
International Journal of High Speed Computing, 9(3):223-236, 1997.

THREE DIMENSIONAL MONTE CARLO DEVICE SIMULATION WITH

PARALLEL MULTIGRID SOLVER

C. K. SANDALCI and C� . K. KOC�

Electrical & Computer Engineering

Oregon State University

Corvallis, OR 97330, USA

S. M. GOODNICK

Electrical Engineering

Arizona State University

Tempe, AZ 85287, USA

ABSTRACT
We present the results in embedding a multigrid solver for Poisson's equation
into the parallel 3D Monte Carlo device simulator, PMC-3D. First we have im-
plemented the sequential multigrid solver, and embedded it into the Monte Carlo
code which previously was using the sequential successive overrelaxation (SOR)
solver. Depending on the convergence threshold, we have obtained signi�cant
speedups ranging from 5 to 15 on a single HP 712/80 workstation. We have also
implemented the parallel multigrid solver by extending the partitioning algorithm
and the interprocessor communication routines of the SOR solver in order to ser-
vice multiple grids. The Monte Carlo code with the parallel multigrid Poisson
solver is 3 to 9 times faster than the Monte Carlo code with the parallel SOR
code, based on timing results on a 32-node nCUBE multiprocessor.

Keywords: Semiconductor device simulation, Monte Carlo methods, Multigrid
solvers, Poission's equation, parallel computation.

Short title: 3D Parallel Monte Carlo.

1. Introduction. Semiconductor device simulation is an important aspect of the

computer aided design (CAD) of integrated circuits. As semiconductor device dimensions

continue to shrink in ultra-large scale integration technology, there is an increasing need

1

International Journal of High Speed Computing, 9(3):223-236, 1997.

for full, three-dimensional (3D) device models to accurately represent the physical char-

acteristics of the device. Further, as dimensions shrink and the internal electric �elds

increase, approximate solutions to the semiconductor transport equation (the Boltzmann

equation when quantum e�ects are negligible) based on low order moment methods (e.g.

the drift-di�usion model) are no longer applicable. Solution of the Boltzmann equation

using Monte Carlo methods is currently the most widespread technique used in device

simulation at this level of modeling [1]. In the Monte Carlo method, the motion of charge

carriers (electrons and holes) is assumed to be given by classical trajectories interrupted by

random, instantaneous, scattering events which change the energy and momentum of the

particles. The classical trajectories are calculated according to the instantaneous forces

acting on the particles over a small time step. In a device simulation, these forces are de-

termined by the electric �elds obtained by solving Poisson's equation on a mesh over the

device domain. The random scattering events are generated stochastically using a random

number generator and the quantum mechanical scattering probabilities for all possible

mechanisms in the semiconductor. In a Monte Carlo device simulation, the solution of

the particle motion (referred to here as the Monte Carlo phase) is synchronized with the

solution of Poisson's equation so as to provide an accurate representation of the time de-

pendent evolution of the �elds in the semiconductor, which in turn accelerate the carriers

over each time step. It is necessary to solve Poisson's equation at various time intervals,

and therefore the above algorithm is basically a time-domain solution of the transport and

�eld equations in the device.

The computational burden of using such Monte Carlo techniques is quite high, par-

ticularly when combined with the simultaneous solution of Poisson's equation in 3D. Al-

ternate particle methods for solving the Boltzmann equation using lattice-gas cellular-

automaton have demonstrated considerable speedup compared to the Monte Carlo tech-

nique [2]. However, this technique does not alleviate the computational burden of solving

Poisson's equation, which in 3D may become the principal bottleneck in the calculation.

Parallel or multiprocessor computers provide some relief to the computational re-

quirements of Monte Carlo device simulation. We have previously developed a parallel 3D

Monte Carlo device simulator, PMC-3D [3], which was implemented on the distributed-

memory nCUBE multiprocessor. In this algorithm, a subspace decomposition of the 3D

device domain was performed, in which the particles and mesh nodes were distributed in

a load-balanced way among the individual processors. During each time step, the par-

ticle motion and �eld calculation is performed locally, and the results communicated to

neighboring processors at the end of the time step. In order to parallelize the solution of

Poisson's equation in this initial implementation, an iterative successive over relaxation

(SOR) method with a red-black ordering scheme was used. We have obtained good e�-

ciencies using this algorithm, up to 70 % with 512 processors. Our subsequent analysis of

the code has revealed the fact that nearly 60{90 % of the computation time is spent in

the the Poisson solver for simulating real 3D structures [4].

