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AbstractÐAn efficient algorithm for the multiplication in GF �2m� was introduced

by Mastrovito. The space complexity of the Mastrovito multiplier for the irreducible

trinomial xm � x� 1 was given as m2 ÿ 1 XOR and m2 AND gates. In this paper,

we describe an architecture based on a new formulation of the multiplication matrix

and show that the Mastrovito multiplier for the generating trinomial xm � xn � 1,

where m 6� 2n, also requires m2 ÿ 1 XOR and m2 AND gates. However, m2 ÿm=2

XOR gates are sufficient when the generating trinomial is of the form xm � xm=2 �
1 for an even m. We also calculate the time complexity of the proposed Mastrovito

multiplier and give design examples for the irreducible trinomials x7 � x4 � 1 and

x6 � x3 � 1.

Index TermsÐFinite fields, multiplication, standard basis, irreducible trinomial.
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1 INTRODUCTION

SOFTWARE and hardware implementations of the basic arithmetic
operations (addition, multiplication, and inversion) in the Galois
field GF �2m� are desired in coding theory, computer algebra, and
cryptography [7], [4]. The cryptographic applications include
elliptic curve cryptosystems [8], [2] in which m is quite large,
usually around several hundred. The efficiency of an algorithm is
often measured by the number of bit-level or word-level opera-
tions. In the hardware implementations, it is often desirable to
reduce the total number of gates (space complexity) and the total
gate delay (time complexity) of the algorithm. The representation
of the field elements has a crucial role in determining the space and
time complexity of the arithmetic operations, particularly the field
multiplication. In this paper, we are interested in space and time
complexity of the finite field multiplication operation, where the
field elements are represented using the standard basis.

The standard basis multiplication operation in GF �2m� is often
accomplished in two steps: polynomial multiplication and mod-
ular reduction. Let a�x�; b�x�; c�x� 2 GF �2m� and p�x� be the
irreducible polynomial generating GF �2m�. In order to compute
c�x� � a�x�b�x�mod p�x�, we first obtain the product polynomial
d�x� which is of degree (at most) 2mÿ 2 as

d�x� � a�x�b�x� �
Xmÿ1

i�0

aix
i

 ! Xmÿ1

i�0

bix
i

 !
: �1�

The next step is then the reduction operation c�x� � d�x�mod p�x�
to obtain the mÿ 1 degree polynomial c�x�. In practice, the
multiplication and the reduction steps are often combined for
efficiency reasons. An architecture for performing the field
multiplication was proposed by Mastrovito [5], [6]. In this method,
we represent the computation of d�x� as a matrix-vector product
d �Mb, where �2mÿ 1� �m dimensional matrix M consists of the
coefficients of the polynomial a�x�. We then obtain an m�m
dimensional matrix Z by reducing the matrix M using the
generating polynomial p�x�. The product c�x� is computed using
the matrix-vector product c � Zb.

The space complexity of the multiplier for the special generat-

ing trinomial xm � x� 1 is shown to be m2 ÿ 1 XOR and m2 AND

gates [5], [6], [9], [10]. Paar [11] conjectured that the space

complexity of the Mastrovito multiplier would be the same for

all trinomials xm � xn � 1, where 1 � n � mÿ 1. In this paper, we

describe an architecture for the Mastrovito type multiplier using a

general trinomial of the form xm � xn � 1 and show that the

proposed architecture requires m2 ÿ 1 XOR and m2 AND gates

when n 6� m=2. However, when m is even and n � m=2 there is

further reduction: The proposed architecture requires only m2 ÿ
m=2 XOR gates.

A few examples of irreducible polynomials of the form xm �
xn � 1 are given in Table 1. Furthermore, it is known [7] that a

trinomial of the form xm � xm=2 � 1 is irreducible over GF �2� if m

is of the form m � 2 � 3r for some r � 0.
In the following sections, we give a formulation of the

Mastrovito matrix Z and describe an architecture to compute Z.

