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A Parallel Algorithm for Principal nth Roots of Matrices �

C� . K. Ko�c and M. _Inceo�glu

Abstract

An iterative algorithm for computing the principal nth root of a positive de�nite matrix is presented. The

algorithm is based on the Gauss-Legendre approximation of a de�nite integral. We present a parallelization

in which we use as many processors as the order of the approximation. An analysis of the error introduced

at each step of the iteration indicates that the algorithm converges more rapidly as the order of the

approximation (thus, the number of processors) increases. We describe the results of our implementation

on an 8-processor Meiko CS-2, comparing the parallel algorithm to the fastest sequential algorithm, which

is the Hoskins-Walton method.
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1 Introduction

Several methods for �nding the nth roots of matrices have been developed [Hoskins and Walton, 1979]
[Denman, 1981] [Bjork and Hammarling, 1983] [Higham, 1986] [Higham, 1987] [Tsai et al, 1988]. A
fast and stable method for computing the square-root and cube-root of a matrix, based on the Schur
factorization A = QSQH and a fast recursion, is described in [Bjork and Hammarling, 1983]. An
extension of this algorithm to compute the real square-root of a real matrix in given in [Higham, 1987].
An accelerated iterative method for computing the nth root of a positive de�nite matrix is introduced in
[Hoskins and Walton, 1979]. This method is later extended for general real matrices [Denman, 1981].
Furthermore, methods for computing the principal nth roots of complex matrices have also been
developed [Shieh et al, 1986] [Tsai et al, 1988].

The computation of the nth roots of matrices has several applications in control system design and
analysis. For example, the matrix root functions and the associated matrix sign and sector functions
are used to solve the matrix Lyapunov and Riccati equations in stability and optimal control problems
[Gardiner and Laub, 1986] [Shieh et al, 1987] [Shieh et al, 1990]. Other related applications can be
found in [Shieh et al, 1987].

In this paper, we describe a new parallel iterative algorithm to compute the principal nth root
of a positive de�nite matrix, without explicitly computing its eigenvalues. The algorithm, based on
the Gauss-Legendre approximation of a de�nite integral, is similar in avor to the approach used in
[Pandey et al, 1990] to approximate the matrix sign function. We derive the summation expression for
the iterative nth root algorithm in Section 2, and analyze the error properties of this iteration in Section
3. Finally, we summarize the results of our implementation on an 8-processor Meiko CS-2, and compare
the speed of the new algorithm to that of the Hoskins-Walton algorithm [Hoskins and Walton, 1979],
which seems to be the fastest sequential algorithm.

2 The Derivation of the Iteration

The principal nth root of a positive de�nite matrix can be de�ned in terms of its eigenvalue decompo-
sition. Let A 2 Rq�q be a positive de�nite matrix and �(A) = f�i ; i = 1; : : : ; qg be its spectrum with
eigenvalues �i 6= 0 and arg(�i) 6= �. Let M 2 Cq�q be the modal matrix that takes A to its Jordan
form as

A =M diag(�1; �2; : : : ; �q) M
�1 .

Applying the matrix function de�nition of Giorgi [Rinehart, 1955], the principal nth root of a complex
matrix can be de�ned as

n

p
A =M diag( n

p
�1;

n

p
�2; : : : ;

n

q
�q) M

�1;

where n is a positive integer, and arg( n
p
�i) 2 (��=n; �=n).

In order to derive the algorithm, we express the nth root function in terms of an hypergeomet-
ric function, and then by expanding this hypergeometric function in power series, we �nd a de�-
nite integral giving the nth root function. We follow the method described in [Pandey et al, 1990]
[Kenney and Laub, 1991], and use the hypergeometric function

2F1(�; �; ; z) =
1X
i=0

(�)i(�)i
i!()i

zi ,

where �; ; z 2 R, and
(�)i = �(�+ 1) � � � (�+ i� 1)
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with (�)0 = 1. More speci�cally, in order to approximate the nth root, we use the hypergeometric
function

1
n

p
1� z

= 2F1(1=n; 1; 1; z) =
1X
i=0

(1=n)i
i!

zi (1)

The coe�cients in the power series expansion are calculated using the following integral

(�)i
()i

=

Z 1

0
xiw(�; ; x)dx ,

where the weight function w(�; ; x) is given in [Kenney and Laub, 1989]. For this particular case,
the weight function is

w(1=n; 1; x) =
x(1=n)�1(1� x)�1=n

� csc(�=n)
.

