
Parallel Computing, 23(13):2067-2074, December 15, 1997.

Parallel p-adic Method for Solving Linear Systems of Equations �

C� . K. Ko�c

Electrical & Computer Engineering

Oregon State University

Corvallis, Oregon 97331

Abstract

We present a parallel algorithm for exact solution of an integer linear system of equations using

the single modulus p-adic expansion technique. More speci�cally, we parallelize an algorithm of

Dixon, and present our implementation results on a distributed-memory multiprocessor. The parallel

algorithm presented here can be used together with the multiple moduli algorithms and parallel

Chinese remainder algorithms for fast computation of the exact solution of a system of linear equations

with integer entries.

1 Introduction

Exact solutions of a system of linear equations with integer or rational number entries can be found by
using Gaussian elimination and multiple-precision arithmetic. However, this direct method breaks down
even for systems of moderate size due to excessive growth of the intermediate results, even though the
initial values as well as the �nal result are in single-precision. The congruence and the p-adic expansion
techniques are preferred to the direct method, since the sizes of intermediate results are kept under
control. Although some algorithmic questions remain, the basic mathematics of residue number and
p-adic arithmetic are both well-known [9, 7, 15]. E�cient sequential algorithms and software for solving
linear equations using the residue [13, 8, 4, 2] and the p-adic [3] techniques have been developed in the
last twenty years. Recently, parallel algorithms for exact solution of linear systems using the multiple
moduli congruence [12, 10, 11] and the p-adic techniques [14] have also been designed and implemented.
The multiple moduli congruence and p-adic expansion algorithms are amenable for parallelism, since
computations for each modulus can be separately carried out. This step is completely parallel and no
communication is required among the processors. The solutions for each of the moduli are then combined
using the single-radix or the mixed-radix conversion algorithms, both of which also exhibit a certain
degree of parallelism. A brief comparison of direct methods utilizing the multi-precision arithmetic
versus the p-adic methods is given in [14], where the execution times with respect to the upper bound
on the matrix entries are also analyzed.

In this paper we concentrate on the single modulus case, and describe a parallel algorithm for
obtaining the exact rational solution of a linear system of equations using the single modulus p-adic
method. More speci�cally, we parallelize an algorithm of Dixon [3], and present our implementation
results on a distributed-memory multiprocessor. The parallel algorithm described in this paper can be
used together with the parallel multiple moduli algorithms given in [12, 10, 11] for fast computation of
the exact rational solution of linear equations with integer entries.

�This work is supported in part by the National Science Foundation under grant ECS{9312240.

1



Parallel Computing, 23(13):2067-2074, December 15, 1997.

2 Dixon's Algorithm

We consider computing the exact rational solution to the linear system of equations:

Ax = b (1)

whereA 2 In�n, b 2 In�1, and the solution x 2 Qn�1. Given the integer matrixA which is nonsingular
for the prime modulus p, and the integer vector b, the following algorithm by Dixon [3] computes the
exact rational solution x. Dixon's algorithm consists of three fundamental steps:

1. Inversion Step: We compute the inverse of the matrix A modulo p.

2. Iteration Step: The solution x of Ax = b mod pm is obtained by iteration.

3. Euclidean Step: The rational solution of (1) is obtained using the extended Euclid algorithm.

These steps are shown in more detail below:

DIXON'S ALGORITHM (A;b; p;m)
Step 1: C = A

�1 mod p ; Inversion
Step 2: b0 = b ; Iteration

for i = 1 to m
xi = Cbi mod p
bi+1 = p�1(bi �Axi)

end

x =
Pm�1

i=0 xip
i

Step 3: for j = 1 to n ; Euclidean
u�1(j) = pm, u0(j) = x(j)
v�1(j) = 0, v0(j) = 1

while ui(j) < pm=2

qi(j) = bui�1(j)=ui(j)c
ui+1(j) = ui�1(j)� qi(j)ui(j)
vi+1(j) = vi�1(j) + qi(j)vi(j)

end

end

x(j) = ((�1)iui(j)=vi(j)); 1 � j � n ; Rational solution

Dixon's algorithm requires O(n3 log2 n) arithmetic operations when the integer entries of A and b lie
within the range [�W;W ]. Denoting the Euclidean norm of the ith column of A as �i = kAik2, where
Ai = [a1i a2i � � � ani]