Signi�cant speedup of 2D Poisson-Monte Carlo algorithm has been reported by Saran-

2

International Journal of High Speed Computing, 9(3):223-236, 1997.

iti et al using multigrid methods [5]. In the multigrid method discussed in Section 3, the

convergence of the Gauss-Seidel iteration (which is the basis of the SOR method), is ac-

celerated through the use of coarser grids on which the residual is solved. In their serial

implementation, speedups of 10-20 times were reported compared to the SOR method [5].

In this paper, we describe a parallel implementation of the multigrid Poisson solver

in the 3D Monte Carlo device simulator PMC-3D. Section 2 brie
y describes the previous

parallel SOR implementation while Section 3 reviews the multigrid method itself. Section

4 describes the implementation of this algorithm including its parallelization while Section

5 describes the results. First we compare the sequential multigrid Monte Carlo code

to the sequential SOR Monte Carlo code. Depending on the convergence threshold, we

have obtained signi�cant speedups ranging from 5 to 15 when PMC-3D code is executed

on a single HP 712/80 workstation. Furthermore, the parallel multigrid Monte Carlo

implemented on a 32-processor nCUBE is faster between 3 to 9 times than the parallel

SOR Monte Carlo code.

2. The Multigrid Method. A Monte Carlo device simulator requires the solution

of Poisson's equation to obtain the spatial distribution of the potential and electric �elds

which accelerate particles during the Monte Carlo particle phase. In this section, we

discuss the basic aspects of the multigrid method, and then explain the details of the

implementation The primary emphasis will be on the three dimensional Poisson's equation

which is formulated as

@2�

@x2
+

@2�

@y2
+

@2�

@z2
=

�

�s
,

and its �nite-di�erence discretization

ux�1yz�2uxyz+ux+1yz

h2
x

+
uxy�1z�2uxyz+uxy+1z

h2
y

+
uxyz�1�2uxyz+uxyz+1

h2
z

= �
�xyz
�s

.

Here, hx; hy, and hz are the grid spacings in the x, y, an z axes respectively. The plus and

minus signs in the subscript denote the di�erent directions.

The multigrid technique is a well-established approach for solving ordinary and partial

di�erential equations. Its main advantage over other iterative methods like the SOR is

that it is immune to increasing grid point numbers and/or more accurate convergence

thresholds [6, 7, 12, 9]. Here we describe the main idea behind the multigrid approach,

taking the three dimensional Poisson's equation as an example. The Poisson's equation

can be expressed as follows

Lu = f ,

where L represents the r2 operator, u is the potential distribution, and f is the normalized

charge distribution, �(x; y; z)=�s. Let v denote the approximation to u, and e denote the

corresponding error, where e = u� v. In this case, the residual r is de�ned as

r = f � Lv ,

3

International Journal of High Speed Computing, 9(3):223-236, 1997.

where Lv is the approximation to the forcing function f . It is easy to show that the error

e obeys the so-called the residual equation

Le = r .

Let Lnun = fn denote the �nite di�erence discretization of the Poisson's equation on the

grid,
n and the next coarser grid be
n�1. The simplest multigrid approach is the two

level coarse grid correction. In this scheme, the residual r is �rst transferred to the next

coarser grid as

rn�1 = I
n�1
n rn ,

where In�1n is the residual weighting or restriction which is a �ne to coarse transfer operator.

Then the residual equation on the coarse level

Ln�1en�1 = I
n�1
n rn ,

is solved exactly, either by means of an iterative method such as SOR, or directly. Ln�1 is

some coarse grid approximation to the dense grid Laplacian, Ln, which corresponds to the

same �nite di�erence discretization of the problem on the coarser grid. After the residual

equation is solved on the coarse level, the error is interpolated to the dense grid. This

error component is then added as a correction to vn as

v
0
n vn + I

n
n�1L

�1
n�1I

n�1
n rn .