We show that it is sufficient to compute Zn (the nth row of Z). The

remaining elements can be obtained by rewiring, i.e., without

using any gates. We then give an analysis of the multiplier

architecture and calculate its space and time complexities.

2 THE REDUCTION PROCESS

The entries of the Mastrovito matrix Z are functions of the

coefficients of the generating polynomial p�x� and the elements of

the original multiplication matrix M, which consists of the

coefficients of a�x�. The matrix M gives the relationship between

the coefficients of b�x� and d�x� in terms of the coefficients of a�x�,
as follows:
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266666664

377777775:

�2�
The product polynomial d�x� contains terms with degrees larger

than mÿ 1. These terms need to be reduced using the modulus

polynomial p�x� in order to obtain the polynomial representation

of the field element in GF �2m�. Since we are considering the

generating polynomial p�x� � xm � xn � 1, we use the identity

xm � xn � 1 to reduce the higher order terms in d�x�. A particular

term xi for i � m may need to be reduced several times. For

example, let m � 5 and p�x� � x5 � x3 � 1. The terms x5 and x6

need to be reduced only once: x5 � x3 � 1 and x6 � x4 � x.

H o w e v e r , t h e t e r m x7 w i l l n e e d t w o r e d u c t i o n s

x7 � x5 � x2 � x3 � 1� x2. For a specific element, the number of

reductions depends solely on the degree of the element and on the

order of the middle term of the generating trinomial. The

maximum number of reductions are performed on the highest

order element x2mÿ2. Let k be the number of reductions required to

bring this element to its proper range �0; mÿ 1�. This integer k has

the property 2mÿ 2ÿ k�mÿ n� < m, which implies k > mÿ2
mÿn .

Therefore, we have
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k � mÿ 2

mÿ n
� �

� 1: �3�

Our objective is to obtain the m�m matrix Z by systematically

reducing the last mÿ 1 rows of the �2mÿ 1� �m matrix M using

the generating trinomial xm � xn � 1. In order to accomplish this

task, we define the reduction array, which is the array of �mÿ 1�
rows produced by the reduction of the higher order elements

xm; xm�1; . . . ; x2mÿ2, as shown in Table 2.
The rows defined by the reduction array are added to the rows

of M in order to eliminate the last mÿ 1 rows of M . The exponent

on the left-hand side provides the index to the source row, which

will be added to the rows determined by the exponents on the

right-hand side. Initially, we take the first m rows of M as the Z

matrix and use the rows above to add certain rows of M to certain

other rows of Z in order to obtain the final Z matrix. Let Zi and Mj

denote the ith and jth rows of the matrices Z and M, respectively.

The first reduction is determined by the first row of the reduction

array as adding Mm to Z0 and Zn, since xm � 1� xn. The reduction

array is given in Table 2. The rows of the reduction array can be

divided into groups consisting of rows with equal number of

reductions. Since the number of reductions is k, there are k

partitions in the array. Since the degree of a term decreases by

mÿ n after each reduction, the first mÿ n rows, which have

degrees ranging from m to 2mÿ nÿ 1, are reduced only once.

Thus, the first mÿ n rows form the first partition. The next

partition is the next set of mÿ n rows. This continues in the same

fashion until the kth partition which will have mÿ n or fewer

rows. We enumerate the partitions in increasing order, beginning

from the topmost as the 0th partition. In general, the ith partition

consists of the rows starting with the term xm�i�mÿn� and ending

with the term xm��i�1��mÿn�ÿ1.
Also, the columns of the reduction array possess certain

properties. The first column on the right-hand side is

special: It is the sequence of increasing powers of x as

1; x; x2; . . . ; xmÿ2. The second columns contains two sequences:

The sequence xn; xn�1; . . . ; xmÿ1 followed by the sequence

1; xmÿnÿ1; xmÿn; . . . ; xnÿ2. The third column is obtained by shifting

down the second column mÿ n positions. The fourth column is

obtained by shifting down the third column mÿ n positions, and

so on.
Following the construction method proposed in [3], we

decompose the Mastrovito matrix Z as the sum of two m�m
matrices X and Y , i.e., Z � X � Y , where X is the upper m rows of

the matrix M. The matrix X is an m�m Toeplitz matrix, i.e., a

matrix whose entries are constant along each diagonal [1].