T and �0 = kbk2, we use the Hadamard determinant inequality to see that
jdetAj � Qn

i=1 �i. We can compute an absolute bound � for the numerator and denominator of the
rational entries of the exact solution x from Cramer's rule as follows:

� =

Qn
i=0 �i

min(�i)
� (n1=2W )n . (2)

The �rst step of the algorithm is to compute the modulo p inverse of A, i.e., to compute C 2 In�np

such that AC = I mod p, where In�np denotes an n � n matrix with entries from the residue class
of integers modulo p. Using Gaussian elimination or LU decomposition, C can be calculated in O(n3)
modular arithmetic operations. The second step which computes the p-adic approximation to x involves

2



Parallel Computing, 23(13):2067-2074, December 15, 1997.

a modular and an integer matrix-vector multiplication. The elements of bi lie in the range [�nW;nW ],
hence they are of length log n + logW = O(log n). Therefore matrix-vector products can be com-
puted in O(n2 logn) operations. This iteration is repeated m times, giving a total operation count of
O(mn2 log n). Computing x guarantees

Ax = b mod pm . (3)

This is easily proven by noting that

x =
m�1X
i=0

xip
i , (4)

thus, we have

Ax =
m�1X
i=0

piAxi =
m�1X
i=0

pi(bi � pbi+1) = b0 � pmbm = b� pmbm . (5)

Taking mod pm of both sides, we obtain Equation (3). Dixon also proposes a method of computing the
unknown fraction f=g, with jf j; jgj � � such that gs = f mod h (s = x and h = pm in our case). The
upper bound for f and g is found to be �h1=2, where � = (

p
5� 1)=2 is a root of �2 + �� 1 = 0. Thus,

we have � � �pm=2. Taking the logarithm of both sides, we obtain the minimum m as

m =
2 log(�=�)

log(p)
. (6)

Substituting � � (n1=2W )n, we obtain

m =
2

log(p)

�
n log(W ) +

n

2
log(n)� log(�)

�
. (7)

Since W is presumed to be a constant, we have m = O(n log n). Hence the operation count for the
iteration becomes O(n3 log2 n). The �nal step of the algorithm converts the p-adic approximation x to
the rational exact solution x. We can estimate the number of operations required to convert the p-adic
number to its rational form. We take the logarithm of the inequality

h1=2 � vi(j) �
i�1Y
k=0

qk(j) � 2i=2 , (8)

and conclude that both
Pi�1

k=0 log qk(j) and i are O(log h), i.e., O(m log p). Since the integers ui and vi

are bounded by h and they are of length O(m log p), the computation of ui=vi takes at most O(m2 log2 p)
operations.

3 Parallelization of Dixon's Algorithm

In this section we assume that we have a distributed-memory multiprocessor with P identical processors.
The single modulus parallel p-adic algorithm consists of three steps:

1. Distribute A to all the processors, and compute C = A
�1 mod p in parallel.

2. Distribute C to all the processors for the iteration, and perform all matrix-vector multiplications
in parallel. Obtain the p-adic solution x in parallel.

3



Parallel Computing, 23(13):2067-2074, December 15, 1997.

3. Distribute the solution vector x among processors to compute the rational expression from the
p-adic approximation using the extended Euclidean algorithm.

As we will show later, although the calculation of C = A
�1 mod p is done only once, solving it in

parallel greatly reduces the total computation time. In order to reduce the communication penalty and
to work on a consistent data arrangement A is copied to all the processors. Each processor works on the
corresponding columns of A during parallel LU decomposition. After C is computed it is distributed to
all the processors in a similar manner to reduce the communication penalty during the iteration stage.

We use row-pivoting for the elimination phase where each processor computes its portion of C.
After Gaussian elimination is completed each processor updates C by a multi-node broadcast. Gaussian
elimination in a �nite �eld requires pivot exchange only for the case where the pivoting element is zero
modulo p. Hence no additional serial search is done for the element with maximum modulus, which is
one of the major shortcomings of column-wrapped row-pivot Gaussian elimination [5].