The advantage of this scheme comes from the error smoothing e�ect of the relaxation

operators [10, 11]. In the Fourier domain, the low frequency components of the error

vector are slightly reduced while the high frequency components practically vanish in a few

relaxation sweeps. On the coarse grid, however, some of these low frequency components

overlap with high frequency components due to aliasing. The same relaxation scheme can

reduce these overlapped components on the coarse grid. A simple two-level coarse grid

correction cycle can be described as follows:

1. Pre-smoothing: vn Sv1
n vn.

2. Calculate the residual: rn = fn � Lvn.

3. Restriction: fn�1 In�1n rn.

4. Solve exactly on
n�1: un�1 = L�1
n�1fn�1.

5. Interpolation: en Inn�1un�1.

6. Correction: v0n vn + en.

7. Post-smoothing: v0n Sv2
n v

0
n.

Here Sk
n denotes k relaxation sweeps of an appropriate relaxation scheme. The details

about the interpolation, restriction and smoothing operators will be discussed in the next

part of this section. The equation in step 4 has the same form as the original equation,

Lu = f . Applying the entire procedure recursively
 times in step 4, one can produce

4

International Journal of High Speed Computing, 9(3):223-236, 1997.

di�erent multigrid cycles, e.g., the V-Cycle for
 = 1 or the W cycle for
 = 2, as

illustrated in Fig. 1. Using W cycles with a pointwise Gauss-Seidel relaxation scheme

and a homogeneous grid with uniform spacing gives the best performance upgrade in a

reasonable development time.

v1 v2

S

v2v1

v1 v2

v2,1v1

S

v1

v1

S

v2

v2,1

v2,1v1

S S

v2

v2

v2Ω3

Ω2

Ω1

Ω0 (coarsest)

(a) (b)

FIG. 1. Two common multigrid cycles are (a) V Cycle (
 = 1) and (b) W Cycle (
 = 2).

Here v1 denotes pre-smoothing and v2 denotes post-smoothing. Also S is the exact solution

operator, & is the �ne to coarse grid restriction operator, and % is the coarse to �ne grid

prolongation operator.

3. Implementation. In this section, we discuss the implementation details of the

multigrid Poisson solver. The coarsening scheme, intergrid transfer operators, relaxation

scheme, discretization and the parallelization of the method are explained in the following

parts.

3.1. Coarsening. For the multigrid approach, the choice of the grid set is crucial.

The �rst task is to create a hierarchical set of grids ranging from the densest
n to

the coarsest possible
k. The coarsening factor we used is 1=2, which implies that the

grid spacing of
n�1 is twice as big as the grid spacing of
n. Fig. 2 illustrates the

two dimensional representation of the multiprocessor coarsening scheme. Determining the

coarsest possible level is another important aspect. As long as the boundary conditions

of the original grid can be represented on a coarser grid, coarsening is allowed. Dirichlet

boundary conditions need to be mapped to all grids with at least one boundary point per

contact. Let the grid point at (x1; y1; z1) belong to an electrical contact with the potential

value �a. Then the boundary value on the densest grid is the contact potential �a. On

the coarser levels, we are trying to approximate the error on this potential value. The

potential at the contact is �xed and known exactly, and thus, the corresponding error on

the coarser grids must be zero, i.e.

�nx1;y1;z1 =

(
�a n = 0 (the densest level)

0 n 6= 0 (on all other levels)

5

International Journal of High Speed Computing, 9(3):223-236, 1997.

The Neumann boundaries are treated the same way on the entire grid set, and their

mapping is not as crucial as the Dirichlet boundaries [5]. The multigrid method does not

have any restrictions concerning the total number of grid-points. However, choosing the

number of points of the form 2k+1 for all three directions (but not necessarily with equal

k values) would simplify the restriction and the prolongation operators and improve the

convergence ratio of the Poisson Solver.

Ωn

Ωn-1

Ωn-2

processor #0

processor #2

processor #3

processor #1processor #0

FIG. 2. Two dimensional representation of the multiprocessor coarsening scheme. Here

n is the densest,
n�1 is the next coarser, and
n�2 is the coarsest grid.

3.2. Restriction and Prolongation. Another important component of the multi-

grid method is the restriction and prolongation operators. After generating the hierarchical

grid set, the next step is designing the tools for residual transfers from coarser to �ner grid

and the opposite way for the error.

The prolongation operator we used is a modi�ed version of the nine point prolongation

used in the two dimensional case. The three cases for the prolongation operation are shown

in Fig. 3a. The arrows denote the contributing coarse grid points, where the attached

numbers are the corresponding weighting factors.