Substituting w(�; ; x) in the power series expansion of (1), we obtain

1
n

p
1� z

=
1X
i=0

�Z 1

0
xiw(1=n; 1; x)dx

�
zi

=
1

� csc(�=n)

Z 1

0

x(1=n)�1

(1� x)1=n(1� xz)
dx . (2)

We derive the parallel nth root algorithm using the Gauss-Legendre quadrature approximation for
the integral formula (2). To apply the Gauss-Legendre quadrature formula, we shift the interval of
integration to (�1; 1). By a change of variable as x = (~x+ 1)=2, we obtain the integral as

1
n

p
1� z

=
1

� csc(�=n)

Z 1

�1

h(~x)

(2� (~x+ 1)z)
d~x ,

where

h(~x) =
2(1 + ~x)(1=n)

(1 + ~x)(1 � ~x)1=n
.

This integral can be approximated [Stroud and Secrest, 1966] using the following summation

Z 1

�1

h(~x) d~x

(2� (~x+ 1)z)
�

mX
i=1

wih(xi)

(2� (xi + 1)z)
, (3)

where the nodes fxig are the zeroes of the degree m Legendre polynomial Pm(x) on (�1; 1), and the
weights wi for i = 1; 2; : : : ;m are given as

wi =
�2

(m+ 1)P 0

m(xi)Pm+1(xi)

3 The Parallel Iteration

The parallel iteration uses the summation formula (3) in order to compute the nth root. The iteration

starts with s0 = 1, and proceeds with sk+1 = sk= n

q
snk=� so that limk!1 sk = n

p
�. By substituting

zk = 1� snk=� in the quadrature formula, we introduce an auxiliary variable zk as

zk = 1� snk
�

,

sk+1 =
sk

� csc(�=n)

mX
i=1

wih(xi)

(2� (xi + 1)zk)
,
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In the matrix case, the iteration starts with S0 = I, and proceeds with

Zk = I �A�1Snk ,

Sk+1 =
1

� csc(�=n)
Sk

mX
i=1

wih(xi)(2I � (xi + 1)Zk)
�1 .

Since limk!1 Sk = n

p
A, the auxiliary iteration matrix Zk satis�es limk!1Zk = 0q, where 0q is a

q � q zero matrix. Therefore, the convergence can be monitored by checking kZkk at each step, and
terminating the iteration when kZkk < �.

The propsed iteration is suitable for parallelism in a natural way. Assuming we have m processors
available, at each step of the iteration, each processor computes one part of the above summation, and
broadcasts this result among all processors. These results are then summed by all processors using
the associative binary tree algorithm. The details of the parallel algorithm are given in Table 1.

Table 1 goes here

The parallel algorithm assumes that the order of approximation m and the actual number of
processors P is equal. In practice, this need not be the case. In order to achieve a reasonable con-
vergence rate, it may be necessary to use high order approximation even if there are fewer processors.
If P < m, then the structure of the proposed parallel algorithm changes only slightly: A processor
computes more than one matrix Ti. If P > m, then more than one processor is involved in the com-
putation of a matrix Ti. The computation of �, Sk+1, and Zk+1 are performed by all processors in
both cases. Another factor in the parallelization of the proposed algorithm is the value of n. When
n is large (e.g., n > 100), then the computation of Snk+1 in the last step will take signi�cant amount
of time if it is not performed in parallel. We have considered only small values of n in our numerical
experiments (parallel or sequential). However, for larger values of n, this step needs to be parallelized
as well.

We now give a brief analysis of the proposed algorithm in terms of the number of arithmetic
operations required in a single step of the iteration. This analysis is further helpful in determining the
amount of parallelization required for di�erent values of m, n, and the matrix size q. In this analysis,
it is assumed that the number of processors P is less than the order of approximation m. We also
assume that all scalar approximation parameters, e.g., the zeroes fxig of the Legendre polynomial, the
weights wi, etc., are precomputed and readily available. We calculate only the number of arithmetic
operations required by the matrix operations: scalar-matrix multiply, matrix add and subtract, matrix
multiply, matrix inversion, and matrix powering. The number of arithmetic operations required for
these matrix operations are well-known, for example, see [Golub and van Loan, 1989].

Table 2 goes here

Using the values tabulated in Table 2, we calculate the number of arithmetic operations required
by a single iteration of the algorithm below:

� Computation of a single Ti requires
8
3q

3 +O(q2) arithmetic operations by one processor. All Ti
from 1 to m are computed using 8m

3P q
3 arithmetic operations with P < m processors, ignoring

the lower order terms.

� Computation of � requires O(mq2) arithmetic operations with one processor, and O((mP +
log2 P )q

2) arithmetic operations with P processors.

� Computation of Sk+1 requires 2q
3+O(q2) arithmetic operations by a single processor. Assuming

P < q, this can be accomplished using 2q3

P arithmetic operations with P processors, ignoring the
lower order terms.
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� Computation Snk+1 can accomplished by performing parallel matrix multiply operations using P
processors. This requires (1:5 log2 n)(2q

3� q2)=P arithmetic operations. We then compute Zk+1

using an additional 2q3

P arithmetic operations.