With P < n processors, each processor performs Gaussian elimination and back-substitution on a
n=P �n rectangular array, which requires O(n3=P ) arithmetic steps [6]. At each pivoting step, the pivot
element is checked for singularity, and exchanged with the �rst nonzero element in the same column.
During the elimination phase, the vector of multipliers l and u of length n� 1 is broadcast to the rest
of the processors. If there is a pivot exchange, the new pivot index is also included in the vector of
multipliers. Thus, we �nd the communication penalty for the elimination step as n(n�1)TS = O(n2TS),
where TS is the required time to send an integer from one processor to another in the architecture. For
the hypercube connection, we have 1 � TS � logP , i.e., TS = 1 if the data is sent to a neighboring
processor, and TS = logP if the data is sent to the most distant processor [1]. This gives the maximum
communication penalty as O(n2 logP ). After receiving the vector of multipliers l, u, and the pivot
index, the rest of the processors update their columns in parallel.

Before the iteration step, b0 is broadcast to all the processors to compute the modular matrix-
vector product xi = Cbi mod p. At this step each processor computes inner-products between the
corresponding rows of C and bi sequentially. This way each processor computes n=P elements of the
column vector xi, and broadcasts it to other processors to update their vectors. For the second part of the
iteration, each processor computes inner-products between the corresponding rows of A and updated xi,
and subtracts from n=P elements of bi to compute bi+1. In a similar fashion, each processor broadcasts
n=P elements of bi+1 to update other processors' vectors, which brings a communication overhead of
mnTB=P = O(n2 log nTB=P ), where TB is the time required to broadcast an element from one processor
to all the other processors. It is well-known that, in a hypercube architecture, a broadcast operation
can be achieved in TB = logP units of time [1]. This gives the communication overhead of this step
as O(n2 log n logP=P ). Computation of vector sequences bi+1 and xi involves parallel matrix-vector
multiplication which has an algebraic complexity of O(n3 log2 n=P ).

After xm and bm+1 is computed, the iteration terminates, and each processor computes n=P ele-
ments of x. Once x is computed, the Euclidean algorithm works without any communication among the
processors. Each processor converts n=P elements of x to the rational form using (n=P )(m2 log2 p) =
O(n3 log2 n=P ) operations. Thus, the parallel exact solution of a set of linear equations has an approx-
imate time complexity of O(n3 log2 n=P ).

4 Implementation Results

We have implemented the parallel p-adic algorithm on an 8-processor partition of a Meiko CS-2 multi-
processor, in which each node is a Sparc processor equipped with 256 MBytes of memory. The algorithm
is implemented using the PVM software.

4



Parallel Computing, 23(13):2067-2074, December 15, 1997.

In our experiments, we solve integer linear systems of equations with various dimensions from 128
up to 1280. The prime p is selected so that the basic arithmetic operations involving modulo p can be
performed in single-precision integer arithmetic, and computed x satis�es Ax = b mod pm. Since p is
in the order of W , its higher powers are not representable in �nite precision. We used multi-precision
exponentiation and addition to compute x. Two factors e�ect the e�ciency of our algorithm: 1) the
number of iteration steps m, which depends both on the system size and the absolute maximum of the
system matrix entries. 2) the complexity of converting to the rational form from p-adic approximation,
which depends on the magnitude of the numerator in the exact solution.

In Table 1, we tabulate the timings of the sequential and the parallel algorithm for P = 2; 4; 8
processors for certain values of n in the range 128 � n � 1280. Furthermore, Table 2 shows the
percentages of times spent during the steps of the Dixon algorithm. Table 2 clearly indicates that, even
though the inversion of the matrix A is performed only once, it uses up to 96 % of the total time of
algorithm. Thus, in order to obtain any considerable speedup, the parallel e�ciency of the inversion
step must be increased. Also we analyze the individual performance of the algorithm steps. Parallelizing
the vector iteration gives an e�ciency of 0.90 for 4 processors, whereas the parallel modular inversion
has an e�ciency of 0.60 for the same number of processors. The parallel e�ciency of the iteration (Step
2) and the Euclidean (Step 3) steps are considerably higher, typically above 90 %. The overall parallel
e�ciency of the algorithm is shown in Table 3. This table indicates that the parallel algorithm has almost
constant e�ciency (linear speedup) for n > 384. However, as P increases, the e�ciency decreases due
to the high communication overhead of the inversion step. Any increase in the e�ciency of the Gaussian
elimination algorithm would have a direct positive e�ect on the e�ciency of the algorithm presented.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation, Numerical Methods.
Englewood Cli�s, NJ: Prentice-Hall, 1989.

