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Abstract

We present an algorithm for computing the residue R = X mod M . The algorithm is based
on a sign estimation technique that estimates the sign of a number represented by a carry-sum
pair produced by a carry save adder. Given the (n + k)-bit X and the n-bit M , the modular
reduction algorithm computes the n-bit residue R in O(k + log n) time, and is particularly useful
when the operand size is large. We also present a variant of the algorithm that performs modular
multiplication by interleaving the shift-and-add and the modular reduction steps. The modular
multiplication algorithm can be used to obtain efficient VLSI implementations of exponentiation
cryptosystems.
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1 Introduction

Arithmetic operations with long operands are often carried out using redundant representations in
order to avoid a full-length carry propagation delay. In the modular reduction operation X mod M ,
we need to compare X with some integer multiple q of M , or equivalently, calculate the sign of
(X − qM). However, in a redundant representation, the sign of a number may not be readily
available. In particular, when the carry save addition technique is used, the precise determination
of the sign of an n-bit number represented by a carry-sum pair requires the computation of the
total sum, which takes O(n) time with a carry propagate adder.

We present an improved version of the sign estimation technique [13] for detecting the sign of
a number represented in the form of a carry-sum pair. The sign estimation technique was used to
obtain fast algorithms for multi-operand modular addition [13] and modular multiplication [12, 14]
operations. The improved sign estimation algorithm presented here correctly computes the sign
of the number when the number is large enough in magnitude. The sign cannot be determined
only when the number is small. We then develop a modular reduction algorithm based on the sign
estimation technique, which is useful for division and modular multiplication operations.

Most of the previous work on division and modular multiplication can be classified into three
categories based on the representation of the numbers:

• nonredundant binary number representation combined with table lookup [2],
∗IEE Proceedings: Computers and Digital Techniques, 145(4):265-271, July 1998.
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• nonredundant binary number representation, with the approximate quotient obtained by
multiplying the dividend by the divisor reciprocal [1, 3].

• signed digit number representation [16, 18, 21], and

• carry save representation and its variations [23, 5, 12, 13, 14].

In the worst case, addition of nonredundant numbers requires carry propagation over the full length
of the operands, and thus, this approach may not be efficient for large operand size. Multiplying by
the divisor reciprocal is very effective when a fast multiplier is available, for example in the context
of single precision division in residue number systems. Both signed digit number and carry save
representations eliminate the problem of carry propagation. However, signed digit addition usually
requires more logic per bit than carry save addition. We advocate carry save representation which
leads to more efficient VLSI implementation: Our modular reduction and modular multiplication
algorithms exclusively use carry save adders.

The division algorithm proposed by Zurawski and Gosling uses the borrow save representation,
which is a variation of the carry save representation [23]. However, this algorithm performs restor-
ing division by having two data paths computing in parallel, and thus, the amount of logic required
is roughly doubled. The modular multiplier proposed by Brickell is based on half adders [5]. Brick-
ell’s method computes modular multiplication of two redundantly represented numbers, and thus,
conversions between redundant and nonredundant representations can be skipped. However, the
complexity of the logical circuit required for each bit is quite high. We also point out that modular
reduction algorithms in the context of residue number systems have been designed, assuming small
X (about 32 bits) and much smaller M ; for example, see [1].

A completely different approach, proposed by Montgomery [17], is to perform modular reduction
right-to-left, i.e., scanning the dividend X from the least significant digit on to the more significant
digits. An array processor for modular multiplication based on this concept has strictly right-
to-left communications, and thus leads to very efficient systolic implementation [22]. However,
the Montgomery algorithm produces an extra factor on the result. The correction involves some
precomputation based on the divisor and an extra modular multiplication, and offsets the benefits
the algorithm provides.