The restriction operator is a little more di�cult to implement. There are two di�erent

useful approaches, namely the full weighting and the half weighting restriction [12, 9]. In

our experience, a full weighting residual transfer operator is necessary for a stable solution.

In Fig. 3b, the dense grid points that take part in the regular full weighting scheme

are listed with the corresponding weighting factors. Although there are 27 points to be

considered, the nature of the red/black ordered Gauss-Seidel relaxation scheme allows us

to concentrate on 13 of those points as the residual values for the last updated color are

always zero.

3.3. Relaxation Method. The main goal of the relaxation scheme is to reduce the

high frequency components of the error on any given grid. There can be several suitable

6

International Journal of High Speed Computing, 9(3):223-236, 1997.

relaxation schemes for a speci�c problem depending on the boundary conditions and/or

coarsening method. In this implementation, we chose to use a pointwise Gauss-Seidel

relaxation scheme.

1/2 1/2

1/4

1/4

1/4

1/8

1/8
1/8

1/8
1/8

1/8

1/8

1/8

1/4

(a)

1/81/16 1/16

1/16

1/16

1/16

1/16

1/32

1/32

1/32

1/32

1/32

1/32

1/32 1/32

1/64

1/32 1/32

1/321/32

1/64

1/64 1/64

1/64

1/64

1/64

1/64

(b)

FIG. 3. The intergrid transfer operators. a) Restriction: A 27-point full weighting scheme

is used. The number in front of each grid point denotes its weight in this operation.

b) Prolongation: The arrows denote the coarse grid points to be used for interpolating

the dense grid point. The numbers attached to the arrows denote the contribution of the

speci�c coarse grid point.

The e�ciency of a relaxation scheme can be measured by the smoothing factor [10, 11].

For a cubic grid with N�N�N grid points with periodic boundary conditions, the Fourier

transform of the error e is given by

ex;y;z =

N=2X
r;s;t=�N=2+1

c(�r; �s; �t) exp [i(�rx+ �sy + �tz)] ,

where �r = r�=N , �s = s�=N , �t = t�=N , and c is the magnitude of the frequency

component of the error for a given frequency. The ampli�cation factor of the �fr;s;tg

component due to one relaxation is

�(�) =

����c(�)c(�)

���� ,

where � = (�r; �s; �t), and c represent the frequency components of the error after the

relaxation sweep. Finally the smoothing factor is de�ned by

� = max
���j�j��

�(�) ,

where � is the grid coarsening factor. A double coarsening scheme implies � = 1=2. The

pointwise Gauss-Seidel relaxation over a cubic grid has a typical smoothing factor � ' 1=2

[12]. This implies that the high frequency components of the error are reduced by almost

7

International Journal of High Speed Computing, 9(3):223-236, 1997.

an order of magnitude, in three relaxation sweeps. This smoothing rate is achieved only

for the non-degenerate case where the grid spacings in all three dimensions are the same.

The reason for the poor smoothing e�ect in the case of nonuniform and inhomoge-

neous grids comes form the fact that a pointwise relaxation scheme has a smoothing e�ect

only with respect to the direction that has the smallest grid spacing. Thus, for a decent

smoothing e�ect, according to the various con�gurations of the grid spacings, line and/or

plane relaxations are required, which are di�cult to implement in parallel. As the multi-

grid solver is designed to be a replacement for the former SOR solver, we chose to use a

pointwise red-black ordered Gauss-Seidel relaxation scheme and restricted the grids to be

homogeneous and uniformly spaced along all three dimensions.

4. Parallelization. Several parallel implementations of the multigrid method has

been reported in the literature [12, 13, 14]. Our parallelization of the multigrid code is

essentially the same as the former SOR implementation. The partitioning and the commu-

nication routines are extended to service the hierarchical grids, hence the communication

pattern is preserved.

In the former SOR implementation as well as in our parallel multigrid solver, the

device is partitioned using a recursive bisection algorithm as illustrated in Fig. 4. The

domain is split into two parts that represent roughly equal amount of work, and each part

is recursively divided until the desired number of subgrids are obtained. The subgrids

are assigned to processors using a Gray code mapping. Thus, communication occurs only

between pairs of processors that are physically adjacent to one another.

x
y

z

0000

0001

0010

0011

0100

0101

0110

0111

1100

1101

1110

1111

1000

1001

1010

1011

FIG. 4. The geometrical partitioning of the semiconductor device domain onto a hypercube

of 16 processors. The processors are labeled using binary numbers.