Keeping only the higher order terms (i.e., terms containing q3), we calculate the total number of
arithmetic operations required in a single iteration step as

8mq3

3P
+
2q3

P
+
(2q3)(1:5 log2 n)

P
+
2q3

P
=

�
8m

3
+ 3 log2 n+ 4

�
q3

P
.

This analysis implies that the proposed parallel algorithm achieves nearly linear speedup per iteration
step. The experiments performed on an 8-processor Meiko CS-2 are described in the last section.

4 Error Analysis

We analyze the errors in the quadrature approximation and the matrix iteration separately. The
Gauss-Legendre integration including the error term can be given as [Davis and Rabinowitz, 1975]

Z 1

�1
g(x)dx =

mX
i=1

wig(xi) +Em(g) ,

where

Em(g) =
22m+1(m!)4

(2m+ 1)((2m)!)2
g(2m)(t)

(2m)!
. (4)

This error term can be simpli�ed by de�ning

Am =
22m+1(m!)4

(2m+ 1)((2m)!)2

Bm = max
�1<t<1

jg(m)(t)j
m!

,

which gives the error term (4) as
jEm(g)j � AmB2m .

We use Stirling's formula m! � e�mmm
p
2�m and obtain Am � �4�m. This gives the error formula

as
jEm(g)j � �4�mB2m . (5)

In the scalar case of the de�nite integral for the matrix nth root, we have

f(x; z) =
2(1 + x)(1=n)�1

(1� x)(1=n)(2� (x+ 1)z)
.

This integrand has an apparent singularity at the upper limit of the integration. However, this endpoint
singularity can be ignored to approximate the error term [Davis and Rabinowitz, 1975]. Thus, the
error formula (5) is applicable to the above integrand as well.

We now formulate error expression for the matrix iteration. Let M 2 Rq�q take the symmetric
positive de�nite matrix Sk to its diagonal form Dk as

Dk =M�1SkM ,

where Dk = diag(d1[k]; d2[k]; : : : ; dq[k]). In a similar fashion, Zk can be decomposed to its diagonal
form using the same modal matrix M as

Zk =M(I � ��1Dn
k )M

�1 ,
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where � =M�1AM , � = diag(�1; �2; : : : ; �q), and

I � ��1Dn
k = diag

 
1� dn1 [k]

�1
; 1� dn2 [k]

�2
; : : : ; 1� dnq [k]

�q

!
.

Decomposing the matrix iteration with the same modal matrix M , we obtain the matrix iteration on
the singular values of Sk as

dj [k + 1] =
dj [k]

� csc(�=n)

mX
i=1

wih(xi)

2� (xi + 1)(1 � dnj [k]=�j)

= n

q
�j + Ej;m[k]

for j = 1; 2; : : : ; q. The analysis of the scalar case, as given by the error formula (5), suggests that

jEj;m[k]j � �4�mBj;2m[k] (6)

for j = 1; 2; : : : ; q, where

Bj;2m[k] = max
�1<t<1

f (2m)(t; 1� dnj [k]=�j)

(2m)!
(7)

for j = 1; 2; : : : ; q. As seen from Equations (6) and (7), the error term at each step of the iteration
decreases in magnitude as the order of summation m grows. As the order of summation increases,
the error at each step decreases, and thus, the number of iteration steps decreases and the algorithm
converges more rapidly.

5 Implementation Results and Conclusions

We implemented the parallel nth root algorithm on an 8-processor partition of a Meiko CS-2 mul-
tiprocessor, in which each node is a Sparc processor equipped with 256 MBytes of memory. In our
experiments, we compute the nth roots of matrices for n = 2; 3; 4; 5 with dimensions ranging from
128 to 1024. These matrices are generated randomly with condition numbers �2(A) up to 103. The
number of iteration steps performed by the parallel algorithm is tabulated in Table 3 for m = 2; 4; 8
processors, where the stopping criteria � is 10�6. As can be seen from Table 3, increasing the number of
processors (the order of summation) decreases the number of iteration steps for the parallel algorithm.

Table 3 goes here

We also implemented the three most commonly used sequential algorithms: the Hoskins-Walton
iteration [Hoskins and Walton, 1979], the continued fraction method [Tsai et al, 1988], and Newton's
method [Hoskins and Walton, 1979] [Higham, 1986]. It turns out that the Hoskins-Walton algorithm
is the fastest of these three algorithms. Therefore, we compare the speedup of the proposed parallel
algorithm to the fastest sequential algorithm. The speedup of the parallel algorithm for with respect
to the sequential Hoskins-Walton algorithm is tabulated in Table 4.