The modular reduction algorithm proposed in this paper is suitable for very large X and M , in
the order of hundreds of bits. Applications are found in cryptosystems based on modular exponen-
tiation, for example, the RSA algorithm [19], the ElGamal signature scheme [9], and the recently
proposed digital signature standard (DSS) of the National Institute for Standards and Technology
[10]. These cryptosystems use modular exponentiation, which in turn requires modular multiplica-
tion as the core operation. The challenge comes from the fact that, due to security requirements,
the number of bits of the operands are in the order of several hundreds, sometimes up to a thou-
sand. Fast implementations of these cryptosystems are crucial since such systems will be used in
high-speed computer/communication networks (from 64 Kbits/s up to 140 Mbits/s) [4]. Current
software [7] and conventional hardware implementations [6] of the RSA algorithm provide a speed
of about 20 Kbits/s. Specialized hardware architectures, such as those using programmable gate
arrays, which encrypt/decrypt at a speed of 200–600 Kbits/s have been designed [20]. However,
there is still a need for algorithmically and technologically efficient, cost-effective implementations.
The modular reduction algorithm presented here provides an efficient solution, requiring very little
hardware resources.
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2 The Sign Estimation Technique

Redundant representations of numbers are frequently used for performing arithmetic operations
with large operands. Of the many existing redundant representations, the carry save technique is
rather inexpensive to implement, and thus, widely used. The carry save representation, produced
by carry save addition, is in the form of two binary numbers usually called the carry and the sum.
The value of the number is equal to the sum of these two numbers.

The sign of a number in one’s or two’s complement representations is indicated by the most
significant bit. However, in the carry save representation, the most significant bit (the sign bit) is
not readily available. Nor is it trivial to compute: In the worst case, we have to compute the total
sum of these two binary numbers in order to obtain the sign, which takes takes O(log n) time with a
carry lookahead adder, or O(n) time with a carry propagate adder. The time spent for calculating
the exact sign bit may dominate the overall time complexity for computations that require the
sign bit in the innermost loop, e.g., division and modular reduction operations. We attack this
problem by substituting the exact sign with an estimated sign. The estimated sign which is less
expensive to compute is used in the bulk of the computation. The exact sign is used only as the
last resort. Given two m-bit binary numbers S and C representing a signed number, the estimated
sign function ES(S,C) returns with one of these three answers:

1. The sign is positive (+),

2. The sign is negative (−),

3. The sign is unsure (±).

When positive or negative signs are returned, the signed number is guaranteed to be positive (≥ 0)
or negative (< 0), respectively. When the sign is determined to be unsure, then the magnitude of
the signed number is guaranteed to be either too large (close to 2m−1) or too small (close to zero).
The sign estimation technique is more useful when we have a priori knowledge that the signed
number is never too large; an unsure sign would then always indicate a small number.

In the following presentation, we use the notation:

• Range notation of the form [x, y], [x, y), (x, y], and (x, y) is used. Brackets denote closed
boundaries while parentheses denote open boundaries. For example,

z ∈ [x, y) is equivalent to x ≤ z < y .

• We use |x|y to represent the residue of x modulo y. By definition, x and y are real, and y > 0.
If r = |x|y, we must have r ∈ [0, y), and there exists an integer k such that r = x− ky.

• An m-bit binary number X is represented by the binary string

Xm−1Xm−2 · · ·X1X0 ,

where Xm−1 is the most significant and sign bit, and X0 is the least significant bit. We use
the same symbol X to represent the (signed) value, and use XU to represent the unsigned
value of the binary string. The usual two’s complement format is used. Therefore we have

X = −2m−1Xm−1 +
m−2∑
i=0

2iXi , XU =
m−1∑
i=0

2iXi .
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Note that X = −2mXm−1 +XU and XU ∈ [0, 2m), therefore we have

XU = |X|2m .

• The truncation function T (X) is defined as the operation which replaces the least significant
t bits of X with zeros, i.e., if X is an m-bit number,

T (X) = Xm−1Xm−2 · · ·Xt 0 · · · 0︸ ︷︷ ︸
t zeros

.

The following two inequalities can easily be proven:

T (X) ≤ X < T (X) + 2t , (1)
T (S) + T (C) ≤ S + C < T (S) + T (C) + 2t+1 . (2)

• Two’s complement addition of two m-bit numbers is specified in the form

Z := X + Y, (3)

even though arithmetically it is not always true. The actual arithmetic operation is an
unsigned addition and ignores the carry out of the sign bit. Therefore, we have

ZU = |XU + YU |2m = |X + Y |2m . (4)

Equation(3) does not hold when there is an overflow, i.e., two positive numbers sum up to be
negative or vice versa. Unfortunately, in the carry save representation, summing the carry
and sum vectors to obtain the value may cause intentional overflow that should be ignored.