The two dimensional representation of the SOR communication pattern is shown in

Fig. 5. Since the Gauss-Seidel relaxation operator is simply the SOR with ! = 1, the

communication pattern of the smoothing operator remains unchanged [3, 4]. There are

three main events in the multigrid code where communication among adjacent processors

needs to occur before the operation is performed.

Each relaxation sweep for both smoothing and exact solution (SOR) operations con-

sist of two half sweeps corresponding to the two orderings of the grid points. During these

8

International Journal of High Speed Computing, 9(3):223-236, 1997.

operations, each processor updates potential values of the grid points belonging to the

subgrid mapped to its memory. Before each half sweep, the processors need to commu-

nicate via message passing with their neighboring processors. This way the potentials of

the oppositely colored grid points external to the processor's subgrid are obtained.

After the smoothing operation is performed, the residual values are calculated. Due

to red-black ordering, the residual values of the last updated grid set is always zero.

processor #1 processor #2

FIG. 5. The 2-D representation for the red-black ordered SOR solver and Gauss-Seidel

relaxation. The light and dark arrows represent the communication attempts before relaxing

the red and black ordered points respectively.

Before the residual restriction is performed, each processor again communicates with

its neighboring processors to obtain the non-zero residual values of the grid points external

to its subgrid. This way a correct restriction to the coarser levels is achieved.

The same situation is valid for the prolongation operator as well. The prolongation

operation is performed after either a post-smoothing or an exact solution operation. In

our implementation, these two operations, although di�erent in functionality, are very

similar. The exact solution operation is nothing but the former SOR solver applied to the

coarsest level. Before the prolongation is performed, each processor communicates with

its neighboring processors to obtain the updated potentials of the grid points external to

its subgrid. Then the prolongation operation is performed and the error is interpolated to

the �ner levels.

Another issue in developing a parallel semiconductor device simulation package is

distribution and load balancing. As noted earlier, a montecarlo device simulation can be

divided into two phases. Even with the speedups presented in this paper, the solution of the

Poisson's equation still is the dominating computational part of the package. Thus, load

balancing in the multigrid solver which is easily achieved by recursive bisection algorithm,

is necessary and justi�ed. The interested reader is referred to [3] for issues concerning

di�erent approaches for load balancing during the montecarlo phase.

The PMC-3D simulation package with the SOR solver exhibits a high level of scala-

bility [3]. Although the overall communication load of the multigrid solver is larger than

the one of the SOR solver, the parallel code is still scalable, but the slope of the speedup

versus problem size curve is slightly decreased. Possible approaches to decrease the com-

munication load of the MG solver will be discussed in the next section.

9

International Journal of High Speed Computing, 9(3):223-236, 1997.

5. Results and Discussion. In this section we present the results of our exper-

iments in simulating the MESFET device structure shown in Fig. 6. We executed the

PMC-3D code with both the SOR and the multigrid solver in order to compare their

timings.

Source DrainGate

0.64µ

0.32µ

0.29µ 0.47µ 0.29µ
0.11µ0.11µ

FIG. 6. The MESFET structure used as a model problem for the simulations.

We executed the PMC-3D code for a number of time steps of the Poisson/Monte

Carlo solver to simulate an actual MESFET device run. The MESFET was started from

an initial charge neutral state, and the applied voltage turned on abruptly at t = 0. Thus,

the �rst time step requires a signi�cantly greater number of iteration cycles for the Poisson

solver to converge. Subsequent time steps require fewer iteration cycles as the initial guess

is provided from the solution to the previous timestep. To compare the e�ectiveness of the

multigrid solver, we recorded the total simulation time and the time spent in solving the

Poisson's equation using both the SOR and multigrid solvers. Table 1 gives the timings

in seconds when PMC-3D code is executed on a single HP 712/80 workstation. The

simulation is run for 100 time steps with convergence thresholds for the potential ranging

from 10�3 down to 10�12 on a 129�65�33 homogeneous grid with uniform grid spacings.