Furthermore, X is lower triangular. On the other hand, the m�m
matrix Y represents the terms obtained through reduction and is

constructed using the reduction array. We will show that the

matrix Y is made of two Toeplitz matrices.

Theorem 1. The m�m dimensional matrix Y is partitioned into two
Toeplitz matrices. The upper n rows form an n�m Toeplitz matrix,
while the lower mÿ n rows form an �mÿ n� �m Toeplitz matrix.

Proof. The first column of the reduction array is the sequence
1; x; . . . ; xmÿ2 c o r r e s p o n d i n g t o t h e l e f t - h a n d s i d e
xm; xm�1; . . . ; x2mÿ2. This implies that we add the rows
Mm;Mm�1; . . . ;M2mÿ2 to the rows Z0; Z1; . . . ; Zmÿ2, respectively.
We represent this computation using the m�m matrix T given
as

T �

0 amÿ1 amÿ2 amÿ3 � � � a2 a1

0 0 amÿ1 amÿ2 a3 a2

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � amÿ1 amÿ2

0 0 0 0 � � � 0 amÿ1

0 0 0 0 � � � 0 0

266666664

377777775; �4�

obtained from the matrix M in (2). The matrix T , which is an
m�m Toeplitz matrix, is the initial value of the matrix Y as
Y :� T . After this computation, we need to accumulate the
contributions of the remaining columns of the reduction array.
We first consider the contribution of the sequence
xn; xn�1; . . . ; xmÿ1, which is the starting sequence in the second
column of the reduction array (and, also, all columns there-
after). This sequence implies that we add the rows
Mm;Mm�1; . . . ;M2mÿnÿ1 to the rows Zn; Zn�1; . . . ; Zmÿ1, respec-
tively. This contribution to the matrix Y is represented using
the m�m matrix U as Y :� Y � U . The matrix U is obtained
from the matrix T by shifting down n rows as follows:

U �

0 0 0 � � � 0 � � � 0 0
..
. ..

. ..
. . .

. ..
. . .

. ..
. ..

.

0 0 0 � � � 0 � � � 0 0
0 amÿ1 amÿ2 � � � an � � � a2 a1

0 0 amÿ1 � � � an�1 � � � a3 a2

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

0 0 0 � � � amÿ1 � � � amÿn�1 amÿn

26666666664

37777777775

0
..
.

nÿ 1
n

n� 1

..

.

mÿ 1

�5�
Note that the matrix U is composed of two matrices. Its upper n
rows constitute an n�m zero matrix and its lower mÿ n rows
constitute an �mÿ n� �m Toeplitz matrix.

Let T �" i� represent the matrix T shifted up i rows by feeding
i rows of zeros from bottom. Also, let U �! i� represent the
matrix U shifted right i columns by feeding i columns of zeros
from left. The contribution of the first column of the reduction
array (i.e., the sequence 1; x; x2; . . . ; xmÿ2 to the Y matrix is
given as T �" 0� � T . The contribution of the second column of
the reduction array has two components: The starter sequence
xn; xn�1; . . . ; xmÿ1 contributes the U matrix and the remainder
sequence 1; xmÿnÿ1; xmÿn; . . . ; xnÿ2 contributes the matrix T
shifted up mÿ n rows, i.e., the matrix T �" �mÿ n��. Similarly,
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the starter sequence in the third column contributes the matrix
U �! �mÿ n��, while the remainder the sequence contributes
T �" 2�mÿ n��. Adding these contributions for i � 0 to kÿ 1, we
obtain

Y �
Xkÿ1

i�0

T �" i�mÿ n�� �
Xkÿ1

i�0

U�! i�mÿ n��: �6�

Note that T and, thus, T �" i� for all i � 0 are Toeplitz matrices.

