C ′

i], and sends them to the jth processor for all j = 1, 2, . . . , 2s. Each processor then
performs a single MULGF2 operation and a single XOR operation to obtain �c := �c + �T [C ′

i] for a
single vector entry.

Step 6: In this step, we add the i-word shifted polynomial T [C ′
i] to c′(x). Since c′(x) is available

in the first s processors, each of one of these processors performs a single XOR operation. The
updated polynomial c′(x) is then communicated to the server.

Figure 6: Operation counts for the PRA-based multiplication.

Steps MULGF2 XOR
Step 1 1
Step 2 1
Step 3 s s − 1 + s log2(2s)
Step 5 (s times) 1 1
Step 6 (s times) 1
Total 2s + 2 3s − 1 + s log2(2s)

11 Applications of the PRA-based Multiplication

The improved algorithm takes two polynomials in their residue representation �a and �b such that the
degree of each of a(x) and b(x) is less than k, and produces the product polynomial in its residue
representation �c. The squaring algorithm can be given using the similar construction method,
however, there may be certain optimizations.

The PRA-based multiplication algorithm for the field GF (2k) finds its applications in cryptog-
raphy where the range of the operands is large, usually 160 ≤ k ≤ 1024, therefore, it is justifiable to
use parallel polynomial arithmetic. We give an exponentiation algorithm for computing ge where
g ∈ GF (2k) and e is an r-bit integer e = (er−1er−2 · · · e1e0) below.

The PRA-based Exponentiation Algorithm
Input: g(x), e, and n(x)
Output: c(x) = ge

14

Auxiliary: M ′
1, M

′
2, . . . , M

′
L, �I, T , and �T

Step 1. Compute �g and �c := (1, 1, . . . , 1)
Step 2. for i = r − 1 downto 0
Step 3. �c := Multiply(�c,�c)
Step 4. if ei = 1 then �c := Multiply(�g,�c)
Step 5. c(x) := SRC(�c)
Step 6. return c(x)

Here the multiplication algorithm is the improved PRA-based multiplication method given in §8,
which uses the modified SRC algorithm within. Since we need the entire c(x) as the output of the
exponentiation operation, the original SRC algorithm is used in Step 6.

12 Conclusions

The proposed parallel algorithm requires O(s log s) arithmetic operations using 2s processors. Ad-
ditionally there are some table lookup operations performed by the server, and there is also the
communication overhead which we ignored in our analysis. The proposed parallel algorithm is not
suitable for implementation on a general purpose parallel computer, however, it is highly suitable for
hardware implementation. For example, by selecting w = 8 and L = 40, we can implement GF (2160)
arithmetic, which is desired several applications of elliptic curve cryptography [6]. Furthermore, by
selecting special irreducible polynomials, for example, trinomials or all-one-polynomials, we may
not have a need for constructing the tables T and �T and the reduction operation can be simplified.
We are currently working on such improvements and hardware implementation of the proposed
PRA-based multiplication algorithm.

References

[1] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22:644–654, November 1976.

[2] D. E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Read-
ing, MA: Addison-Wesley, Third edition, 1998.

[3] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, Jan-
uary 1987.

[4] Ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). Design, Codes and Cryptography,
14(1):57–69, April 1998.

[5] J. H. McClellan and C. M. Rader. Number Theory in Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[6] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Boston, MA: Kluwer Academic
Publishers, 1993.

[7] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Advances in
Cryptology — CRYPTO 85, Proceedings, Lecture Notes in Computer Science, No. 218, pages
417–426. New York, NY: Springer-Verlag, 1985.

[8] J. Omura and J. Massey. Computational method and apparatus for finite field arithmetic. U.S.
Patent Number 4,587,627, May 1986.

15

