
IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 3, MARCH 1998 353

Low-Complexity Bit-Parallel
Canonical and Normal Basis Multipliers

for a Class of Finite Fields

Ç.K. Koç, Member, IEEE, and B. Sunar

Abstract —We present a new low-complexity bit-parallel canonical
basis multiplier for the field GF(2

m
) generated by an all-one-

polynomial. The proposed canonical basis multiplier requires m 2 - 1
XOR gates and m 2 AND gates. We also extend this canonical basis
multiplier to obtain a new bit-parallel normal basis multiplier.

Index Terms —Finite fields, multiplication, normal basis, canonical
basis, all-one-polynomial.

———————— ✦ ————————

1 INTRODUCTION

THE arithmetic operations in the Galois field GF(2m) have several
applications in coding theory, computer algebra, and cryptogra-
phy [6], [4]. In these applications, time and area efficient algo-
rithms and hardware structures are desired for addition, multipli-
cation, squaring, and exponentiation operations. The performance
of these operations is closely related to the representation of the
field elements. An important advance in this area has been the
introduction of the Massey-Omura algorithm [7], which is based
on the normal basis representation of the field elements. One ad-
vantage of the normal basis is that the squaring of an element is
computed by a cyclic shift of the binary representation. Efficient
algorithms for the multiplication operation in the canonical basis
have also been proposed [5], [3]. The space and time complexities
of these bit-parallel canonical basis multipliers are much less than
those of the Massey-Omura multiplier.

In this paper, we present an alternative design for multiplica-
tion in the canonical basis for the field GF(2m) generated by an all-
one-polynomial (AOP). The time complexity of our design is sig-
nificantly less than similar bit-parallel multiplier designs for the
canonical basis [5], [3], [1]. Furthermore, we use the proposed ca-
nonical basis multiplier to design a normal basis multiplier whose
space and time complexities are nearly the same as those of the
modified Massey-Omura multiplier [2] given for the field GF(2m)
with an AOP. Nevertheless, the proposed normal basis multiplier
is based on a different construction from the ones already known,
and it has certain advantages.

2 CANONICAL BASIS MULTIPLIER

It is customary to view the field GF(2m) as an m-dimensional vec-
tor space defined over the ground field GF(2). We need a set of m
linearly independent elements from GF(2m) in order to represent
the elements of GF(2m). This set serves as the basis of the vector
space. A basis of the form S = {1, a, a2, º, am-1}, where a Œ GF(2m)
is a root of the generating polynomial of degree m, is called a ca-
nonical basis. In order to reduce the complexity of the field multi-
plication, special classes of irreducible polynomials have been
suggested [3], [5]. In particular, the AOP p(x) = 1 + x + x2 + º + xm

has been shown to be very useful. This polynomial is irreducible

and, thus, generates the field GF(2m) if and only if m + 1 is prime
and 2 is primitive modulo m + 1 [6]. For m £ 100, the AOP is irre-
ducible for the following values of m: 2, 4, 10, 12, 18, 28, 36, 52, 58,
60, 66, 82, and 100.

We now briefly describe the Mastrovito multiplier [5] for com-
puting the products of two elements A and B in GF(2m) expressed
in the canonical basis, which are, respectively, represented as

A a x a a a

B b x b b b

i
i

i

m

m

T

i
i

i

m

m

T

= =

= =

=

-

-

=

-

-

Â

Â
0

1

0 1 1

0

1

0 1 1

�

� .

The Mastrovito multiplier uses two matrices in the design process.
The (m - 1) ¥ m basis reduction matrix Q = [qij] satisfies the equality

x
x

x

Q
x

x

m

m

m m

+

- -

�

!

"

$

#
#
#

=
�

!

"

$

#
#
#

1

2 2 1

1

� �
.

The m¥ m product matrix Z = f(A, Q) = [zij] is defined as

z

a
j i m

u i j a q a

j m i m

ij

i

i j j t i m t
t

j=
= = -

- +

= - = -

%

&

K
K

'

K
K

- - - - -
=

-

Â

,
; , , ,

, ,

, , ; , , ,

for

for

0 0 1

1 1 0 1

1 1
0

1
�

� �

2 7
 (1)

where the step function u(t) is defined as

u t t1 6 = ≥%&'
1 0
0

for
else.