• Carry-save addition is denoted as (S,C) := X +Y +Z, where X,Y and Z are operands, and
S and C are the sum and carry. Arithmetically, the two’s complement sum of S and C is
equivalent to the two’s complement sum of X, Y , and Z.

Given the sum S and carry C vectors representing a number X, the sign estimation function
takes bits t through m − 1 of S and C as input, and returns a sign for X as (+), (−), or (±). In
the last case, X is guaranteed to be in the range

−2t ≤ X < 2t .

The parameter t controls the cost and quality of sign estimation. The higher value of t indicates
that the sign estimation algorithm uses fewer bits of C and S, and the probability of computing
the sign as (±) is higher. The algorithm requires that the magnitude of the signed number X is
not too large:

|X| ≤ 2m−1 − 2t+1 . (5)

Let T (S) and T (C) denote the truncated S and C, with t ≤ m − 2. The sign estimation
algorithm first computes Y as the two’s complement sum of T (S) + T (C). Then, the estimated
sign is determined by comparing Y against some constants:

ES(S,C) =




(+) If Y ≥ 0 ,
(−) If Y < −2t,
(±) Otherwise.
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Theorem 1 If the sign estimation algorithm computes ES(S,C) = (+) or (−), we must have
X ≥ 0 or X < 0, respectively. If ES(S,C) = (±), then −2t ≤ X < 2t.

Proof Let y be an underestimate of x: y ≤ x < y+ δ and the error δ < z. We have the following
relations:

0 ≤ |y|z ≤ z − δ implies |y|z ≤ |x|z < |y|z + δ . (6)
z − δ ≤ |y|z < z implies |y|z ≤ |x|z < z or 0 ≤ |x|z < |y|z + δ − z . (7)

Figure 1 shows two examples, one for each case. The closed “[” and open “)” boundary notations
are carried over to the figure.

Figure 1 goes here

Since X is the two’s complement sum of S and C, we have

XU = |S + C|2m .

similarly for the intermediate value Y , we have

YU = |T (S) + T (C)|2m .

Note that T (S) +T (C) is an underestimate of S+C, with the two expressions related by (2). The
bound (5) on the input X implies

0 ≤ XU ≤ 2m−1 − 2t+1 or (8)
2m−1 + 2t+1 ≤ XU < 2m . (9)

We now prove the theorem for each case.

• When Y ≥ 0, we know 0 ≤ YU < 2m−1 ≤ 2m − 2t+1. Applying (6), we have

YU ≤ XU < YU + 2t+1 . (10)

It follows that
0 ≤ XU < 2m−1 + 2t+1 .

The inequalities (8) and (9) further restrict the above to

0 ≤ XU ≤ 2m−1 − 2t+1 ,

thus X is positive.

• The sign estimation algorithm returns (−) when Y < −2t, which implies 2m−1 ≤ YU < 2m−2t.
Since both T (S) and T (C) are multiples of 2t, we have

2m−1 ≤ YU ≤ 2m − 2t+1 . (11)

Again (6) applies and (10) follows. Combining (10) and (11), we have

2m−1 ≤ XU < 2m,

thus X is negative.
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• Finally, when −2t ≤ Y < 0, the sign estimation returns (±). Since T (S) and T (C) are
multiples of 2t, Y must be exactly −2t, which implies YU = 2m−2t. The relation (7) leads to

2m − 2t ≤ XU < 2m or

0 ≤ XU < 2t .

Thus, we have −2t ≤ X < 2t as claimed.

✷

Figure 2 summarizes the proof by showing the ranges of X = S +C and Y = T (S) + T (C) for the
3 cases. In the figure, ε = 2t, and the ranges are labeled as X∗ and Y ∗ where ∗ is +,− and ±,
corresponding to the computed sign.