A total of 32,000 particles was used in the simulation. As seen in Table 1, the multigird

Poisson solver is about 7{16 times faster than the SOR solver depending on the convergence

threshold. For smaller convergence thresholds, the number of iterations of the SOR solver

becomes quite large, whereas, as discussed in the previous sections, the multigrid converges

much more rapidly due to the error smoothing on the coarser meshes.

PMC-3D with SOR PMC-3D with MG Speedup

Threshold Poisson Total Poisson Total Poisson Total

10�3 14; 879:82 15; 595:59 2; 145:84 3; 117:65 6:93 5:00

10�6 76; 208:28 77; 029:05 5; 664:77 6; 576:83 13:45 11:71

10�9 153; 118:90 153; 952:04 9; 779:32 10; 728:29 15:65 14:35

10�12 225; 867:00 226; 735:04 14; 160:49 15; 124:02 15:95 14:99

TABLE 1. The timings of the PMC-3D with SOR and MG solvers on a single HP 712/80

workstation.

10

International Journal of High Speed Computing, 9(3):223-236, 1997.

As can be seen in Table 1, the total time of execution and the Poisson execution

time are fairly close for the chosen number of grid points and particle number. Even for a

convergence threshold of 10�3, the Poisson solver uses 95% of the execution time. Thus,

the overall speedup of the total simulation is 5{15 times, which is close to the speedup of

the Poisson solver itself.

Table 2 shows the timing results of parallel SOR and multigrid PMC-3D codes on

a 32-processor nCUBE multiprocessor. The PMC-3D code is again run for 100 time

steps on the same grid with 20,000 particles. As can be seen from Table 2, the parallel

multigrid PMC-3D code is 3{9 times faster than the parallel SOR PMC-3D. In this case,

the multigrid solver is found to be 5{9 times faster than the SOR solver. The di�erence

in the speedup values between the serial and the parallel cases seems to arise from the

fact that the communication load for the multigrid solver is higher than that of SOR.

The amount of data transferred among adjacent processors decreases with increasing grid-

spacing in the multigrid method, however, the number of communication attempts and

the total number of iterations are generally higher than those in the SOR solver.

PMC-3D with SOR PMC-3D with MG Speedup

Threshold Poisson Total Poisson Total Poisson Total

10�3 2,917.611 3,340.020 596.367 1,121.035 4.89 3.05

10�6 15,093.156 15,515.990 2,064.199 2,589.482 7.31 5.99

10�9 31,167.143 31,653.002 3,486.319 4,011.031 8.94 7.89

10�12 45,597.321 46,083.452 4,927.825 5,453.801 9.25 8.45

TABLE 2. The timings of the PMC-3D with SOR and MG solvers on the 32-node nCUBE

multiprocessor.

As mentioned in section 2, the computation time of the multigrid solver increases

only linearly with respect to the decrease in the convergence threshold. However, the

computation time of the SOR solver tends to grow exponentially. This e�ect can be seen

in Fig. 7, in which we plot the computation time as a function of the convergence threshold.

Therefore, the speedup improves for the multigrid versus SOR as the convergence threshold

is decreased.

0 5∗104 1∗105 1.5∗105 2∗105

Poisson time [sec]

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

C
on

ve
rg

en
ce

 T
hr

es
ho

ld

SOR
MG

0 1∗104 2∗104 3∗104 4∗104

Poisson time [sec]

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

C
on

ve
rg

en
ce

 T
hr

es
ho

ld

SOR
MG

FIG. 7. The computation time versus convergence threshold for the serial code running on

a HP712/80 and the parallel code running on an nCUBE with 32 nodes.

11

International Journal of High Speed Computing, 9(3):223-236, 1997.

In conclusion, we have presented the results of embedding a multigrid solver into our

PMC-3D code in place of the SOR solver for solving Poisson's equation. We have obtained

speedups between 6 to 15 for the serial code and 4 to 10 for parallel code, depending on

convergence threshold. The simulations were performed on a 129 � 65� 32 homogeneous

grid with uniform grid spacings in order to simulate a MESFET structure whose exact

dimensions are shown in Fig. 6.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

PMC−3D iterations

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

tim
e

SOR Solver

MG Solver

Exact solution operation

in the MG solver

FIG. 8. Normalized communication times for both SOR and MG solvers.