,

The product C = AB is found by multiplying the matrix Z by the
vector B in the ground field GF(2). The Mastrovito algorithm di-
rectly computes this product C = ZB.

We introduce a new canonical basis multiplication algorithm
for the field GF(2m) generated using an AOP by decomposing the
matrix Z into the matrices Z1 and Z2 as Z = Z1 + Z2. The idea of
decomposing a matrix has proven to be useful in many similar
designs [2]. In order to construct these matrices, we first write the
matrix equality (II) for the matrix Q in the field GF(2m) with an
AOP using the identity xm+1 = 1 as

x
x
x

x

x
x

x

m

m

m

m m

+

+

- -

�

!

"

$

#
#
#
#
#

=

�

!

"

$

#
#
#
#

�

!

"

$

#
#
#
#

1

2

2 2

2

1

1 1 1 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 1 0 0

1

�

�

�

�

� � � � � � �

�

�
. (2)

Using the definition (2) of Q and the definition (1) of Z, we con-
struct the product matrix Z for the field GF(2m) with an AOP as the
sum of two matrices Z1 and Z2, which are given as follows:

Z

a a a a
a a a a

a a a a
a a a a a

Z

a a a a
a a a a

a a a a
a a a a

m m

m

m m m m

m m m m

m m m

m m m

m m m

m m m

1

0 1 2 2

1 0 1 3

2 3 4 5

1 2 3 4 0

2

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

0
0

0

0
0

0
0

=

�

!

"

$

#
#
#
#
#

=

�

!

"

$

#
#
#
#
#

- -

-

- - - -

- - - -

- - -

- - -

- - -

- - -

�

�

� � � � � �

�

�

�

�

� � � � � �

�

�

.

In order to compute C = ZB = (Z1 + Z2)B, we first compute D = Z1B
and E = Z2B in parallel and, then, compute the result C = D + E.
The product of the last row of Z1 and B is computed using the
rightmost U circuit with two additional gates, which take care of
the nonzero element of the last row of Z1. The architecture of the
canonical basis multiplier is shown in Fig. 1. The module which

0018-9340/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The authors are with the Department of Electrical and Computer Engineering,
ECE Building 220, Oregon State University, Corvallis, OR 97331.

 E-mail: {koc, sunar}@ece.orst.edu.

Manuscript received 6 May 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102136.

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 3, MARCH 1998

computes the vector D = Z1B consists of m identical U circuits, an
AND, and an XOR gate. The circuit U computes the innerproduct
of two vectors of length m - 1. Since one element in each row of Z1
is zero, except in the last row, the innerproduct operation needs to
be of length m - 1. The vector A is shifted according to the place of
the zero element in each row of Z1, while the vector B is fed to the
ith U module by skipping the ith bit. The connection diagram of
the part of the multiplier computing D is shown in Fig. 2. The ba-
sic rewiring modules used in the connection diagram are defined
in Fig. 3.

Fig. 3. The rewiring modules used in the connection diagram.

The structure of the module U is very simple. The innerproduct
of two vectors is computed by, first, generating the products in
parallel using AND gates and, then, by adding the partial products
using a binary XOR tree. In order to generate the products m - 1
AND gates are needed, whereas m - 2 XOR gates are used to ac-
cumulate the products. The depth of the binary XOR tree is given
as Èlog2(m - 1)˘. The total delay of the circuit U is equal to TA +
Èlog2(m - 1)˘TX, where TA and TX are the delays of AND and XOR
gates, respectively. The computation of dm-1 requires an additional
XOR gate delay. Thus, the computation of D requires a total of TA +
(1 + Èlog2(m - 1)˘)TX delays.

In order to compute E = Z2B, we need a single U module with
inputs according to the definition of Z2 given above. Since Z2 has
identical rows, the computation of Z2B is accomplished by com-
puting the innerproduct of a row of Z2 and the vector B and, then,
replicating this resulting bit m times, i.e., E = [e e e � e], where e is
repeated m times. After E = Z2B is computed, the result C = Z1B +
Z2B = D + E is obtained using m XOR gates, as shown in the bot-
tom part of Fig. 1.