Figure 2 goes here

Although the sign estimation seems to require the two’s complement sum Y = T (S) + T (C) in
order to compare it to some constants, the full summation need not be carried out. We only need
to know the sign bit of the full sum, and also to be able to detect if the sum is equal to −2t. The
carry lookahead technique can be used to quickly generate the sign bit and detect −2t. We can
formulate the carry look-ahead computation as follows: Let pi and gi be the carry propagate and
carry generate functions, defined as pi = Si ⊕ Ci and gi = SiCi. We compute the carry into the
(m− 1)st bit using

Cin = gm−2 + gm−3pm−2 + gm−4pm−3pm−2 + · · ·+ gtpt+1pt+2 · · · pm−2 .

The sign bit is computed as

Sign = Sm−1 ⊕ Cm−1 ⊕ Cin = pm−1 ⊕ Cin .

We also define the boolean variable SmallNumber which is equal to 1 if the sum is equal to −2t,
and 0 otherwise. We examine the bit distribution of −2t as

m− 1 m− 2 · · · t+ 1 t t− 1 · · · 1 0
2t = 0 0 · · · 0 1 0 · · · 0 0
−2t = 1 1 · · · 1 1 0 · · · 0 0

and conclude that SmallNumber is equal to 1 if all pi from i = t to m− 1 are equal to 1. This gives
the simple formulae:

SmallNumber =
m−1∏
i=t

pi .

The boolean variables Sign and SmallNumber relate to the estimated sign in the following way:

ES(S,C) =




(+) Sign = 0 .
(−) Sign = 1 and SmallNumber = 0 .
(±) SmallNumber = 1 .
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3 The Modular Reduction Algorithm

Given the (n + k)-bit and n-bit positive integers X and M , respectively, the following algorithm
computes the remainder R = X mod M .

1. S := 2−k−1X, C := 0, and t = n− 2
2. for i = 1, 2, 3, . . . , k + 1 do begin
3. if ES(S,C) = (+) then (S,C) := 2S + 2C −M
4. elseif ES(S,C) = (−) then (S,C) := 2S + 2C +M
5. else (S,C) := 2S + 2C
6. end
7. (Ŝ, Ĉ) := S + C +M
8. R := S + C and R̂ := Ŝ + Ĉ
9. if R ≥ 0 return R else return R̂.

The modular reduction algorithm consists of k+1 reduction steps (lines 2–6) and the final sum-
mation and selection (lines 7–9). The reduction steps use carry save addition, while the algorithm
by which line 8 is executed is not specified. It can be carried out using a carry propagate adder,
or a faster method, e.g., a carry look-ahead adder. Overall structure of the algorithm resembles
the SRT division (see, e.g., [11, pages 226–229]). The input number X is scaled down k + 1 bits
initially, and is shifted up one bit and modularly reduced in each of the k + 1 reduction steps. In
each reduction step a sign estimation (with parameter t = n − 2), and a carry-save addition are
performed.

We shall prove the correctness of the algorithm. First, we claim that

−M ≤ S + C < M (12)

after each iteration is executed. Before the first iteration, immediately after X is scaled down and
loaded in S, we have the relation

0 ≤ S + C < 2−k−12n+k = 2n−1 ≤M .

Here we assume that M requires exactly n bits to represent, i.e.,

2n−1 ≤M < 2n .

Thus, the inequality (12) is true. Next, suppose before some iteration i, relation (12) is true; we
want to show that it still holds after lines 3, 4 and 5 are executed for that iteration. The sign
estimation algorithm produces one of three outcomes:

• ES(S,C) = (+): In this case S + C ≥ 0, and thus S + C is in the range [0,M). After the
left-shifts and the subtraction by M , we have S + C ∈ [−M,M).

• ES(S,C) = (−): In this case S + C < 0, and thus S + C is in the range [−M, 0). After the
left-shifts and the addition with M , we have S + C ∈ [−M,M).