[2] S. Cabay and T. P. L. Lam. Congruence techniques for the exact solution of integer systems of
linear equations. ACM Transactions on Mathematical Software, 3(4):386{397, December 1977.

[3] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numerische Mathematik,
40(1):137{141, 1982.

[4] A. S. Fraenkel and D. Loewenthal. Exact solutions of linear equations with rational coe�cients.
Journal of Research of the National Bureau of Standards, 75B(1{2):67{75, January{June 1971.

[5] G. A. Geist and C. H. Romine. LU factorization algorithms on distributed-memory multiprocessor
architectures. SIAM Journal on Scienti�c and Statistical Computing, 9(4):639{649, July 1988.

[6] G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD: The Johns Hopkins
University Press, 2nd edition, 1989.

[7] R. T. Gregory and E. V. Krishnamurthy. Methods and Applications of Error-Free Computation.
New York, NY: Springer-Verlag, 1984.

[8] J. A. Howell and R. T. Gregory. An algorithm for solving linear algebraic equations using residue
arithmetic I{II. BIT, 9(3,4):200{224 and 324{337, 1969.

5



Parallel Computing, 23(13):2067-2074, December 15, 1997.

[9] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Reading,
MA: Addison-Wesley, Second edition, 1981.

[10] C� . K. Ko�c. A parallel algorithm for exact solution of linear equations via congruence technique.
Computers and Mathematics with Applications, 23(12):13{24, 1992.

[11] C� . K. Ko�c, A. G�uven�c, and B. Bakkalo�glu. Exact solution of linear equations on distributed-memory
multiprocessors. Parallel Algorithms and Applications, 3:135{143, 1994.

[12] C� . K. Ko�c and R. M. Piedra. A parallel algorithm for exact solution of linear equations. In
Proceedings of International Conference on Parallel Processing, volume III, pages 1{8, St. Charles,
Illinois, August 12{16, 1991. Boca Raton, FL: CRC Press.

[13] M. Newman. Solving equations exactly. Journal of Research of the National Bureau of Standards,
71B(4):171{179, October{December 1967.

[14] G. Villard. Exact parallel solution of linear systems. In J. Della Dora and J. Fitch, editors,
Computer Algebra and Parallelism, pages 197{205. New York, NY: Academic Press, 1989.

[15] D. M. Young and R. T. Gregory. A Survey of Numerical Mathematics, volume 2. New York, NY:
Dover Publications, 1988.

6



Parallel Computing, 23(13):2067-2074, December 15, 1997.

Table 1: Timings for the sequential and parallel p-adic solution (in milliseconds).

n T (P )! T (1) T (2) T (4) T (8)

128 23340 22442 12156 6630
256 189600 148125 84642 47400
384 608900 441231 249549 140949
512 1484800 1016986 580000 603200
640 2895360 1904842 1080358 1109109
768 5501184 3526400 1993182 1109109
896 9352800 5919493 3293239 1826718
1024 15711381 9819613 5455340 3021419
1152 26552234 16595146 9093230 5106198
1280 37173128 23233205 12730523 7148678

Table 2: Percentage distribution of total time among algorithm steps.

P Step n! 128 256 384 512

1 99.30 99.60 99.86 99.87
1 2 0.43 0.25 0.09 0.08

3 0.27 0.15 0.05 0.05

1 99.45 99.67 99.89 99.89
2 2 0.30 0.17 0.07 0.07

3 0.25 0.05 0.04 0.04

1 99.48 99.88 99.90 99.91
4 2 0.27 0.07 0.06 0.05

3 0.23 0.04 0.03 0.04

1 99.52 99.90 99.92 99.92
8 2 0.25 0.06 0.05 0.05

3 0.23 0.04 0.04 0.04

Table 3: E�ciency as a function of matrix size for P = 2; 4 and 8..

n E2 E4 E8

128 0.52 0.48 0.44
256 0.64 0.56 0.50
384 0.69 0.61 0.54
512 0.73 0.64 0.57
640 0.76 0.67 0.60
768 0.78 0.69 0.62
896 0.79 0.71 0.64
1024 0.80 0.72 0.65
1152 0.80 0.73 0.65
1280 0.80 0.73 0.65

7