The normalized communication overheads for both SOR and MG solvers can be seen

in Fig. 8. The dashed line indicates that the communication overhead in
icted by the exact

solution operator in the coarsest grid is the dominating part. This explains the speedup

gap between the parallel and the serial versions of the multigrid solver, which can be

alleviated by replacing the parallel SOR exact solution operator with either an analytical

solver or a serial SOR solver. In the near future, in addition to this improvement, we plan

to use ideas from [15] to extend the 3D multigrid solver further to handle non-uniform

grid spacings.

6. Acknowledgement. This research is supported in part by the National Science

Foundation under grant ECS{9312240. An earlier version of this paper was presented at

The Eight SIAM Conference on Parallel Processing for Scienti�c Computing, in Minneapo-

lis, Minnesota, March 14-17, 1997. The authors wold like to thank Dr. Marco Saraniti

(Arizona State University) for helpful discussions in relation to this work.

REFERENCES

[1] C. JACOBONI AND P. LUGLI, The Monte Carlo Method for Semiconductor Device
Simulation, Springer-Verlag, Vienna, Austria, 1989.

[2] K. KOMETER, G. ZANDLER, AND P. VOGL, Lattice-gas cellular-automaton
method for semiclassical transport in semiconductors, Physics Reviews B, 46
(Jul. 1992), pp. 1382{1394.

12

International Journal of High Speed Computing, 9(3):223-236, 1997.

[3] U. A. RANAWAKE, C. HUSTER, P. M. LENDERS, AND S. M. GOODNICK, PMC-
3D: A parallel three-dimensional Monte Carlo semiconductor device simulator,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 13-6 (1994), pp. 712{724.

[4] S. S. PENNATHUR AND S. M. GOODNICK, Monte Carlo investigation of three-
dimensional e�ects in sub-micron GaAs MESFETs, Inst. Phys. Conf. Ser., No
141, Chapter 7, 1995.

[5] M. SARANITI, A. REIN, G. ZANDLER, P. VOGL, AND P. LUGLI, An e�cient
multigrid Poisson solver for device simulations, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 15-2 (1996), pp. 141{150.

[6] A. BRANDT, Rigorous quantitative analysis of multigrid, I: Constants coe�cients
two-level cycle with L2-norm, SIAM Journal on Numerical Analysis, 31-6 (1994),
pp. 1695{1735.

[7] K. ST�UBEN AND U. TROTTENBERG, Multigrid methods: Fundamental algo-
rithms, model problem analysis and applications, in Multigrid Methods, Proceed-
ings of the Conference, W. Hackbusch and U. Trottenberg, eds., Lecture Notes in
Mathematics, Number: 960, K�oln-Porz, November 23{27, 1981, Springer-Verlag,
Berlin, pp. 1{176.

[8] A. BRANDT, Guide to multigrid development, in Multigrid Methods, Proceedings
of the Conference, W. Hackbusch and U. Trottenberg, eds., Lecture Notes in
Mathematics, Number: 960, K�oln-Porz, November 23{27, 1981, Springer-Verlag,
Berlin, pp. 220{312.

[9] W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag, Berlin,
1985.

[10] J. KUO AND C. LEVY, Two-color Fourier analysis of the multigrid method with
red-black Gauss-Seidel smoothing, Applied Mathematics and Computation, 20
(1989) pp. 69{87.

[11] I. YAVNEH, Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied
to a class of elliptic operators, SIAM Journal on Numerical Analysis, 32-4 (1995)
pp. 1126{1138.

[12] A. BRANDT, Multigrid solvers on parallel computers, in Elliptic Problem Solvers,
M. H. Schultz, ed., New York, Academic Press, 1981, pp. 39{84.

[13] O. A. MCBRYAN, P. O. FREDERICSON, J. LINDEN, A. SCH�ULLER, K. ST�UBEN,
C. A. THOLE, AND U. TROTTENBERG, Multigrid methods on parallel com-
puters - A survey of recent developments, IMPACT of Computing in Science and
Engineering, 3 (1991), pp. 1{75.

[14] L. R. MATHESON AND R. E. TARJAN, A critical analysis of multigrid methods
on massively parallel computers, Technical Report CWI Tract 103, Center for
Mathematics and Computer Science, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands, 1993.

[15] C. A. THOLE AND U. TROTTENBERG, Basic smoothing procedures for the multi-
grid treatment of elliptic 3D operators, Applied Mathematics and Computation,
19 (1986), pp. 333{345.

13