• ES(S,C) = (±). In this case, the sign estimation procedure guarantees that S + C ∈
[−2t, 2t) ≡ [−2n−2, 2n−2) ⊆ [−M/2,M/2). The left-shifts bring S + C to [−M,M).
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Therefore we conclude that relation (12) is true after every iteration. As the algorithm exits the for
loop, we have −M ≤ S + C < M . In line 7, we produce another carry-sum pair (Ŝ, Ĉ) by adding
M to (S,C). Both of the pairs are kept as candidates for the correct residue. We compute the
sums R and R̂, and choose one of them. Since R ∈ [−M,M) and R̂ = R+M , we have R̂ ∈ [0, 2M).
If R ≥ 0, then R is in the range [0,M), and thus, is the correct residue. Otherwise, R ∈ [−M, 0)
and R̂ ∈ [0,M), i.e., R̂ is the correct residue.

Since scaling up k + 1 bits on line 1 cancels out with the subsequent k + 1 shifts in the for
loop, the net effect is adding a multiple of M to X to produce a residue in [0,M). Therefore, the
algorithm correctly computes X mod M .

Next we would like to assess the cost of the algorithm, particularly in carry-save additions and
sign estimations. During the entire execution of the algorithm, the number the carry-sum pair
represents is in the range [−M,M) ⊆ (−2n, 2n). Thus, seemingly we need just n + 1 bits to the
left of the radix point to represent the numbers S and C, and the same length for the adders since
fractional part is never added. However, this may not be sufficient. The sign estimation algorithm
requires that S +C not use the full range of representation, as shown in (5). If we pick m = n+ 1,
the requirement posed by (5) that

|S + C| ≤ 2m−1 − 2t+1 = 2n − 2n−1 = 2n−1

is not guaranteed to be met. Next, we try m = n+ 2, and the requirement that

|S + C| ≤ 2m−1 − 2t+1 = 2n+1 − 2n−1

is satisfied. Therefore, we need n + 2 bits for the adders. The (k + 1)-bit fraction of S can be
stored in a shift register. The sign estimation procedure looks at bits n+1, n, n− 1, and n− 2 of S
and C. It can be implemented by a 4-bit adder and a few extra gates to encode the three possible
outcomes.

4 The Modular Multiplication Algorithm

The modular reduction algorithm presented in the previous section leads to an efficient modular
multiplication algorithm. The sign estimation procedure is tuned to yield more precise determi-
nation of the sign. With proper scaling of operands, the shift-and-add steps of multiplication are
interleaved with modular reduction steps. The following algorithm computes P = AB mod M ,
where M is an n-bit number, 2n−1 ≤M < 2n, and 0 ≤ A,B < M .

1. M := 8Minput, S := 0, C := 0, and t = n− 1
2. for i = n− 1, n− 2, . . . , 0,−1,−2,−3 do begin
3. if ES′(S,C) = (+) then (S,C) := 2S + 2C +AiB −M
4. elseif ES′(S,C) = (−) then (S,C) := 2S + 2C +AiB +M
5. else (S,C) := 2S + 2C +AiB
6. end
7. (Ŝ, Ĉ) := S + C +M
8. P := S + C and P̂ := Ŝ + Ĉ
9. if P < 0 then P := P̂
10. return P/8.
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Line 1 scales up M by a factor of 8. That makes the added terms AiB in each iteration small
relative to M , so the partial product S + C stays in a range. Lines 2 to 6 contain the for loop
that performs shift-and-add and modular reduction. Note that a variant of the sign estimation
procedure, ES′() is used. The iteration count i goes down to −3. We define A−1, A−2 and A−3 to
be zeros, as A is an integer. Thus, each of the last three iterations is the same as an iteration in the
modular reduction algorithm; just shifting and adding/subtracting M . The three extra modular
reduction steps compensate for the use of scaled up modulus. A by-product of these extra steps
is a factor of 8 on the carry-sum pair, which is corrected on line 10. Lines 7 to 10 are the final
summation and selection steps similar to lines 7 to 9 of the modular reduction algorithm. The only
difference is that the result is scaled back by 8 before being returned.

The new sign estimation procedure is tuned to reduce the shift-and-add form of accumulation
as opposed to just shifting in our modular reduction algorithm. The procedure computes value Y
as the sum of truncated S and C with the precision parameter t. For convenience, we define ε = 2t.
The numbers Y is compared against to determine the sign are different:

ES′(S,C) =




(+) If Y ≥ 2ε ,
(−) If Y ≤ −4ε ,
(±) Otherwise.