Table 4 goes here

The implementation results indicate that the speedup of the parallel algorithm is greater than P=2
even for small matrices, where P is the number of processors. As the matrix dimension grows, the
speedup increases, e.g., the principal 4th root of a positive de�nite matrix of dimension 768 is computed
with a speedup greater than 5 on 8 processors. Unfortunately, the proposed parallel algorithm is not
highly scalable; the e�ciency (the speedup divided by the number of processors) slightly decreases as
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the number of processors increases when the matrix root and size are �xed. This was illustrated in
Table 5 for computing the 5th of matrices. The rate of decrease becomes somewhat smaller as the size
of the matrix increases: When the number of processors is increased from 2 to 4, the e�ciency drops
by 14.7 % for q = 128 and 11.9 % for q = 1024.

Table 5 goes here

A shortcoming of the proposed algorithm is it numerical stability problems for large values of n
since it requires nth power of the matrix Sk+1 at each iteration step. The algorithm works well and
converges quickly for small n (less than 10). Thus, its scope is somewhat limited. In the near future,
we plan to compare of the proposed algorithm to the QR method from the point of numerical stability
and computational cost. Furthermore, for large values of n, several approaches to compute A1=n are
possible, e.g., the prime factorization of n or the binary expansion of n. For example, A1=6 can be
computed using A1=2A1=3. These approaches need to be studied as well.
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Table Captions

Table 1: The parallel iteration.

Table 2: The complexity of the matrix operations.

Table 3: The number of iteration steps for the parallel algorithm.

Table 4: The speedup of the parallel algorithm.

Table 5: The e�ciency of the parallel algorithm for computing the 5th root.
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Table 1: The parallel iteration.

i = processor id
S0 = I
Z0 = I �A�1

while kZkk < �
all: broadcast Sk and Zk

i: compute Ti = wih(xi)(2I � (xi + 1)Zk)
�1

all: compute � =
Pm

i=1 Ti
all: compute Sk+1 = (1=�) csc(�=n)Sk�
all: compute Zk+1 = I �A�1Snk+1

end

Table 2: The complexity of the matrix operations.

Matrix Operation Arithmetic Operations

scalar-matrix multiply q2

matrix add & subtract q2

matrix multiply 2q3 � q2

matrix inversion 8
3q

3 +O(q2)
nth power of matrix (1:5 log2 n)(2q

3 � q2)

Table 3: The number of iteration steps for the parallel algorithm.

Matrix Size
P Root 128 256 384 512 640 768 896 1024

2 2 5 5 5 6 6 6 6 6
3 5 5 8 9 9 9 10 10
4 6 12 14 15 15 16 16 16
5 6 13 14 15 16 16 16 16

4 2 4 4 4 4 4 4 4 4
3 5 5 5 5 6 6 6 6
4 6 7 7 8 8 8 9 10
5 6 7 7 8 8 8 9 10

8 2 4 4 4 4 4 4 4 5
3 4 4 4 4 4 4 4 5
4 4 4 5 5 5 5 5 6
5 5 5 5 5 5 5 6 7
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Table 4: The speedup of the parallel algorithm.

Matrix Size
P Root 128 256 384 512 640 768 896 1024

2 2 1.14 1.26 1.34 1.40 1.46 1.56 1.62 1.62
3 1.24 1.36 1.44 1.50 1.58 1.66 1.70 1.72
4 1.30 1.42 1.48 1.54 1.62 1.70 1.76 1.82
5 1.36 1.46 1.54 1.58 1.66 1.72 1.78 1.84

4 2 1.92 2.24 2.32 2.44 2.52 2.60 2.68 2.76
3 2.04 2.32 2.48 2.56 2.68 2.80 2.88 2.96
4 2.16 2.44 2.56 2.68 2.80 2.92 3.00 3.12
5 2.32 2.52 2.64 2.76 2.88 2.96 3.08 3.24

8 2 3.36 3.68 4.00 4.16 4.40 4.64 4.96 5.20
3 3.60 4.00 4.16 4.32 4.56 5.04 5.20 5.36
4 3.84 4.24 4.40 4.64 4.88 5.28 5.44 5.68
5 4.00 4.56 4.80 4.88 5.04 5.20 5.52 5.84

Table 5: The e�ciency of the parallel algorithm for computing the 5th root.

Matrix Size
P 128 256 384 512 640 768 896 1024

2 0.68 0.73 0.77 0.79 0.83 0.86 0.89 0.92
4 0.58 0.63 0.66 0.69 0.72 0.74 0.77 0.81
8 0.50 0.57 0.60 0.61 0.63 0.65 0.69 0.73
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