The proposed canonical basis multiplier architecture requires a
total of (m - 2)(m + 1) + 1 + m = m2 - 1 XOR gates and (m - 1)(m + 1)
+ 1 = m2 AND gates. The total delay of the circuit is found as TA +

Fig. 1. The proposed canonical basis multiplier.

Fig. 2. The connection diagram for computing D.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 3, MARCH 1998 355

(2 + Èlog2(m - 1)˘)TX. These time and space complexity values are
computed assuming only two-input gates are available.

3 NORMAL BASIS MULTIPLIER

A basis of the form

N
m

=
-

{ , , , , }b b b b2 2 22 1
�

is called a normal basis, where b Œ GF(2m) and m is the degree of
the generating polynomial. The root of an irreducible AOP has the
following property that bm+1 = 1. Furthermore, if the generating
polynomial is an AOP and, also, if 2 is primitive in Zm+1, then we
have

N = {b, b2, b3, º, bm}. (3)

For further information, the reader is referred to [6, p. 99]. Since
the set (3) is also a basis, it can be used to represent the elements of
GF(2m). This basis is a shifted version of the canonical basis. An
element of GF(2m) in the normal basis representation can easily be
converted to the shifted canonical representation. This is accom-
plished using a permutation of the binary representation. With the
help of the identity bm+1 = 1, we perform the conversion

A a ai
i

m

i
i

i

mi
= = ¢

=

-

=
Â Âb b2

0

1

1

,

using the permutation P given as

¢ = = -
+

a a i mi m i2 1
0 1 1

mod
, , ,

1 6
 for � .

In order to perform a normal basis multiplication, we take the
inputs A and B represented in the normal basis, convert them to
the shifted canonical basis using the permutation P, and then per-
form a canonical basis multiplication. At the end of this computa-
tion, we obtain F=AB/b2 represented in the canonical basis as

F = f0 + f1b + f2b
2 + � + fm-1b

m-1.

Note that the values fi are the outputs of the canonical basis multi-
plier shown in Fig. 1, and, therefore, we have fi = di + e for i = 0, 1,
º, m - 1. We then multiply F by b2, and obtain G = Fb2 as

G = (d0 + e)b2 + (d1 + e)b3 + � + (dm-1 + e)bm+1.

We now need to represent this number in the shifted canonical
basis. Since

bm+1 = b + b2 + � + bm,

the coefficient (dm-1 + e) is added to the coefficients of all the other
terms. We can write the final expression as

G d e d e d e

d e d e

d e d e

d e d d

d d d d

m m

m

m m
m

m m

m m m
m

= + + + + + +

+ + + +

+ + + +

= + + + +

+ + + +

- -

-

- -

- -

- - -

1 0 1
2

1 1
3

2 1

1 0 1
2

1 1
3

2 1

2 7 2 7

2 7

2 7

2 7 2 7

2 7 2 7

b b

b

b

b b

b b

�

�

� ,

which gives g0 = dm-1 + e and gi = di-1 + dm-1 for i = 1, 2, º, m - 1.
Thus, we have obtained the representation of the number G in the
shifted canonical basis. We now apply the inverse of the permuta-
tion P to G and obtain the bits of the number C in the normal basis.
The architecture of the normal basis multiplier is given in Fig. 4. It
is very similar to that of the canonical basis multiplier.

The implementation of the permutation and inverse permuta-
tion operations are accomplished by wiring. Therefore, the normal
basis multiplier requires exactly the same number AND and XOR
gates as that of the canonical basis multiplier in Fig. 1. Further-
more, the time complexity of the normal basis multiplier is equal
to that of the canonical basis multiplier.