Their sum is also a Toeplitz matrix. The first n rows of the

matrix U are zero, as are the first n rows of U �! i� for i � 0.

Therefore, we conclude that the upper n rows of the matrix Y

form an n�m Toeplitz matrix. Furthermore, the last mÿ n
rows the matrix U form an �mÿ n� �m Toeplitz matrix.

Similarly, the last mÿ n rows of all U�! i� are �mÿ n� �m
Toeplitz matrices. Therefore, the last mÿ n rows of the matrix

Y form an �mÿ n� �m Toeplitz matrix. tu

3 THE MULTIPLIER ARCHITECTURE

Since X is an m�m Toeplitz matrix and Y can be partitioned into

two Toeplitz matrices, and Z � X � Y , we conclude that Z matrix

can also be partitioned into two Toeplitz matrices. In other words,

the upper n rows and the lower mÿ n rows form two Toeplitz

matrices of dimension n�m and �mÿ n� �m, respectively. We

will use this fact in the design of our multiplier.
First, we make three important observations about the con-

struction of Zi for 0 � i � mÿ 1 and k 6� n using the row Zn
without using any gates:

1. The rows Zi for 1 � i � nÿ 1 can be obtained from Z0 by
rewiring.

2. The rows Zi for n� 1 � i � mÿ 1 can be obtained from Zn
by rewiring.

3. The row Z0 can be obtained from (an intermediate step of)
Zn by rewiring.

The proof of Property 1 is straightforward. Since the first n rows

of Z form an n�m Toeplitz matrix, each position in the upper

triangular region contains diagonally the same value. We first

implement the first row and, then, obtain the other values in the

upper triangular region of the n�m matrix by rewiring the values

from the first row. On the other hand, the lower triangular part of

Y corresponding to the first nÿ 1 rows is filled with zeros and,

thus, the only contribution to that part of Z comes from X, which

consists of single terms. Therefore, the input bits will simply be

wired to obtain the first nÿ 1 rows of Z.
In order to prove Property 2, we note that the last mÿ n rows of

Z form an �mÿ n� �m dimensional Toeplitz matrix. The elements

in the upper triangular region of this submatrix are diagonally the

same and, therefore, they can be obtained from Zn by rewiring. All

the remaining entries (in the lower triangular region) contain

single terms coming from X, which are obtained from the inputs

by rewiring.

Property 3 is proven as follows: On the right-hand side of the

reduction array, whenever there is the term 1 in a particular row,

there is also the term xn, which shows that the set of contributions

from the reduction array to Zn covers the set of contributions to Z0.

The remaining terms come from X. However, X0 contains all zero

entries except the single term a0 in the leftmost position. Since this

position in Y contains a zero, this term is from the input. The other

entries of Z0 are obtained from Zn.
The complexity of the multiplier solely depends on Zn, which is

explicitly given as

Zn ��ananÿ1 � � � a1a00 � � � 0� � �0 � � � 0amÿ1 � � � an�1�

�
Xkÿ1

i�0

Mm�! i�mÿ n��:

The first term (vector) in (7) is the nth row of X. The second term

(vector) comes from the xn term in the first column on the right-

hand side of the reduction array. The other terms (the terms inside

the summation) come from the xn terms on the top of each column.

Let the sum of the first two vectors be denoted as

W � �ananÿ1 � � � a1a0amÿ1 � � � an�1�;
then, we can write Zn as
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Zn �W �
Xkÿ1

i�0

Mm�! i�mÿ n��: �7�

The summation (7) has important properties which we will use to
construct the proposed architecture. In the addition of
W �Mm�! 0�, the element ai in W and the element ai�mÿn in
Mm�! 0� are aligned for i � nÿ 1; nÿ 2; . . . ; 1 as

an anÿ1 anÿ2 � � � a1 a0 amÿ1 � � � an�1

0 amÿ1 amÿ2 � � � amÿn�1 amÿn amÿnÿ1 � � � a1

Furthermore, in the addition of Mm�! 0� �Mm�! �mÿ n��, the
element ai in Mm�! 0� and the element ai�mÿn in Mm�! �mÿ n��
are aligned for i � nÿ 1; nÿ 2; . . . ; 1 as