A counterpart to Theorem 1 for the new procedure is as follows.

Theorem 2 If ES′(S,C) computes ES′(S,C) = (+), we must have X ≥ 2ε; if it computes
ES′(S,C) = (−), we have X < −2ε; and if ES′(S,C) = (±), then −3ε ≤ X < 3ε, where ε = 2t, X
is the m-bit integer (S,C) pair represents, and |X| < 2m−1 − 2ε.

The proof is very similar to the proof for Theorem 1, and is therefore omitted. Figure 3
summarizes the ranges of X and Y . The new procedure also requires the represented m-bit number
X to satisfy condition (5).

Figure 3 goes here

To prove the correctness of the modular multiplication algorithm, we first show that throughout
the for loop, we have

S + C ∈ [−3M
4
,
7M
8

). (13)

On line 1, S and C are initialized to zero. Therefore, condition (13) is true before entering the first
iteration. Next, assume that condition (13) is true before the execution of some iteration. We want
to show that (13) is still true after at the completion of that iteration. The scaled up M is related
to ε = 2n−1 by

8ε ≤M < 16ε.

The 3 cases of sign estimation outcome are:

• ES′(S,C) = (+): In this case S+C ≥ 2ε > M/8, and thus S+C is in the range (M/8, 7M/8).
After the shifting, addition of AiB, and subtraction byM , we have S′+C ′ ∈ (−3M/4, 7M/8).

• ES′(S,C) = (−): In this case S + C ≤ −2ε < −M/8, and thus S + C is in the range
[−7M/8,−M/8). After the shifting, and addition of AiB and M , we have S′ + C ′ ∈
[−3M/4, 7M/8).
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• ES′(S,C) = (±). In this case, the sign estimation procedure guarantees that S + C ∈
[−3ε, 3ε) ⊆ [−3M/8, 3M/8). The shifting and addition of AiB lead to S′ + C ′ = S + C ∈
[−3M/4, 7M/8).

So far, we have shown that condition (13) holds throughout the n + 3 iterations. At the end
of the for loop, we have S + C ∈ [−3M/4, 7M/8) ⊂ [−M,M), and so the final summation and
selection of lines 7 to 9 finds a result in [0,M) ≡ [0, 8Minput). The scaling down of line 10 finds a
value (not yet proven to be an integer) in [0,Minput).

By expanding the computation inside the n+ 3 iterations, we can see that, after the for loop,
we have

S + C = ((An−1B + qn−1M) · 2 +An−2B + qn−2M) · 2 + . . .+A−3B + q−3M

= 8AB +QM,

where qi is 0, 1, or −1, and Q =
∑

2i+3qi. The scaling down of line 10 corrects the factor of 8,
and does not produce a fraction regardless of whether P or P̂ is chosen in line 9, because both
8AB + QM and 8AB + (Q + 1)M are divisible by 8. So far, we know that the returned P is an
integer, is AB plus some multiple of Minput, and is in [0,Minput). Therefore, it must be the correct
result for AB mod Minput. We conclude that the algorithm is correct.

The hardware cost of the algorithm is analyzed as follows. We claim that (n+4)-bit carry-save
adders are sufficient. The largest magnitude the carry-sum pair represents is 7M/8 < 2n+3. The
additional requirement imposed by the sign estimation is also met: Taking m = n+ 4, we observe
that 2m−1− 2t+1 = 2n+3− 2n = (7/8)2n+3 > 7M/8. The sign estimation procedure therefore looks
at bits n− 1 through n+ 3 of S and C. The procedure can be implemented with a 5-bit adder and
a few extra gates.

5 Implementation and Application

The modular reduction and multiplication algorithms presented here can be efficiently implemented
with one-dimensional and two-dimensional array processors, semi-systolic or systolic. Since the
literature already contains systematic procedures to map dependency DAG (directed acyclic graph)
onto array processor (see, e.g., Kung [15]), we shall show how the arithmetic operations in both
algorithms can be organized into regular DAGs to facilitate hardware implementation. We shall
concentrate on the bulk of the computation, i.e., the for loop of each algorithm.