4 CONCLUSIONS

The time complexity of the proposed canonical basis multiplier is
significantly less than previously proposed similar multipliers for
the field GF(2m) generated by an AOP. The structure of the canoni-
cal basis multiplier is very regular: It consists of m + 1 identical
modules, and some additional XOR and AND gates. It is more
regular than the Mastrovito multiplier, and requires significantly
fewer gate delays. The proposed canonical basis multiplier re-

quires m2 AND gates and m2 - 1 XOR gates. The Mastrovito multi-

plier requires m2 - 1 XOR gates and m2 AND gates, and has a delay

less than TA + 2Èlog2m˘TX if the generating polynomial is a primi-
tive trinomial of the form xm + x + 1 [5], [8]. The XOR and AND
complexities of the Mastrovito multiplier for a general trinomial or
an AOP are not known. However, the number of XOR gates for a

general trinomial is conjectured to be ≥ m2 - 1 in [8].

Fig. 4. The proposed normal basis multiplier.

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 3, MARCH 1998

The normal basis multiplier proposed here and the modified
Massey-Omura multiplier [2] require the same number of XOR
and AND gates, which is about half of the number of gates re-
quired by the Massey-Omura multiplier for the field GF(2m) with
an AOP. The design proposed in this paper requires only one
more XOR delay than the modified Massey-Omura multiplier.
Nevertheless, it is an alternative design, and is based on an en-
tirely different construction. Another advantage is that it is highly
modular. Since the proposed normal basis multiplier is based on a
canonical basis multiplier, any advances made in canonical basis
multiplication using AOPs can be utilized in this design to further
reduce the complexity or timing requirements.

ACKNOWLEDGMENTS

This research was supported in part by Intel Corporation.

REFERENCES
[1] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “Modular Con-

struction of Low Complexity Parallel Multipliers for a Class of Fi-
nite Fields GF(2m),” IEEE Trans. Computers, vol. 41, no. 8, pp. 962-
971, Aug. 1992.

[2] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified Massey-
Omura Parallel Multiplier for a Class of Finite Fields,” IEEE
Trans. Computers, vol. 42, no. 10, pp. 1,278-1,280, Oct. 1993.

[3] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of
Finite Fields GF(2m),” Information and Computation, vol. 83, pp. 21-40,
1989.

[4] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. New York: Cambridge Univ. Press, 1994.

[5] E.D. Mastrovito, “VLSI Architectures for Multiplication Over
Finite Field GF(2m),” Applied Algebra, Algebraic Algorithms, and Er-
ror-Correcting Codes, Proc. Sixth Int’l Conf., AAECC-6, T. Mora, ed.,
pp. 297-309, Rome, July 1988. New York: Springer-Verlag.

[6] Applications of Finite Fields, A.J. Menezes, ed. Boston: Kluwer Aca-
demic, 1993.

[7] J. Omura and J. Massey, “Computational Method and Apparatus
for Finite Field Arithmetic,” U.S. Patent Number 4,587,627, May
1986.

[8] C. Paar, “Efficient VLSI Architectures for Bit Parallel Computa-
tion in Galois Fields,” PhD thesis, Universität GH Essen, VDI
Verlag, 1994.

[9] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and
I.S. Reed, “VLSI Architecture for Computing Multiplications and
Inverses in GF(2

m
),” IEEE Trans. Computers, vol. 34, no. 8, pp. 709-

717, Aug. 1985.

TABLE 1
COMPARING CANONICAL BASIS MULTIPLIERS WITH GENERATING AOPS.

XOR Gates AND Gates Delay

Itoh-Tsujii [3] m
2

+ 2m m
2

+ 2m + 1 TA + Èlog2m + log2(m + 2)˘TX

Hasan et al [1] m
2

+ m - 2 m
2

TA + (m + Èlog2(m - 1)˘)TX

Proposed design (Fig. 1) m
2 - 1 m

2
TA + (2 + Èlog2(m - 1)˘)TX

TABLE 2
COMPARING NORMAL BASIS MULTIPLIERS WITH GENERATING AOPS

XOR Gates AND Gates Delay

Massey-Omura [7] 2m
2 - 2m m

2
TA + (1 + Èlog2(m - 1)˘)TX

Hasan et al. [2] m
2 - 1 m

2
TA + (1 + Èlog2(m - 1)˘)TX

Proposed design (Fig. 4) m
2 - 1 m

2
TA + (2 + Èlog2(m - 1)˘)TX