0 amÿ1 � � � an anÿ1 anÿ2 � � � a1

0 0 � � � 0 amÿ1 amÿ2 � � � amÿn�1

Therefore, the addition of the subvector �anÿ1anÿ2 � � � a1� of W to
the corresponding part in Mm�! 0� is contained in the sum
Mm�! 0� �Mm�! �mÿ n��. Hence, this part of W need not be
separately added. It can be obtained from the summation term in
(7) by rewiring.

We stack the m-dimensional row vectors Mm�! i�mÿ n�� on
top of one another to obtain the k�m matrix C as

C �

Mm�! 0�
Mm�! �mÿ n��
Mm�! 2�mÿ n��
..
.

Mm�! �kÿ 1��mÿ n��

2666664

3777775: �8�

The computation of the sum in (7) is equivalent to the summation
of the columns of the matrix C. Let Ci � �C0;iC1;i � � �Ckÿ1;i�T be the
ith column of C indexed from left to right as i � 0; 1; . . . ;mÿ 1.
Since the matrix C is obtained by first writing Mm to the first row
and, then, shifting this row �mÿ n� times to the right to obtain the
remaining rows, the sum

Pkÿ1
j�0 Cj;i is fully contained in the sumPkÿ1

j�0 Cj;i��mÿn�. Therefore, it suffices to obtain the individual sums
of the last mÿ n rows of the matrix C. The remaining column sums
are obtained as byproducts. Also, the first element an of W need
not be added either, since the first column C0 is zero column; we
simply rewire this element from the input.

Furthermore, among the last mÿ n columns, some Ci columns
are of length k, while some other are of length kÿ 1. This is
because, when Mm is shifted �kÿ 1��mÿ n� times to the right, the
leftmost side of Mm�! �kÿ 1��mÿ n�� is filled with zeros; only the
last � � �mÿ 1� ÿ �kÿ 1��mÿ n� entries will be the individual ai
terms. Therefore, the last � columns are of length k and the
remaining �mÿ n� ÿ � columns are of length kÿ 1.

4 SPACE AND TIME COMPLEXITY

It follows from the analysis in the preceding section that we need
to compute the individual sum of the last � columns Ci for
i � mÿ 1ÿ �� 1; mÿ 1ÿ �; . . . ;mÿ 1, which are of length k. A
single column sum requires kÿ 1 XOR gates. All � columns
require ��kÿ 1� XOR gates. The remaining �mÿ n� ÿ � columns
are of length kÿ 1, which requires kÿ 2 XOR gates to obtain each
column sum. Therefore, we need ��mÿ n� ÿ ���kÿ 2� XOR gates
to obtain these column sums. Hence, the computation of the
individual sums of the last mÿ n columns of C requires a total of

��kÿ 1� � ��mÿ n� ÿ ���kÿ 2� � nÿ 1

XOR gates. The rest of the column sums are obtained from these
mÿ n column sums as byproducts. We then need to add the vector

W except its subvector �anÿ1anÿ2 � � � a1�. Also, the first element an
of W need not be added; it can be rewired form the input. Since W

is of length m, we need mÿ �nÿ 1� ÿ 1 XOR gates to add the row

vector W to the final sum. This gives the total number of XOR gates

to compute Zn as

nÿ 1�mÿ �nÿ 1� ÿ 1 � mÿ 1:

Therefore, the generation of the matrix Z requires a total of mÿ 1

XOR gates. The matrix multiplication c � Zb, where b is of

dimension m� 1 and Z is of dimension m�m, requires m2 two-

input AND gates and m�mÿ 1� XOR gates. This gives the total

number of AND and XOR gates to obtain the product c�x� �
a�x�b�x�xm � xn � 1 as

AND � m2

XOR � �mÿ 1� �m�mÿ 1� � m2 ÿ 1:

It is interesting to notice that the space complexity is not a function

of n. On the other hand, the time complexity depends on n, as we

will show now. The longest signal path in the architecture is

defined as the time complexity of the multiplier. We will denote

the delay of a 2-input AND and XOR gates by TA and TX ,

respectively. The longest delay occurs in the calculation of the last

element Zn, which requires the sum of the last element of W , and

all k elements of the column vector Cmÿ1. Since some of the suffix

(or prefix) elements of the summation are needed, we use a length

k linear XOR chain to compute this sum, using a total of kTX delays

to compute the sum. The remaining elements of Zn and, also, the

entire Z matrix require no additional delays.
In order to compute the matrix-vector product c � Zb, we first

use m2 AND gates to compute all products in parallel using a

single TA delay. A single element of c is then computed by

summing a vector of length m using a binary XOR tree, which

requires dlog2�m�eTX delays. Therefore, the total delay of the

circuit to obtain the product c is obtained as

kTX � TA � dlog2�m�eTX �

TA � mÿ 2

mÿ n
� �

� 1� dlog2�m�e
� �

TX:
�9�

5 AN EXAMPLE

In this section, we construct the Mastrovito multiplier for the

irreducible trinomial x7 � x4 � 1. We use this example to illustrate

the proposed architecture. First, we calculate the number of

reductions using (3) as

k � mÿ 2

mÿ n
� �

� 1 � 7ÿ 2

7ÿ 4

� �
� 1 � 2:

Since 2mÿ 2 � 12, the reduction array contains 2mÿ 2ÿm� 1 �
6 rows for reducing the powers x7; x8; . . . ; x12. The rows of the

reduction array are partitioned into k � 2 groups, where the two

groups contain mÿ n � 7ÿ 4 � 3 rows each. The first group of

three rows contains one reduction for each expression:

x7 � 1� x4

x8 � x� x5

x9 � x2 � x6:

The second group of three rows contains two reductions for each

expression:
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x10 � x3 � x7 � x3 � 1� x4

x11 � x4 � x8 � x4 � x� x5

x12 � x5 � x9 � x5 � x2 � x6:

The reduction array in its final form is as follows:

x7 � 1� x4

x8 � x� x5

x9 � x2 � x6

x10 � x3 � 1� x4

x11 � x4 � x� x5

x12 � x5 � x2 � x6:

In order to obtain the 7� 7 matrix Y , we write the expression

Y �
X1

i�0

T �" i�7ÿ 4�� �
X1

i�0

U �! i�7ÿ 4��
� T �" 0� � T �" 3� � U�! 0� � U �! 3�:

We first obtain the 7� 7 matrices T �" 3i� for i � 0; 1 as

T �

0 a6 a5 a4 a3 a2 a1

0 0 a6 a5 a4 a3 a2

0 0 0 a6 a5 a4 a3

0 0 0 0 a6 a5 a4

0 0 0 0 0 a6 a5

0 0 0 0 0 0 a6

0 0 0 0 0 0 0

2666666666664

3777777777775
;

T �" 3� �

0 0 0 0 a6 a5 a4

0 0 0 0 0 a6 a5

0 0 0 0 0 0 a6

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2666666666664

3777777777775
:

Similarly, we obtain the 7� 7 matrices U �! 3i� for i � 0; 1 as

U �

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 a6 a5 a4 a3 a2 a1

0 0 a6 a5 a4 a3 a2

0 0 0 a6 a5 a4 a3

2666666666664

3777777777775
;

U �! 3� �

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 a6 a5 a4

0 0 0 0 0 a6 a5

0 0 0 0 0 0 a6

2666666666664

3777777777775
:

Finally, we obtain the 7� 7 matrices X and Y as

X �

a0 0 0 0 0 0 0

a1 a0 0 0 0 0 0

a2 a1 a0 0 0 0 0

a3 a2 a1 a0 0 0 0

a4 a3 a2 a1 a0 0 0

a5 a4 a3 a2 a1 a0 0

a6 a5 a4 a3 a2 a1 a0

2666666666664

3777777777775
;