The modular reduction algorithm of Section 2 has shift-and-add in each iteration of the loop.
The item to be added, qM , q = {1,−1, 0}, depends on the outcome of sign estimation, which in
turn depends on the leading 4 bits of S and of C, which are produced by the 5 leftmost bits of
carry-save adders. Figure 4 shows a section of the DAG. The ”L” cell represents sign estimation
procedure, and the X cell represents the carry-save addition and the logic to provide the qM term.

Figure 4 goes here

To make a simpler and more regular DAG, we take the same approach as in [14]: in each row
we group the L cell with the 3 leftmost X cells into a supercell, and pair up the rest of the X cells.
The resulting DAG is shown in Figure 5.

Figure 5 goes here
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The DAG for the modular multiplication algorithm is slightly more complicated. The 4-term
summation in lines 3 and 4 needs two levels of carry-save adders to reduce to a carry-sum pair, and
there is a carry transfer between these two levels. As depicted in Figure 6(a), the carry transfer is
signified by the left shift of carry vector between the 2 CSAs. These carries prevent merging of the
two levels of adders, so the corresponding DAG has 2(n+ 3) rows.

To facilitate more efficient implementations, we use (S,C1, C2), i.e., sum and double carry
vectors, to represent the partial product. We now have 5-term summation, and still need 2 levels
of carry-save additions, but there is no carry transfer between the 2 levels. Figure 6(b) shows
the modified summation. Note that the validity of sign estimation depends on the carry-sum
representation of the partial product, thus the 3-vector representation, (S,C1, C2), has to sum up
to a 2-vector format before sign estimation takes place. The output of the first CSA provides the 2
vectors needed for the sign estimation. With these modifications, we can now have a DAG that has
just n+ 3 rows, one for each iteration. The DAG has almost the same dependence pattern as the
one in Figure 4, except that each L cell depends on the 7 leftmost X cells one row above. The sign
estimation is again represented as the L cell, and the X cell represents the two levels of single-bit
CSA and the logic to produce qM and AiB. Grouping of each L cell with the 5 leftmost X cells
in each row and pairing up the remaining X cells again yields a simpler DAG similar to the one
in Figure 5. Efficient semisystolic and systolic array processors can be designed for the algorithms
using these DAGs.

Figure 6 goes here

The modular multiplication algorithm can be realized by a semisystolic, one-dimensional, two-
stage pipelined design for use in modular-exponentiation-based computations. The first stage com-
putes the shift-add-reduce of the for loop. The second stage completes the modular multiplication
by performing the final summation and selection. One n-bit modular multiplication is completed
every n + 3 clock cycles, and the pipelining depth of 2 matches 2 multiplications per iteration
of exponentiation. For k-bit exponent and n-bit modulus, 2k(n + 3) clock cycles are required to
compute a modular exponentiation.

We are currently investigating a variant of the modular multiplication algorithm that accepts
multiplicand and multiplier in carry-sum pair format, as in [5] and [8]. Such a formulation will
eliminate the need for final summation and selection stage in the context of modular exponentiation,
and may reduce the latency and the hardware cost.
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Figure Captions

Figure 1: Examples for the lemma used to prove Theorem 1

Figure 2: Summary of Theorem 1 for the sign estimation procedure

Figure 3: Summary of Theorem 2 for the tuned sign estimation

Figure 4: A section of DAG for the modular multiplication algorithm

Figure 5: A section of DAG for modular multiplication after grouping of cells

Figure 6: Two-level carry-save additions for the modular multiplication algorithm. The ”←”
denotes left-shift by one bit.
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Figure 2: Summary of Theorem 1 for the sign estimation procedure
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Figure 3: Summary of Theorem 2 for the tuned sign estimation
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Figure 4: A section of DAG for the modular multiplication algorithm
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Figure 5: A section of DAG for modular multiplication after grouping of cells
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Figure 6: Two-level carry-save additions for the modular multiplication algorithm.
The ”←” denotes left-shift by one bit.
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