Y �

0 a6 a5 a4 a3 � a6 a2 � a5 a1 � a4

0 0 a6 a5 a4 a3 � a6 a2 � a5

0 0 0 a6 a5 a4 a3 � a6

0 0 0 0 a6 a5 a4

0 a6 a5 a4 a3 � a6 a6 � a2 � a5 a5 � a1 � a4

0 0 a6 a5 a4 a3 � a6 a6 � a2 � a5

0 0 0 a6 a5 a4 a3 � a6

2666666666664

3777777777775
:

We proved that Zi for i � 1; 2; 3 can be obtained from Z0 and from

the input by rewiring, since the computed terms in Z0 cover all

other computed terms, as easily seen below:

Z0 : a0 a6 a5 a4 a3 � a6 a2 � a5 a1 � a4

Z1 : a1 a0 a6 a5 a4 a3 � a6 a2 � a5

Z2 : a2 a1 a0 a6 a5 a4 a3 � a6

Z3 : a3 a2 a1 a0 a6 a5 a4

We also proved that Zi for i � 5; 6 can be obtained from Z4 and

from the input by rewiring, which is seen as

Z4 : a4 a3 � a6 a2 � a5 a1 � a4 a0 � a3 � a6

a6 � a2 � a5 a5 � a1 � a4

Z5 : a5 a4 a3 � a6 a2 � a5 a1 � a4

a0 � a3 � a6 a6 � a2 � a5

Z6 : a6 a5 a4 a3 � a6 a2 � a5

a1 � a4 a0 � a3 � a6

Furthermore, we proved that Z0 can be obtained from an

intermediate step of Z4 by rewiring:

Z0 : a0 a6 a5 a4 a3 � a6

a2 � a5 a1 � a4

Z4 : a4 a3 � a6 a2 � a5 a1 � a4 a0 � a3 � a6

a6 � a2 � a5 a5 � a1 � a4

In order to illustrate the computation of Zn � Z4, we write the sum

(7) by expanding into individual terms:

W : a4 a3 a2 a1 a0 a6 a5

Mm�! 0� : 0 a6 a5 a4 a3 a2 a1

Mm�! 3� : 0 0 0 0 a6 a5 a4

As underlined above, the addition of the subvector �a3 a2 a1� of W

to the corresponding part in Mm�! 0� is also present in the sum

Mm�! 0� �Mm�! 3�. Hence, this part of W does not need to be

separately computed. We need to compute the individual sums of

the last mÿ n � 3 columns. These three columns are of length

k� 1 � 3, as easily seen above. Therefore, the construction of Z4

requires a total of six XOR gates.
The remaining vectors Zi for i 6� 4 are obtained from Z4, as we

have shown. What remains is the computation of the matrix-vector

product c � Zb, which requires m2 � 72 � 49 AND gates and

m�mÿ 1� � 7�7ÿ 1� � 42 XOR gates. We conclude that the

computation of c�x� � a�x�b�x��mod x7 � x4 � 1� requires 49

AND gates and 48 XOR gates.

6 THE SPECIAL CASE OF n � m=2

In this section, we show that, when m is even and n is equal to

m=2, the Mastrovito multiplier architecture described in this paper
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further simplifies. When n � m=2, we find the number of

reductions k as

k � mÿ 2

mÿm=2
� �

� 1 � 2ÿ 4

m

� �
� 1 � 2: �10�

Since k � 2, we write the vector Zn � Zm=2 from (7) as

Zn �W �M�! 0� �M�! m=2�;
which is explicitly given as

Zn � Zm=2 �
�am=2 am=2ÿ1 � � � a1 a0 amÿ1 � � � am=2�1��
�0 amÿ1 � � � am=2�1 am=2 am=2ÿ1 � � � a1 ��
�0 0 � � � 0 0 amÿ1 � � � am=2�1�:

We notice that last m=2ÿ 1 elements starting from amÿ1 and

ending with am=2�1 of the vectors W and M�! m=2� are exactly the

same and, therefore, their sum is equal to zero. We remove these

elements from the sum, and obtain

Zn � Zm=2 �
�am=2 am=2ÿ1 � � � a1 a0 0 � � � 0 ��
�0 amÿ1 � � � am=2�1 am=2 am=2ÿ1 � � � a1��
�0 0 � � � 0 0 0 � � � 0 �:

In other words, Mm�! m=2� makes no contribution and can be

removed from the sum to obtain Zn. Therefore, the computation of

Zm=2 requires only the addition of the subvectors

�am=2ÿ1 � � � a1 a0� � �amÿ1 � � � am=2�1 am=2�;
which requires only m=2 gates. Thus, we conclude that the

construction of the vector Zn in the case n � m=2 requires only m=2

XOR gates, instead of mÿ 1 XOR gates. This brings the total

number of XOR gates required to perform the multiplication to

m�mÿ 1� �m=2 � m2 ÿm=2. The number of AND gates is the

same as before.

Furthermore, the time complexity also simplifies since the

construction of the vector Zn now requires a single TX delay

instead of k TX delay. In the special case of the trinomial

xm � xm=2 � 1, the time complexity of the proposed architecture

is found as

TX � TA � dlog2�m�eTX � TA � 1� dlog2�m�e� �TX: �11�
We exemplify this case using the irreducible trinomial x6 � x3 � 1

generating the field GF �26� in the following. Since m � 6 and

n � 3, we find the vector Zn � Z3 �W �M�! 0� �M�! 3� as

Z3 �
�a3 a2 a1 a0 a5 a4� �
�0 a5 a4 a3 a2 a1� �
�0 0 0 0 a5 a4�:

We remove the subvector �amÿ1 � � � am=2�1� � �a5 a4� from the

vectors W and M�! 3�, and obtain

Z3 �
�a3 a2 a1 a0 0 0 � �
�0 a5 a4 a3 a2 a1� �
�0 0 0 0 0 0 �:

Hence, we can obtain Z3 using only m=2 � 3 XOR gates as

Z3 � �a3; a2 � a5; a1 � a4; a0 � a3; a2; a1�:
Following the previous analysis, we conclude that the remaining
Zi vectors for i 6� 3 can be constructed from Z3 without using any
additional gates. The final reduction array and the required row
operations in the 11� 6 dimensional matrix M are illustrated
below:

x6 � 1� x3 ÿ! M0 :�M0 �M6 and M3 :�M3 �M6

x7 � x� x4 ÿ! M1 :�M1 �M7 and M4 :�M4 �M7

x8 � x2 � x5 ÿ! M2 :�M2 �M8 and M5 :�M5 �M8

x9 � 1 ÿ! M0 :�M0 �M9

x10 � x ÿ! M1 :�M1 �M10:

From these row operations, we obtain the final 6� 6 dimensional Z
matrix as follows:

Z �

a0 a5 a4 a3 a2 � a5 a1 � a4

a1 a0 a5 a4 a3 a2 � a5

a2 a1 a0 a5 a4 a3

a3 a2 � a5 a1 � a4 a0 � a3 a2 a1

a4 a3 a2 � a5 a1 � a4 a0 � a3 a2

a5 a4 a3 a2 � a5 a1 � a4 a0 � a3

26666664

37777775
As seen in the matrix Z above, it is necessary and sufficient to to
compute the terms

a2 � a5; a1 � a4; a0 � a3

in order to construct the entire 6� 6 matrix Z. These operations
require only three XOR gates. In order to perform the multi-
plication c�x� � a�x�b�x�mod x6 � x3 � 1, we need to perform the
matrix vector product c � Zb, for which an additional m�mÿ 1� �
6�6ÿ 1� � 30 XOR gates and m2 � 36 AND gates are required.
Therefore, the total number of XOR gates is 3� 30 � 33.
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